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This supplement contains proofs and additional results for the paper “Inference on
Winners.” Section A collects proofs for results stated in the main text. Section B con-
tains additional details and derivations for the EWM and threshold regression examples
introduced in Section 3 of the paper. Section C constructs procedures that dominate con-
ventional sample splitting as discussed in Section 4.3 of the paper. Section D translates our
finite-sample results for the normal model to uniform asymptotic results over large classes
of data generating processes. Section E reports additional simulation results for the stylized
example of Section 2 of the paper. Section F reports additional simulations results for the
EWM simulations discussed in Section 6 of the paper. Finally, Section G reports additional

simulation results for the threshold regression simulations discussed in Section 7 of the paper.

A Proofs

Proof of Proposition 1 For ease of reference, let us abbreviate (Y (0),uy(0),Z;) by
(Y, jiy,Z). Let Y(—=0) collect the elements of Y other than Y'(f) and define juy (—0)

analagously. Let

evenepen(5)p={(1)) ()
sem-en(rca( T ))r((2)) (7).

fiz = ix — <2XY('7é)/EY(é)>MY-
Here we use A* to denote the Moore-Penrose pseudoinverse of a matrix A. Note that
(ZY Y*) is a one-to-one transformation of (X,Y), and thus that observing (Z,Y,Y*) is

T =

and
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equivalent to observing (X,Y"). Likewise, (fiz,fty,i3) is a one-to-one linear transformation
of (ux,uy), and if the set of possible values for the latter contains an open set, that for
the former does as well (relative to the appropriate linear subspace).

Note, next, that since (Z,Y,Y*) is a linear transformation of (X,Y), (Z,Y,Y*) is jointly
normal (with a potentially degenerate distribution). Note next that (Z,Y,Y*) are mutually
uncorrelated, and thus independent. That Z and Y are uncorrelated is straightforward
to verify. To show that Y™ is likewise uncorrelated with the other elements, note that we
can write Cov (Y*,(?,X’)’) as

co(ricn () )emsean e (£)) vl (1)

For VAV an eigendecomposition of Var((f/,X "y ) (so VV'=I), note that we can write

() () e

for D a diagonal matrix with ones in the entries corresponding to the nonzero entries of

A and zeros everywhere else. For any column v of V' corresponding to a zero entry of D,

_ ’
v'Var ((Y,X ! > )v:(), so the Cauchy-Schwarz inequality implies that

co(v(0)( 1) )o-o
Cov(y(—é),< )i ))VDV’:C()U(Y(—Z)),( )i ))Vv’:cov<y(—é),<

!/

<

))

so Y* is uncorrelated with (?,X ! )
Using independence, the joint density of (Z ,f/,Y*) absent truncation is given by

Inz(Eiz) oy @ity ) fvy (5 0y)
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for fy normal densities with respect to potentially degenerate base measures:
~ ~ ~ _1 ]- ~ ~ INH > ~
fnz(Ziiz)=det(2rY ;) 2exp —5(2—,&2) Zz(z—,uz)

=)

fN,Y(:&?:&Y) = (277—2)7)756)(1) (_ 22{/

%,k "~ —1 1 *  ~% * *
i) =ty e =30 <SR i) )

where det(A) denotes the pseudodeterminant of a matrix A, ¥, =Var(Z), Ly =y (0),
and Yy =Var(Y™).
The event {X eX (é,’y)} depends only on (Z ,f/) since it can be expressed as

- Sxy(0) o 5
{<Z+S§@TY)6X@w},

so conditional on this event Y remains independent of (Z ,57). In particular, we can write
the joint density conditional on {X ex (é,'?)} as

1{ (Z—FEXY(';é)EY(é)_l@) € X(éfy)}
Pri, iy {X € X@ﬁ)}

fN,Z(5§ﬁZ)fN,?<Z7§ﬁY)fN,Y* (7"51y)- (26)

The density (26) has the same structure as (5.5.14) of Pfanzagl (1994), and satisfies proper-
ties (5.5.1)-(5.5.3) of Pfanzagl (1994) as well. Part 1 of the proposition then follows immedi-
ately from Theorem 5.5.9 of Pfanzag] (1994). Part 2 of the proposition follows by using Theo-
rem 5.5.9 of Pfanzagl (1994) to verify the conditions of Theorem 5.5.15 of Pfanzagl (1994). O

Proof of Proposition 2 In the proof of Proposition 1, we showed that the joint density of
(Z.Y Y*) (defined in that proof) has the exponential family structure assumed in equation
4.10 of Lehmann and Romano (2005). Moreover, Assumption 1 implies that the parameter
space for (1x,uy) is convex and is not contained in any proper linear subspace. Thus, the
parameter space for (fiz,fiy 13 ) inherits the same property, and satisfies the conditions
of Theorem 4.4.1 of Lehmann and Romano (2005). The result follows immediately. [J
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Proof of Proposition 3 Let us number the elements of © as {01,92,...,0@‘}, where
X(6,) is the first element of X, X(f,) is the second element, and so on. Let us fur-
ther assume without loss of generality that 6 = 6;. Note that the conditioning event
{maxpce X (#)=X(01)} is equivalent to {MX >0}, where

1 -1 0 0 .. 0
0o 100
10 0 0 .. -1

isa (|©]—1) x|6| matrix and the inequality is taken element-wise. Let A= [— M Ogel-1)x|e| } :
where 0(o|_1)xjo| denotes the (|©]—1) x |©] matrix of zeros. Let W= (X",Y")" and note
that we can re-write the event of interest as {WW: AW <0} and that we are interested
in inference on 7/ for 7 the 2|0| x 1 vector with one in the (|©]+1)st entry and zeros

everywhere else. Define

ZE =W —cY(B),

for ¢ = Cov(W,Y (6))/y(f), noting that the definition of Z; in (17) corresponds to
extracting the elements of Z7 corresponding to X. By Lemma 5.1 of Lee et al. (2016),

(W AW <0} = {W:ﬁ(é,zg) <Y(6)<U(8,2).V(6.7;) zo},
where for (v); the jth element of a vector v,
J

£ e
( 7Z)_j:(r.»rﬁllca)‘jio (AC)]

Note, however, that
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and

_ Ty (01,61) —Exy (61.05)
(Ac);=— SR .

Hence, we can re-write

_(AZg)J‘ Dy (61)(Z5(05) — Z5(64))
(Ac)j a EXY(Ql,Ql)—EXy(GI,Gj) ’

Ly (01)(Z(6;)— Z(61))
7 Exy (01,61)>Exy (01,05 EXY(91,91) Exy(91,9j> ’

Sy (01)(Z5(0;) — Z(61))
I Exy (01,01)<Xxy (01,05) EXY(91,91) _EXY(9179j> 7

£(0.23)=

U0.23) =
and

V(0.2;)= min —(Z5(6;)—Z(61)).

7 Exy (01,01)=Xxv(01,65)

Note, however, that these are functions of Zj, as expected. The result follows. [

Proof of Proposition 4 Note the following equivalence of events:
{0=0}= {ZX >ZX vee®}

= {Z Zévi(é)—FZXY,i(é)EY(é)_ly(é)} 2

Vv

Zp, (9)+2X1’,i(9a9)21f(9)_1y(9)] “vpe @}
— {A(970)Y(§)2+BZ(@,6’)Y(9)+CZ(§,9) >0 Ve @},

for A(é,@), Bz(éﬁ), and C’Z(éﬂ) as defined in the statement of the proposition.
By the quadratic formula, (27) is equivalent to the event

{ —By(0.0)—+\/D2(8.0) )< —By(8.0)+1/D2(0.9)

2A(6,0) - T 2A(6.,0)

VOcO s.th. A(0,0)<0 and D(6,0) >0,

vo)< —B4(0.0) - D,(0.6) V) —B,(0.,0) 3 /D4(8.6)
24(0.,0) 2A(0.,0)
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V0cO s.th. A(0,0)>0 and D(6,0) >0,
Y(0)> —Cz(09)
BZ(Qﬁ)
Ve 00
BZ(Q,Q)
C%(0,0)>0V0e€O s.th. A(6.0)=B,(0.0)=0,

C2(0.0)>0 Y0 €O sth. D(0,0) <o}

_ {y@)e N —By(0.6)—\/D(0.6) —B2(0.6)+\/D£(0.9)

V€O sth. A(0,0)=0 and By(6,0) >0,

V0cO s.th. A(0,0)=0 and B4(0.0) <0,

~ ] 2A(6.,0) ’ 2A(6,0)
0€6:4(0,0)<0,Dz(6,0)>0
—By(0,0)—\/Dz(0.0)| | —Bz(0.0)+1/D(0.)
N ﬂ —00, = U = ,00
] ) 2A(6.,0) 2A(6.,0)
0€0:A(0,0)>0,D7(6,0)>0
N N [Hz(é,e),oo> N N <—oo,HZ(é,9)}
0€0:A(6,0)=0,B(8,0)>0 0€0:A(6,0)=0,B(8,6)<0
ﬁ{ i min o Oy(00)> 0}
0€0:A(6,0)=Bz(6,0)=0 or Dz(6,0)<0
:{Y(é)e [ “max  Gz(00),  min Kz(éﬂ)}
0€0:A(6,0)<0,D(6,0)>0 6€©:A(0,0)<0,D£(8,0)>0
ﬂ[ _max Hz(éﬂ),oo) N (—oo7 _min HZ(éﬂ)}
0€©:A(0,0)=0,Bz(6,0)>0 0€©:A(0,0)=0,B(,0)<0

N N (—oo,KZ(é,e)} U [Gz(é,e),oo) }m{wé,zé) 20}

0c©:A(0,0)>0,D(8,6)>0

0e0:A(0,0)>0,D7(6,0)>0

- {Y(e) c N [elz(é,e),ulz(é,e)] U [ﬁz(é,e),ug(é,e)} }m{vw,z@) 20}

for D(0.0), G(0.0), Hz(6,0), Kz(0,0), (5(0), (%(0,0), uy(8.,0), u%(f), and V(0,7;) again

defined in the statement of the proposition. The result follows immediately. [

Proof of Lemma 1 Recall that conditional on Z;= 2z, §=6 and 4=7 if and only if
Y(é) Ey(éﬁ,zé). Hence, the assumption of the lemma implies that

Priy Y (0)€907.%)| =25, ) — 1.
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Note, next, that both the conventional and conditional confidence sets are equivariant

under shifts, in the sense that the conditional confidence set for 1y-(6) based on observing
Y (A) conditional on Y (0) € Y(0,7,7;) is equal to the conditional confidence set for iy (0)
based on observing Y (6) — i (A) conditional on Y (8) — i (9) € V(8,7,75) — 1i%-(0) for any
constant i (6). Hence, rather than considering a sequence of values [y,m, We can fix some
ity and note that

Pry {Y O) €V Z5=25, } 1,

where V' =V(0,7,25) — pry.m () + 115 (#). Confidence sets for piy,,(6) in the original problem
are equal to those for 1% (f) in the new problem, shifted by jiy- (8) — % (A). Hence, to prove
the result it suffices to prove the equivalence of conditional and conventional confidence
sets in the problem with uy fixed (and likewise for estimators).

To prove the result, we make use of the following lemma, which is proved below. First,
we must introduce the following notation. Let (¢ gr(ity,0,Y),Cupr(ftv,0,))) denote the
critical values for an equal-tailed test of Hy : iy (A) = piy for Y(6) ~ N (uy (6),2y (é))

conditional on Y (#) €Y. That is, (¢, gr(ty.0,)),Cu.er(iv0,))) solve

| R

Frn(c,er(py0.Y)sty,0.Y) =

o
Frn(cu,pr(py0.)ity0.Y)=1— >

where Fry(;pty,)) is the distribution function for the normal distribution N (um,Zy (0))
truncated to Y. Similarly, let (¢, (ty,0,)),Cuv (11v,0,))) denote the critical values for the
corresponding unbiased test. That is, (¢, (py,0,)),Cuv (1y,0,))) solve

Pr{¢elau(tyo.Y)cov(tyod)}=1—a
EBICHCE e u(iyod) cuv(pyoP)]} = (1—a) E[(]

for (~¢|€€) where E~ N (um,zy (é))

Lemma 3
Suppose that we observe Y (0) ~ N <,uy(é),2y(é)> conditional on Y (0) falling in a

set Y. If we hold <Ey(9),um> fized and consider a sequence of sets V,, such that
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Pr{Y(é)eym}—ﬂ, we have that for

dr(v0) =1{Y OV ¢l (vo. V) o pivo V)l | (28)
and
00 (1v0) = 1{ Y (B) 2 [e10 (v V) o1y ) . (29
(1B (1y.0:Yim) Cu, BT (1y,0,Vm)) = (MY,O —c2 v/ Sy (0) pyotca Ey(é))
and

(v (1y.0:Vm) Cu v (1y,0,Vim)) = (/W,o —ca v\ By (0)uyo+cs xSy (é)) ~

To complete the proof, first note that C'Sgr and C'Sy are formed by inverting (families
of) equal-tailed and unbiased tests, respectively. Let C'S,, denote a generic conditional

confidence set formed by inverting a family of tests

Onli1v0) =Y O) ¢ lalivo Vi) culio V) -

Hence, we want to show that
CSp—, [Y@)—C%N,Y@)H%,N] , (30)

as m— o0, for C'S,, formed by inverting either (28) or (29).
We assume that C'S,, is a finite interval for all m, which holds trivially for the equal-
tailed confidence set C'Sgr, and holds for Cy; by Lemma 5.5.1 of Lehmann and Romano

(2005). For each value piyy our Lemma 3 implies that

Gm(py0) =pl {Y (é) ¢ [vo—ca nofivo+cs ] }

for ¢,, equal to either (28) or (29). This convergence in probability holds jointly for all
finite collections of values jiy,o, however, which implies (30). The same argument works
for the median unbiased estimator ji 1 which can also be viewed as the upper endpoint

of a one-sided 50% confidence interval. OJ
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Proof of Proposition 5 We prove this result for the unconditional case, noting that
since Pry,, {@zé,’?zfy} — 1, the result conditional on {92@;}2'&} follows immediately.

Note that by the law of iterated expectations, Pry,, {9:9,12’?} — 1 implies that
Pruy.. {@zé,‘y:’y\Zé} —, 1. Hence, if we define

9(pv-2) = Pryo {D=04=712y==2 .

we see that g(fty,m,Z5) —p 1.

Note, next, that for d the euclidian distance between the endpoints, if we define
he(py ) = Pry, {d(CSy,CSn) >e| Z5 =2},

Lemma 1 implies that for any sequence (fty.m,2m) such that g(tym,zm) =1, he(fyms2m) — 0.
Hence, if we define G(6)={(uy,2):9(py,z) >1—0} and H(e) ={(py,2): h(py,2) <c}, we
see that for all >0 there exists d(¢) >0 such that G(d(¢)) CH(e).

Hence, since our argument above implies that for all 4 >0,

Pro,. {(tym,Z;) €G(6)} — 1,

we see that for all € >0,
Pry, {(mvm Zs) €H(e)} =1

as well, which suffices to prove the desired claim for confidence sets. The same argument

likewise implies the result for our median unbiased estimator. [

Proof of Proposition 6 Provided 0 is unique with probability one, we can write

Pru{,u(é) ECS} = Z Pru{ézéﬁzﬁ}Pm{u@) GCS|9:éﬁ:§}.

6cO,5el

Since Zée@ﬁerpru{é:éﬁ:?} =1, the result of the proposition follows immediately. [

Proof of Lemma 2 Consider first the level-maximization case. Note that the assump-
tion of the lemma implies that X (#)— X () has a non-degenerate normal distribution for
all p. Since O is finite, almost-sure uniqueness of 0 follows immediately.

For norm-maximization, assume without loss of generality that Var (X (0)|X (@)) #0.

Note that || X (6)|| is continuously distributed conditional on X (6)=x(6) for all z(f) and all
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[, SO Prﬂ{ | X(O)||=]X (é)||} —0. Almost-sure uniqueness of § again follows immediately

from finiteness of ©. OJ

Proof of Proposition 7 The first part of the proposition follows immediately from
Proposition 2. For the second part of the proposition, note that for C'SH either of the
hybrid confidence sets,

P?"M{/Ly(é) ECSH} :Pru{uy(é) ECS@}X
3 Pm{é:aa:amywxxxﬁ}Pm{m4®ecsH@:&@me4®ec$ﬁ}

:Pm{uy(@) 605@}1:—; > (1—5)1:—221—04,

where the second equality follows from the first part of the proposition. The upper bound
follows by the same argument and the fact that PTM{ iy (0) € CSIQ} <10

Proof of Proposition 8 We first establish uniqueness of i7. To do so, it suffices to show

that EF (Y (0);uy(0),0,7,2;) is strictly decreasing in 1y (0). Note first that this holds for the

truncated normal assuming truncation that does not depend on py-(6) by Lemma A.1 of Lee

et al. (2016). When we instead consider F2H (Y (0);uy(0),0,7,75), we impose truncation to

y(B)e [mé)—cm/ Sy (6) 1y (6) ey zy<é>] |

~ ~ ~ ~

Since this interval shifts upwards as we increase uy (6), Ff\ (Y (0);uy(0),6,7,7;) is a
fortiori decreasing in py (f). Uniqueness of jiff for o€ (0,1) follows. Note, next, that
FR (Y (0); 1y (0),0,7,7;) € {0,1} for py(0) ¢ CSY from which we immediately see that
pecsy.

Finally, note that for uy (6) the true value,

Efn(Y (0)3v(0).07,25) ~U[0.,1]

conditional on {92@,&:%%:2@”3/(9)GCSI’@}. Since ij[N(Y(é);uy(é),Nﬁ,Zé) is de-

creasing in py (6),

Pm{ﬂf > 1y (0)|0=0.4=7.2;= 2,1y (0) € CS@,}
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— Pr{ Fi (Y 0 (8).03,25) 21~ 0l =0.5=7.Zy= 21 (B) € CS] =0,

and thus 12 is a-quantile-unbiased conditional on {@zé,&z’y,Z@ :zé,uy(é) € CSfi}. We
can drop the conditioning on Z; by the law of iterated expectations, and a-quantile-
unbiasedness conditional on juy (é) eC SIBJ follows by the same argument as in the proof

of Proposition 6.

Proof of Lemma 3 Note that we can assume without loss of generality that jy,0=0 and
Sy (f) =1 since we can define Y*(0) = (Y(é)— MY,O) /7/Zy(0) and consider the problem
of testing that the mean of Y*(f) is zero (transforming the set ), accordingly). After

deriving critical values (¢},cf) in this transformed problem, we can recover critical values

for our original problem as (c;,¢,) =1/ 2y (0)(c],cf)+pyo. Hence, for the remainder of the

proof we assume that pyo=0 and Xy () =1.

Equal-Tailed Test We consider first the equal-tailed test. Note that this test rejects
if and only if

Y(H) ¢ [CZ,ET(y)aCu,ET(y)]a

where we suppress the dependence of the critical values on fiyo =0 for simplicity, and
(cl,er(Y),cu,er(d)) solve
Frn(apr(Y),Y)=

e

Frn(cuer(Y),Y)=1- %-

for Frn(-,)) the distribution function of a standard normal random variable truncated

to V. Recall that we can write the density corresponding to Fry(y,)) as ;i?gey;} In(y)
where fy is the standard normal density and Pr{{€ Y} is the probability that £ € ) for

£~ N(0,1). Hence, we can write

[P HieViin(idy
FTN(?J,y): Pr{&ey} :

Note that that for all y we can write

Frn (Y, Ym) = am(y)+Fi(y),
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where Fy is the standard normal distribution function and

L UG et in(@)dy
Pr{i€€e¥n}

am(y) = —Fn(y).

Recall, however, that Pr{¢€),,}—1 and

‘/ UG €V} fn(@)dg—Fn(y ’ ‘/ LTV -1l (5)di
:/_ml{ggym}fN@)d.@SPr{ggym}_)o

for all y, so a,,(y) —0 for all y. Theorem 2.11 in Van der Vaart (1998) then implies that
ay(y) — 0 uniformly in y as well.
Note next that

Frn(aer(Vm)Ym) =am(cLer(Vm))+En(cer(Vn)) =

|

implies

cpr(Vm)=Fx' (%

and thus that ¢ gr (V) — F, ]§1 (%) Using the same argument, we can show that
Cu,ET(ym)%Fﬁl(l—%), as desired.

—am () ).

Unbiased Test We next consider the unbiased test. Recall that critical values
au(Y), cuu(Y) for the unbiased test solve

Pr{¢elau)curP)}=1-a

ECH{¢elau().cuvV)]}=1—a)E[(]
for (~¢£|€ €)Y where £~ N(0,1).

Note that for ¢, the truncated normal random variable corresponding to J)),,, we can

write
Pr{¢, €la,cu]} =am(c,cu)+(Fn(cy) — En(e))

with
am<clch):(FN<cl) PT{Cm<cl}) (FN Cu) PT{CmSCU})~

As in the argument for equal-tailed tests above, we see that both Fy(c,)—Pr{(m<c,}
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and Fy(c;)—Pr{¢, <¢} converge to zero pointwise, and thus uniformly in ¢, and ¢; by
Theorem 2.11 in Van der Vaart (1998). Hence, a,,(c;,¢,) —0 uniformly in (¢;,c,).

Note, next, that we can write

ElGn1{¢m € lacd = [EHE € a,cu] H+bmlcrcu)

for

bm, (Chcu) = E[le{gm € [Chcu]}] - [§1{§ € [Clvcu] }]

= /l : (%—1) yIn(y)dy

/ " Ly eV} Dyl )y < EIE{E LYY

Note, however, that

Hence, since

/j (% —Hye ym}) ny(y)dy'

Bl )< \\/ PV

= (M‘Q\ '(m )

by the Cauchy-Schwartz Inequality, where the right hand side tends to zero and doesn’t
depend on (c;,¢y), bi(cp,c,) converges to zero uniformly in (¢,c,).

Next, let us define (¢;,¢um) as the solutions to
Pri{¢n€lac}=1-a

E[le{Cm € [Chcu]}] = (1_04)E[Cm}'

From our results above, we can re-write the problem solved by (¢;m,Cum) as
Fn(c.)—Fn(a)=1—a—ay(c,c)

ElEHE € el = (1=a) E[Gn] =bm(ci,cu)-
Letting

Qm :Sup|am(clacu) |>
Cl,Cy
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by, =sup|by,(c.c.)l

Cl5Cu

we thus see that (¢;m,Cum) solves
Fn(cu)—Fn(a)=1—a—a},

ElgH{Eelencu]]=(1-a)E[Gn] 0],

for some a, € [~@p,am), b}y € [~bim,by]. We will next show that for any sequence of
values (a,,by;,) such that a}, € [~am,d) and b, € [=b,,by] for all m, the implied solutions

(@ b5,), Cum(aly bi,) converge to Fiy'(2) and Fy'(1—%). This follows from the next

lemma, which is proved below.

Lemma 4

Suppose that ¢, and ¢, solve
Prié€la,cl)t=1—a+an,

E[gl{g € [Cl7cu]}] = dm
for ap, dp—0. Then (¢ m,Cum) — (—C%JV,C%VN).
Using this lemma, since EI[(,,,]—0 as m— 0o we see that for any sequence of values
(a3 b7,) =0,
(Cl,m(a:wb:n)ac%m(ajnvb:n)) - (_C%,N7c%,N)~

However, since ay,,b,, — 0 we know that the values ay, and by, corresponding to the true ¢,

Cum Must converge to zero. Hence (¢ m,Cum) — (—c%, N,c%,N) as we wanted to show. OJ

Proof of Lemma 4 Note that the critical values solve

Flamdonc)= ( Fy(cu)—Fn(a)—(1—a)—ap ) .

Joufn()dy—dn,

We can simplify this expression, since a% In(y)=—yfn(y), so

/ i)y = () — v ca).

<
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We thus must solve the system of equations
Fy(cu)=Fn(a)=(1-a)—an

fN(Cl)—fN(Cu)de

or more compactly g(c)—v,, =0, for

o= Fy(cu)—Fn(a) o A+ (1—a)
o) <fN<Cl)_fN(Cu)>’ " < dm, )

Note that for v,,=(1—a,0)" this system is solved by c= (—0%7 NyCe, N). Further,

i o —Inla)  fv(e)
8cg( ) ( —afn(a) cufn(c) )7

which evaluated at c= (—c%, NyCE, ) is equal to

(—fN(C;&N) fv(eg.w) )

csnfnlegn) cgnfn(cgn)

and has full rank for all a€(0,1). Thus, by the implicit function theorem there exists an
open neighborhood V' of vy, = (1—a,0) such that g(c)—v=0 has a unique solution ¢(v)
for veV and ¢(v) is continuously differentiable. Hence, if we consider any sequence of

values v,, — (1—a,0), we see that

again as we wanted to show. [
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B Additional Results

B.1 Details for Empirical Welfare Maximization Example

Here, we derive the form of the conditioning event ) (1,7;) discussed in Section 4.2,

including for cases when Yy (0)—Sxy(0,0) <0. Note that we can write

{X(é)—X«J)zc}:{Z@@—Zg(owny“’ggj’””’mY<é>2c}.

Rearranging, we see that

( Sy (0)(e—Z5(0)+25(0) . ~ .
yy= ZX}E(é)—QEXY(;O) I i 2 (0) =S (00) >0
Sy (0)(e—Z;(8)+25(0) . - -
Yy= ny((é)—ezxy(é?m ) if Yxy(0)—Xxy(0,0)<0
Y(1.Z5)=1 g if Sxy(0)—Sxy (0,0)=0
and Zé(é) - Zé (O) >c
0 if Lxy (0)—Sxy(6,0)=0
L and Zé(@)—Zé(O) <ec.

B.2 Details for Threshold Regression Estimation Example

This section provides additional results to supplement our discussion of the threshold
regression example in the text.

We begin by establishing the weak convergence (14). To do so, we show uniform
convergence over any compact set O in the interior of the support of Q;, which implies
uniform convergence over ©. Note, in particular, that under (12) and (13), the continuous
mapping theorem implies that

X,(0)=X(0)

_ ( 20(9)_1/2209(0) ) N < ZC(Q)—1/2G<9) )
(Zc(00)=Zc(8))(Sey(00) =Ly (6) (So(00)=a(8)) " (G(00) - G(6)
uniformly on ©, where we use the following slight abuse of notation:

1 ) 1 — ) 1 &

i=1
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Hence, if we define 11x(0) to equal the first term, we obtain the convergence (14) for X,,.

Likewise, standard regression algebra (e.g. the FWL theorem) shows that

Vrd(0)= A, () [Ba(0)+Cu(6)],

for
n -1 n
A, (0 —120 C'(Q;>0)— ( ZO C'(Q; >0 ) <n—12q-cg> <n—120i0;1(@>9)>,
i=1 1=1
n -1 n
By( —1200' (Q:>0)g(Q; ( -1200’ (Qi>0 ) <n_1ZCiC£> <n-120ic;g(cgi)>,
=1 =1
n -1 n
C,(0 *1/2ZCU1 Q;>0)— < 120 CI1(Q;>0) ) <nlzciqf> (n”?ZCiUi)
=1 =1

Under (12) and (13), however, the continuous mapping theorem implies that
An(0) = Be(00) = Ze () = (Bc(00) = (0)) X (00) ™ (e (00) =L () = A(9),

B.,(0) = Xy (00) =Sy (0) — (Sc(00) = (0)) Zc(00) ™ Xy (00) =B(0),
Cu(0) = G(00) = G(0) — (S (00) = () X (00) ™ G(00) =C(6)

all uniformly on O, where this convergence holds jointly with that for X,,. By another

application of the continuous mapping theorem,
Y, (0)=¢,\/nd(0) =Y (0) =€, A(0) " [B(6)+C(0)].

Hence, if we define py () =€} A(0) ' B(6), then py,,(6) = py (#) uniformly in 6 € © and

we obtain the convergence (14), as desired.

Additional Conditioning Events Arguments as in the proof of Proposition 4 show
that if we define

dx ~
0)7) Sxval0),
=1

Bz(0)=2%y (0 ZZXYz
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(X2 =y < 220 VPZO ) P20V P20 ) s

- 2A(0)

N{C(0)>0,D(0) <0}

if A()>0 and {||X(0)|]>>c}={C~(A)>0} if A(6)=0, since A(f)>0 by definition. Then

for
—Bz(é)— \/ Dz(é)

L(Z;)= — ,
2A(0)
- éE—BZ@ﬂ/DZ(é)?
24(0)
V(Z5)=[1{A(0)=0}+1{A(h) >0,D4(8) <0}]C5 (),

we see that if V(Z;) >0 then Y,(1,Z;) = (L(Z;)U(Z))°, while Y,(1,Z;) =0 otherwise.

C Alternatives to Conventional Sample Splitting

In Section 4.3 of the main text, we discuss the relationship of our conditional approach
to conventional sample splitting methods and note that the results of Fithian et al. (2017)
imply that traditional sample splitting methods are dominated in our setting. Here, we
derive optimal split-sample confidence sets and estimators as well as easy-to-implement
confidence sets and estimators that dominate their conventional split-sample counterparts

in the asymptotic version of the split-sample problem.

The Split-Sample Limit Experiment Let 7 denote the fraction of the full sample
used to compute the estimated maximum and (X!,Y!) and (X?2Y?) denote rescaled data

corresponding to the first and second portions of the data such that
(XY =72 (X Yir)s

(XTQwY;LQ) - (1 _7_)_1 ((XTL,Y;L) - \/F(X[T-nHlaY[T-nHl))
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with [a] denoting the nearest integer to a € R. Finally, let @}1 = argmaxgee X, (0) or
0! = argmaxgeo|| X (0)|| denote the estimated maximum from the first part of the sample.
In large samples, (XY, (X2,Y2) and 62 behave according to

and

0" =argmaxyeo X' ()
or
o1 =argmaxyco HXI(H) H>

where c=(1—7)/7 and (X',Y'!) is independent of (X?,Y?). This is the generalization of the
asymptotic problem discussed in Section 4.3 of the main text to arbitrary sample splits.?”

Traditional sample splitting methods base inference on YQ(@I). Since Y2 is independent
of X', and thus of #', this ensures the (conditional) median-unbiasedness of conventional
split-sample estimates Y2(0') and the (conditional) validity of conventional split-sample

confidence sets
GSSS:[Y2(é1)_ L8y (0o pon, Y201 + c—lzy(él)ca/w]

but does not make full use of the information in the data. To derive optimal procedures
in the sample splitting framework, we first derive a sufficient statistic for the unknown
parameter y conditional on {91 :9} and then apply classical exponential family results

as in Section 4 of the main text.

Optimal Estimators and Confidence Sets The joint (unconditional) density of
(X1Y! X?Y?) is proportional to

1 Xt 1 X1 c X2 . X2
exp| —5 v —u | X v —h| x| =5 v2 —u| X v2 —ul -
29For simplicity of exposition, in this section we suppress the possibility of using additional conditioning
variables 4, ZV(X}L) with asymptotic counterpart 'Ay:fy(X 1).
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The conditional density given {91 :é} is thus propotional to

ey (G ((0))-

()

with X1(0)={X"':0=0}, which we can re-write as

g1 (Xl,Yl)gg (XQ,YQ)h(,u)exp (( X )+c< X

Yl

)
_ <

and

1 1 P
h“‘):prM{XIEXl(é)}eXp(‘T”E ')

X* X! X?
This exponential family structure shows that = +c is
Y+ y! y?

sufficient for p. Hence, for any function of (X!, Y* X?Y?), there exists a (potentially
randomized) function of (X*,Y*) with the same distribution for all . Thus, to study
questions of optimality it is without loss to limit attention to confidence sets and estimators
that depend only on (X*Y™).

Now that we have derived a sufficient statistic (X*,Y™*) for u, we turn to the question of

how to construct optimal estimators and confidence sets for jy-(A) conditional on {92@}
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Note that the unconditional density of (X*,Y™*) is proportional to

exp —2_&20 << ;(: )—(1+c)u> E_1<< );: )—(1+c)u>

The density of (X*,Y™*) given {91 :é} is thus proportional to

M@)o () Y[
Pru{XleXl(é)} eXp(_2+2c<< v >_(1+C)“) z (( v )-(HC)u)),

where we have used sufficiency to drop dependence of the numerator on .

This joint distribution has the same exponential family structure used to derive the
optimal estimators and confidence sets in the main text (see the proofs of Propositions 1
and 2). Hence, the same arguments deliver optimal procedures for the split-sample setting.

Specifically, for

Zg:( )Y( )— (cw(( ;( ),Y*@))/Ey* (6>>Y<9>

where Yy« denotes the variance of Y*, we can re-write

(305 ) ot e )

for Yz« the variance of Z*, AT the Moore-Penrose pseudoinverse of a matrix A, and

X* . - .
pze=(14+c)u— (C’ov ( ( v ) Y (9)) /Var (Y* (9)))/1;/* (0) .
This expression shows that when we are interested in inference on uy(é) conditional on
{91 zé}, lz+ is the nuisance parameter, and Zg is minimal sufficient for this parameter
relative to observing (X1 Y1 X2 Y?).
If we let Fig(Y*(0); py-(6),0,2*) denote the conditional distribution function of

YHZ* = z*,él = é, then the same arguments used to prove Proposition 1 show that
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the optimal o quantile-unbiased estimator figg , in the sample splitting problem solves
F;S(Y* (91);(1_}—0):[1’;3,009725) =l-a.

Likewise, the same arguments used to prove Proposition 2 show that the optimal two-sided

unbiased test rejects Hy: iy (6) = f1y,0 when

V(0)¢a(Z;).cu(%)];
where ¢(z), ¢,(z) solve

pri{Cela(z)cu(z)]} =1-a; E[CH{CEa(2).cu(2)]}]=(1-a) E[]

with ¢ distributed according to F. S*S(-;(H—c)um,é,z). These optimal procedures condition
on Zg rather than (X*Y'!) and so, unlike conventional sample splitting, continue to treat

(X1Y") as random for inference.

Feasible Dominating Estimators and Confidence Sets To implement the optimal
split-sample proecdures, we need to evaluate (or at least be able to draw from) the condi-
tional distribution Fgg(+;(1+c) um,é,z). Unfortunately, however, it is not computationally
straightforward to do so since Y*|Z* —2* 0* =0 is distributed as a normal random vari-
able truncated to a dependent random set. We thus introduce side constraints to derive
procedures that, although they are not fully optimal in the unconstrained problem, are
computationally straightforward to implement and dominate conventional sample splitting
procedures. These computationally feasible procedures are optimal within the class of

split-sample procedures that condition on {91 =0} and the realizations of

Zi=Xi- (zxy (9) /Sy (é) ) y (9)

for :=1,2, where (Zél,Zg) is a sufficient statistic for the nuisance parameter px. Since
Y2(64)[{6" :9,(Zg,Z§) = (21,21)} ~Y2(f), the conventional split-sample estimator Y2(6")
and confidence set C'Sgg fall within the class of split-sample conditional procedures that
condition on {0 =6} and (Z3,73). These conventional procedures are therefore dominated
by the optimal procedures within this class, which we now describe.

Standard exponential family arguments show that (Zg,Zg) is sufficient for the nuisance

parameter px and, conditional on {#' =6} and (Z3,73), optimal estimation and inference
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is based upon the conditional distribution of Y*(6). Note that since Y2(6) is independent
of (Z3,73) and both 0" and Y2(0) are independent, of Zz,

Y*(O)H8' =0.2;.29) = (=" )}~ Y ()8! =0.Z;=2"}+-cY *(§).

Thus, the feasible dominating split-sample procedures rely upon the computation of
the distribution function of Y()|{0' = 6, 7y =2} +¢Y?(A). We now describe a fast
computational method for computing this obJect.

In analogy with full sample inference, let

% (é,zl) = {yl 24 (EXY (,é) /Xy (é))yl}

so that conditional on {#* = 6} and zZy =2 , Y'(6) follows a one-dimensional trun-

cated normal distribution with truncation set }'(6,2'). Note that in both the level

and norm maximization contexts, yl(é,zl) can be expressed as a finite union of disjoint

intervals: Y'(0,21) =, [¢x(2"),ux(2")], where the dependence of £,(z") and u(z") for

k=1,....K on 6 is suppressed for notational simplicity. Note that Y(8)|{6" :é,Zg =21

is distributed as £']¢* € Y1(6,21), where €' ~ N(uy (0),%y (). The density function of
Y1(0)|{ =6 Zy=2"} is thus

z,iilfN(@l—uy(é»/ EY@) () <y <un ()

1y1)\/;(§)zf_l<FN<(uk(zl) v(®)/ <>) FN(wk(zl)—uy(é))/ EY@))

and ¢Y2(9) has density function f2(y?)=c /25y ()~ 1/2fN( 2—cu)/ cZy(é)). There-

fore, since Y(0)|{6* =0, 7y =2'} and cY? (A) are independent, the density function of
Y*(0){6 =6 Zy=2"}is equal to

S (= r @D (0 =ty 0/ o2 0)
VR O (B (0l O/ D)) - (60 @)/ 50 0)) )
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with corresponding distribution function
FA v 0)5,)
st (= @) ) (=t O 2 ) )
Vo @S (B (@)= @)/ 2r® ) s () - D)/ 20 )
| (1~ ey O)\/e25 @) )1 (& €U (D))
S (B () - @)/ 20 @) )~ () -y B\ 5v10))

where the expectation is taken with respect to &' ~ N (1 (6),2y(9)). This latter expression

’

for Féo(y*;uy (0),0,2) is very easy to compute by generating normal random variables in
standard software packages. This makes the computation of optimal estimators, tests and
confidence intervals within the class discussed here computationally straightforward.
Similarly to the optimal case above, the same arguments used to prove Proposition 1
show that the optimal o quantile-unbiased estimator figg, in the sample splitting problem

that conditions on {#' =6} and the realizations of Z} and Z3 solves
Fgs(Y* (0 )siids 0, 24) =1 -

Therefore, our (equal-tailed) alternative split-sample confidence set is C§s =[5 S0/ A 55.1—a/2)-
Likewise, the same arguments used to prove Proposition 2 show that the optimal two-sided

unbiased test rejects Ho: pty (A) =1y when
Y(0)¢ [0(25).cu(25)]
where ¢,(2), cu(2) solve
pri{¢ela(z).cu(2)]} =1-a, E[CI{¢€[a(2),cu(2)]}] = (1-a) E[(]

with ¢ distributed according to Fg(+; /,Lyyo,é,Z). These dominating procedures condition
on Zé1 rather than (X! Y1), and so unlike conventional sample splitting continue to treat

(X1,Y!) as random for inference.
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D Uniformity Results

In this section, we show that the results derived in the main text for the finite-sample normal
model translate to uniform asymptotic results over large classes of data generating processes.
To state and prove these results, it will be important to distinguish between finite-sample and
asymptotic objects. To keep this distinction clear, we will subscript finite-sample objects by
the sample size, writing X,,, Y, in, and so on. Moreover, the estimators and confidence sets
flon,s ,&g,n, CSETn, CS?T’W CSun, C’S&{n and CSp,, are equal to their asymptotic counter-
parts fl,, i, CSpr, CSE., CSy, CSH and CSp after replacing X, Y, ¥ with X,,, Y,,, S,

With this notation, we aim to prove, for example, that for /i, our a-quantile unbiased
estimator calculated using (Xn,Yn,in), fyn(0;P) the analog of iy (f) in the sample of

size n, and data generating process P,

lim sup PT’P{ﬂam > lyn <@n;P> } —oz‘ =0,
n=oopep,

SO flan 1s (unconditionally) asymptotically a-quantile unbiased uniformly over the (possibly

sample-size dependent) class of data generating processes P,,. Moreover, we will show that

for all € ©

lim sup Prp{,&am > [y n <9n;P) ]én:é}—alprp{én:é} =0,

n—0opep,

so asymptotic quantile unbiasedness also holds conditional on the event {971 :é} provided
this event occurs with non-trivial asymptotic probability. One could use arguments along
the same lines as those below to derive results for additional conditioning variables 4,,, but
since such arguments would be case-specific, and we do not pursue such an extension here.

Asymptotic uniformity results for conditional inference procedures that, like our cor-
rections, rely on truncated normal distributions were previously established by Tibshirani
et al. (2018). Their results cover a class of models that nests our level maximization
problem but not our norm maximization problem, and impose an assumption that implies
bounded asymptotic means (analogous to our Assumption 5 below). Since we do not
impose this assumption in our analysis of level-maximization, neither our norm nor level
maximization results are nested by theirs. Moreover, these authors do not cover hybrid
inference procedures, which are new to the literature, and also do not provide results for

quantile-unbiased estimation. Our proofs are based on subsequencing arguments as in An-
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drews et al. (2018), though due to the differences in our setting (our interest in conditional
inference, and the fact that our target is random from an unconditional perspective) we
cannot directly apply their results. In the subsequent analysis, Fy and fy denote the cdf

and pdf of the standard normal distribution.
D.1 Asymptotic Validity for Level Maximization

Section D.1.1 collects the assumptions we use to prove uniform asymptotic validity. Section
D.1.2 then states our uniformity results. Section D.1.3 collects a series of technical lemmas
which we use to prove our uniformity results. Finally, Sections D.1.4 and D.1.5 collect

proofs for the lemmas and the uniformity results, respectively.
D.1.1 Assumptions

To derive our asymptotic uniformity results, we use the fact that all our estimates and
confidence sets are functions of <Xn,Yn,§3n>. Hence, to derive our results it suffices to

state assumptions in terms of the behavior of these objects.

Assumption 2

Our estimator 3, is uniformly consistent for some function 3(P),

lim sup Prp{Hfln—E(P)H >€} =0

n=Opep,

for all e>0.

This assumption requires that our variance estimator 5, be consistent for some X(P),
which our later assumptions will take to be the asymptotic variance matrix of (X/,Y;)’

under P, uniformly over P,,.

Assumption 3
There ezists a finite A\>0 such that for Apin(A) and Apayx(A) the minimum and mazimum

eigenvalues of a matrix A,
/A< Ain(Bx (P) € Amax(Ex (P)) <\ for all PEP,

and

1/A<Sy(0;P) <\ for all €O and all PEP,,.

This assumption bounds the variance matrix X x(P) above and away from singularity,

and likewise bounds the diagonal elements of 3y (P) above and away from zero. This
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ensures that the set of covariance matrices consistent with P €P,, is a subset of a compact

set, and that X,,(¢) has a unique maximum with probability tending to one.

Assumption 4
For BLy the class of Lipschitz functions that are bounded in absolute value by one and
have Lipschitz constant bounded by one, and p~ N(0,5(P)),

f< X, tixn(P) )
Y;L_MYM<P)

for some sequence of functions px ,(P) and piy,(P).

lim sup sup |Ep =0
n—OpeP, fEBLy

—E[f(&p)]

Bounded Lipschitz distance metrizes convergence in distribution, so uniform conver-
gence in bounded Lipschitz, as we assume here, is one formalization for uniform convergence

in distribution. Hence, this assumption requires that

!/

(Xr/z _#X,n(P)/vY;; _IUY,n(P)/)

be asymptotically N(0,5(P)) distributed, uniformly over P€P,,.
D.1.2 Level Maximization Uniformity Results
For 0, =argmaxyX,(#) we obtain the following results.

Proposition 9

Under Assumptions 2-4, for 9n:argmaxeXn(9) and fio ,, the a-quantile unbiased estimator,

lim sup P?"p{,&am >y, (@mP) |@n :é} —a’PrP{@n :9} =0, (31)
n=oopep,
for all 0€©, and
lim sup Prp{,&am > Iy p <@n;P) } —a‘ =0. (32)

n—=Opep,

Corollary 1
Under Assumptions 2-4, for 0, =argmaxy X, (0) and CSgr,, the level 1 —a equal-tailed

confidence set,

lim sup PTP{/Ly’n<én;P) GC’SET’nlén:é}—(1—04)’P7’p{9n:é}:(),

n—o0pep,
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for all 0O, and

lim sup PT’p{/Ly’n <én;P> € C’SET’H} —(1—04)‘ =0.
n—=Opep,

Proposition 10

Under Assumptions 2-4, for én = argmaxy X, (#) and CSy,, the level 1 —a unbiased

confidence set,

lim sup Prp{uxn(én;P> ECSUmlén:é}—(1—CY)‘PTP{(§71:§}:O, (33)

n=Opep,

for all 0€©, and

lim sup Prp{,uym <9n;P> EC’SU,n}—(l—a)’:O. (34)
n—oopep,
Proposition 11
Under Assumptions 2-4, for 6, = argmaxy X, (0) and CSp,, the level 1 —« projection
confidence set,
liminf inf P’)”p{ﬂym (@n;P) EC’Spvn} >1—a. (35)

n—oo PeP,

Proposition 12
Under Assumptions 2-4, for 9n = argmaxy X, (6), ﬂgn the a-quantile unbiased hybrid

estimator based on initial confidence set CSﬁ,n, and
cH (é;P) = 1{(% =041y (én;P) € CS]B)JL},
we have

lim sup
n—oo PeP,

Prp{ﬂg{nzwn (9n;P> icH (é;P) :1}—04‘E'p{0£{ <é;P)}:0, (36)
for all 6€©. Moreover

limsup sup
n—oo PeP,

Prp{ﬂgnzuxn@n;P)}—a‘Smax{oz,l—a}ﬁ. (37)

Corollary 2 A
Under Assumptions 2-4, for 6, =argmaxyX,,(6) and CS{E{T’n the level 1—a equal-tailed

78



hybrid confidence set based on initial confidence set CSf-,m,

. o H H il H
Jim_ sup Prp{uy,n (Gn,P) €CSHy |CE (9 P) _1} Ep{c (9 P)} : (38)
for all feo,
lgglorcl)fplélgnPrp{uyn <9n7P) cCSE, n} >1- (39)
and )
limsup sup Prp{uyn(en,P) ECS’ET”}g—agl—a+ﬂ. (40)
n—oo PePy, 1—

Proposition 13
Under Assumptions 2-4, for 9n:argmax@Xn(9) and CSgn the level 1—o unbiased hybrid

confidence set based on initial confidence set CSIgn,

Prp{Wn(en,P)echnycH(e P>_1} 1z

lim sup
noopep,

for all GO,
liminf inf Prp{,uyn <9n7P) ECSUH} >1—
n—oo PEP,
and
. A H ]. [0
limsup sup Prp{uym (QH;P> ECSUn} —<l-—a+p.
n—oo PeP, ’ 1— ﬂ

D.1.3 Auxiliary Lemmas
This section collects lemmas that we will use to prove our uniformity results.
Lemma 5

Under Assumption 3, for any sequence of confidence sets C'S,,, any sequence of sets C,,(P)
indexed by P, C,(P)= {(Xn,Yn,E ) ECn(P)}, and any constant «, to show that

Prp{uy,n (én;P) eCSn|Cn(P):1} —a‘Prp{Cn(P)zl}:()

limsup sup
n—oo PeP,

it suffices to show that for all subsequences {ns} C{n}, {P,.} €P>*=x2,P, with:

1. ¥(P,,) =X €S for
S={Z:1/A< Anin(Zx) Amax(Bx) AL/ ATy (6) <A, (41)
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M}:{IMXE[—OO,O]I@l:Hl;lXMX(Q):O},

we have
lim Prp,_ { Y, (éns ;Pns) eCS,,

5—00

Con(Po) =1} =a. (42)

Lemma 6

For a collection of sequences of sets Cy,1(P),....Cp.s(P) and

Cpi(P)= 1{ (Xn,yn,in) GCW-(P)},

if
lim sup Prp{C, ;(P)=1,C,;(P)=1}=0 for all j#j'
n—)OOPEpn
and
lim sup Prp{,uyJL (émP) EC’Sn\Cn,j(P)zl}—(l—a) Prp{C, ;(P)=1}=0
n—>oop€fpn

for all 5, then

liminf inf Prp{,uY,n <9n;P> ECSn} > (1—q)-liminf inf ZPTP{C’an(P)zl}
j

n—oo PeEP, n—o0 PEP,“—
and

limsup sup Prp{,uy,n (9n;P> € CSn} <1—aliminf inf ZPTP{C’W- (P)=1}.
j

n—oo PEP, n—00 PEP,“—

To state the next lemma, define

£(0.2) >(0) (Z@_Zg ) (43)

= max ~
0eO:Xxy (é)>2xy (é79> EXY <(9

N——
|
\g!

!

-
VS
S
N—
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= min

U (é A z) i > (9) <Z<9) - <9>> (44)
o 00 xy (0)<Zxv (6.0) Y vy (é) —Yxy (9,«9) ’

where we define a maximum over the empty set as —oo and a minimum over the empty

Xo\ [ Xu—maxgpxn(0;P)
Yy Yo—piyn(P) ’

we next show that using (X;;,Y;,i» in our calculations yields the same bounds £ and

set as +oo. For

U as using (Xn,Yn,§n>, up to additive shifts

Lemma 7

For E(é,Z,E) and U(é,Z,Z) as defined in (43) and (44), and

i), i)
52 () v(8), 7,=x EY”() v (),
£(0.25,50) =£(0.73,,50) v (4:P)

U(0.2;,.50) =U(8.2,,50) ~ v (:P).

For brevity, going forward we use the shorthand notation

we have

(c (é,zém,in) U (é,zé,n,in) L (é,zgyn,in) U (é,zg,n,in» — (Lo o L5205,
Lemma 8
Under Assumptions 2 and 4, for any {ns} and {P,,} satisfying conditions (1)-(3) of
Lemma 5 and any 0 with 5% <5’> > —00,
(Vi Ui S ) = (Y004 370,

where the objects on the right hand side are calculated based on (Y*,X*X*) for

X* * *
< o >~N(u 25
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with 11 = (W3 0')

Lemma 9

For Fy again the standard normal distribution function, the function
Y(O)NU—p _F L—p
() ()
Py 2 ) — By | —2£
N(\/zyw)) N(\/zy(m)

is continuous in (Y (0),u,2y(0),LU) on the set

Frn(Y(0):,5y (0),LU) = Y @)=L  (49)

{(Y(0),1.5v(0)) €R® L€ RU{—00} U eRU{o0}: Xy (0) >0,L<Y () <U}.
To state the next lemma, let (¢;(p,2y (0),LU),cu(11, 2y (0),LU)) solve
Pr{¢e|a,c)}=1—a

ElCHC eyl =(1-a)El(]

for

C~ElEe[LULE~ N (1Y (0)).

Lemma 10
The function (¢;(1, Xy (0),LU ) cu(p.2y (8),LU)) satisfies

(Cl (MaZY(e)aﬁvu)ﬂcU(ﬂsz (6’),5,[1))
= (N+CI(O>EY(9>>£_N>U_M>>,U+Cu(O>ZY(9>>£_H>U_M>)

and is continuous in (11, Xy (0),LU) on the set
{(1.2y(0)) eR* L e RU{—00} U e RU{o0}: Xy (0) >0,L<U}.

D.1.4 Proofs for Auxiliary Lemmas

Proof of Lemma 5 To prove that

limsup sup PT’p{uym (@H;P) €CS,|C,(P)= 1} —a‘Prp{Cn(P) =1}=0

n—oo PeP,
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it suffices to show that

liminf inf (PTP{ ¥ (9n;P) € CSn|C(P) = 1} —a) Prp{Cn(P)=1}>0 (46)
and
l;n}:;gopsggn <Prp{uxn (@n;P) €CS,|Ch(P)= 1} —a) Prp{C,(P)=1}<0. (47)

We prove that to show (46), it suffices to show that for all {n,}, {P,.} satisfying conditions
(1)-(3) of the lemma,

liminf Prp, { oy, (9% ;Pns> eCS,,

5—00

Cp.(P) = 1} >a. (48)
An argument along the same lines implies that to prove (47) it suffices to show that

limsupPrp,_ { Ly, (9ns ;Pns> eCsS,,

§—00

Co.(P) = 1} <a. (49)

Note, however, that (48) and (49) together are equivalent to (42).
Towards contradiction, suppose that (46) fails, so

liminf inf (Prp{,uKn <§n;P) €CS,|CL(P)= 1} —oz) Prp{C,(P)=1} < —e¢,

n—oo PEP,

for some € >0 but that (48) holds for all sequences satisfying conditions (1)-(3) of the
lemma. Then there exists an increasing sequence of sample sizes n, and some sequence
{an} with B,, €P,, for all ¢ such that

limsup (Prew, v, (BugiPu, ) €CSu,|Coy (Pa,) =1} =a) Pre, {Cu, (Pa,) =1} <=2, (50)
We want to show that there exists a further subsequence {n;} C{n,} satistying (1)-(3) in
the statement of the lemma, and so establish a contradiction.

Note that since the set S defined in (41) is compact (e.g. in the Frobenius norm),
and Assumption 3 implies that E(an) €S for all ¢, there exists a further subsequence
{n,} C{n,} such that

lim $(P, )— ¥

o0
for some ¥*€S.

Note, next, that Prp, {C,, (P, )=1}¢€[0,1] for all 7, and so converges along a sub-
sequence {n;} C{n,}. However, (50) implies that Prp, {C,, (P, )=1}>=% for all r, and
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thus that
PTPnt {C"’Lt(P’ﬂt) = 1}—>p* € [271} .

Finally, let us define

and note that u%, (P) <0 by construction. Since X, (P) is finite-dimensional and
maxp/ly ,,(P;0) =0, there exists some § € © such that 1 ,,(P;f)) is equal to zero infinitely of-
ten. Let {n,} C {n;} extract the corresponding sequence of sample sizes. The set [—00,0]!®!
is compact under the metric d(ux,fix) = ||Fy(ux) — Fn(fix)|| for Fy(-) the standard
normal cdf applied elementwise, and ||| the Euclidean norm. Hence, there exists a further
subsequence {n,} C{n,} along which u%, (F,,) converges to a limit in this metric. Note,
however, that this means that %, (F,,) converges to a limit ;" € M* in the usual metric.

Hence, we have shown that there exists a subsequence {n,} C{n,} that satisfies (1)-(3).
By supposition, (48) must hold along this subsequence. Thus,

liminf (Prpns {uyns <@n ;Pns> €CS,,|C, (Pn,)= 1} —a) Prp{C,.(P,,)=1}>0,

n—oo

which contradicts (50). Hence, we have established a contradiction and so proved that (48)
for all subsequences satistying conditions (1)-(3) of the lemma implies (46). An argument
along the same lines shows that (49) along all subsequences satisfying conditions (1)-(3)

of lemma implies (47). O

Proof of Lemma 6 Let us define
Cn7j+1(P) = 1{OnJ(P) =0 for all VIS {1,,J}}
Note that

Prp{uy’n (9n;P> € CSn}
=575 Prodia (03P ) €CS,|Cog(P) =1} Pro{Cai(P) =1} +o(1)

where the o(1) term is negligible uniformly over P€P,, as n— oo. Hence,

Prp{,uy,n (émP) c CSn} —(1—«)
=527 (Pre{ v (00:P) €CS,ICs (P) =1} = (1=0) ) Prp{Cys(P) =1} +o(1)
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and

liminf inf Prp{uyn(Qn,P> eCs, } (1—a)

n—oo PEP

J+1

~liminf inf > (Prp{ . (%P) €CS, | (P) = 1} —a —a)) Prp{C,,;(P)=1}
=timinf inf (Prp{pve(025P) €CS1|Coia (P) =1} —(1=) ) Prip{Clusa(P) =1}

—(1—a)limsup sup Prp{C,, j11(P)=1}

n—oo PeP,

—_(1—a)<1 liminf inf ZPTP{CM P)= }>

n—oo PeP,

which immediately implies that

liminf inf PTP{Myn(en,P> cCs, } (1—a)liminf inf ZPTP{CM P)=1}.

n—oo PeP, n—oo PeP,

Likewise,
liyrgsolipgggnPrp{uym <9n;P> € C’Sn} —(1—a)
—llgipgggng (Prp{um <9n,P) €CS,|C,;(P)= 1} —(1—04)) Prp{Cy;(P)=1}

=limsup sup (P?"p{uy’n (@mP) €CS,|Cpy11(P)= 1} —(1 —a)) Prp{C, j+1(P)=1}

n—oo PePy,

<a-limsup sup Prp{C,, j;1(P)=1}= a( 1—liminf inf ZPTP{CM( )_1}>.

n—oo PEP, n—oo PEP, ne

This immediately implies that

limsup sup Prp{,uym <9n;P) € C’Sn} <1—q-liminf inf ZPTP{CM P)=1},

n—oo PeP, n—oo PePy

as we wanted to show. [
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Proof of Lemma 7 Note that

SHON

Z5 0= g —maxtix o (0;F) +Sxvn ( 79)

SO

% (0)~2;,(0) = Z43,,(0)~ Z3,,(8) + (Sxvn (0.0) ~Sv (9)) M;" <9(9];> .

The result follows immediately. [

Proof of Lemma 8 By Assumption 4

( an _ILLXyns (P”s)

—d N(O,E*)
Yns _,U/KTLS (Pns> )

Hence, by Slutsky’s lemma

X X, — n.(0;P, X*
ns _ s T MaXglx, s( s) —d NN(M*,E*)
YJS }/ns _/’L)/yns (Pns) Y*
We begin by considering one 6 € @\{é} at a time. Since f]ns —p 2" by Assumption
2, if Ty (9) — Sy (é,e) £0 then

S (0)(%,.0-5,.(0))  55(0)(%0-%(7))

S (0) S (00) 7 2y (0) 25, (0)

where the terms on the right hand side are based on (X*,Y*,3*). The limit is finite if
Wi (0) > —o0, while otherwise % (6) =—o0 and

1 (é) (Zg(e)—zg (9)) ) {oo if Ty (é) :2%(

9,9) >0
S (0) -5 (09) | #o0 i Sy (0) -5y (8.0) <0
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If instead X%y <é> — Y%y (é,@) =0, then since X% has full rank,

Z:(0)-2;(8) =x"(0)- X" (9)

is normally distributed with non-zero variance. Hence, in this case

500 ) (7,00-2,0)
SN OENNC)

o (9) - {ee@\ézz}y (0) S (é,e) 7&0}.

The argument above implies that

— 00. (51)

Let us define

e 20(5,0-%,0))
0€6*(0):Exv,ns (0)>Sxvns (0.0) ZXYnS <é> 2XY,ns <é79

e 5 (6) (207 7)

max o ~
€05y (0)>Txy (0.0) T (9) — Ty (979

)

| S (0) (7,007, (7))
min

06" (0) S, (0)<Exvs (20) Sy, (0) Sy, (é,e

e IOEO-50)
0€0:5y (0)<Txy (00) X% (9) — %y (9,0)

and

y (51), the same convergence holds when we minimize and maximize over © rather than

©*(6). Hence,
(Lr Us ) —q (L5 U%).

Moreover, @ns is almost everywhere continuous in X7 , so
(Vi S, ) = (Y*30)
by the continuous mapping theorem, and this convergence holds jointly with that for
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(E;i ,Z/I;S). Hence, we have established the desired convergence. U]

Proof of Lemma 9 Continuity for ¥y () > 0,£ <Y (f) <U with all elements finite

is immediate from the functional form. Moreover, for fixed (Y (6),u,3y(0)) € R® with
Yy(@)>0and L<Y(0)<U,

Fol YOru—n) _p L—p o YO-r
.- N( Vv 0) M\ Ver o) . N

F Y (O)NU—p _F L—p F Y (0)—u _F 00
lim N( =0 ) "\ VEo) LV ()3 £)= Vo) T\ VEe
L——00 o N
U—p _ L—p U—p _ —00
FN( zy(e)) FN( zy(e)) FN( 2y(9)> FN( 2y(0)>
and
Fo [ YOU—p ) _ L— ol XYO-1\_ oo
N(,/‘zy@) M Ve V(0)> L) Mvee) T\ Ve
(00009 1 ( wy \_p (o N A N G
N\ Voo M V@ M\ Vo) M\ Vo)

Hence, we obtain the desired result. [J

Proof of Lemma 10 Note that for fy again the standard normal density,

FN <Z/I/\Cu—,u) _FN < LN —p )
vV 2y (0 2y (0
Pr{¢€la,c.)}= 0 0 U>c,cn> L),
U—p _ L—p
FN( ZY(G)) FN( Ey(@))

ElHCe e} =PriCelacd} | n+ >0 (fN(@vEC—ZY_@_f N(u¢=<>)>
() - (G)

(i) () vmo () ()
F

=

vV Zy (0)




and

system of equations:

UNCy—p LNe—p U—p L—p -
(250 o) )

and

UNey,—p LN e —p LN e—p UNec,—p
(o (7)) vmol () (5%

U—n L—p
‘““”“(FN< 2y<6>>‘FN<¢—Ey<9>))

—(1—a)\/m<ffv< Lo )—m( U >>:0
(

Yy (0)

such that ¢ <U and ¢, > L. Note, however, that since any ¢ = (¢;,¢,) that solves this

system must satisfy (52), we can also write
(Cl (M?EY(H)vﬁau)vcu(ﬂva (0)7'67“))

as the solution to
9<C;M,\/ Ey(é’),ﬁm =0
such that ¢, <U and ¢, > L, for
g(C;u,\/Ey(Q),E,M)
UNcy—p | Lve—p |\ __(1__ U—p _ L—u
_ FN(\/zyw)) v\ Vv )~ FN( zyw)) FN(\/zyw)))
I B ) — fu | Yot ) —(1—a) | fa| 2= | — fv | 2
v/ 2y (0) vV 2y (9) vV 2y (9) 2y (9)
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This implies that

9<C;/~07\/ Ey(9)757U> =g(c—(u,u)’;0,\/ Xy (0).L—pU —u>,

from which the first result of the lemma follows immediately.
To prove the second part of the lemma, note that by the first part of the lemma it

suffices to prove continuity of

(c(0.2y (0),£.U),cu(0,5y (0),LU)). (53)
Recall that (53) solves
pr{¢ela,clt=(1-a) (54)
and
E[CH{¢eac]}]=(1-a)E[(] (55)

for ¢ ~¢|€ € [L,U] where £ ~ N(0,2y(0)). Note, however, that since £ <U, (54) im-
plies that any solution has ¢ < ¢,, and that we cannot have both ¢, < £ and ¢, > U.
Note, next, that if ¢ = £, then since ¢, < U, E[C|¢ € [a,c.]] < E[(], and thus that
E[(1{(€a,ci)}]<(1—a)E[(]. Since the same argument applies when ¢, =U, we see that
for any solution (53), £L< ¢ <c, <U.

Note, next, that g(c;O,\/m ,E,Ll) is almost everywhere differentiable with respect

to ¢ with derivative
—g(c 0,0/2y (0 EU)

—l(Cl>£>fN<Cl/\/Zy ) \/Ey fN<Cu/\/Zy )/\/Ey<9)
—1(01 >£)leN <Cl/\ / Zy )/Ey (Cu <Z/{ Cqu (Cu/\/ZY 9))/23/(9)
The first row is zero if and only if ¢; < £ and ¢, >U, which as argued above cannot

be a solution to g(c;O,\/Ey(Q),E,LO =0 for £ <U finite. The second row is zero if and

only if either (i) ¢, < £ and ¢, >U or (ii) ¢ =c, =0, which again cannot be a solution.

Finally, apart from the cases just mentioned, the rows are proportional if and only if either
(i) g<L, (ii) ¢, >U or (iil) ¢;=c,, none of which can be a solution. Hence, the implicit

function theorem implies continuity on

{Ey(@)eR,LERUER:EY(0)>0,L<U}.
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To complete the proof, we need to establish continuity at infinity. Note, however, that we

can write
9(c0/Er O).LU ) =5(e0.2 (0).Fn (L) Fy (U))

where g is continuous in all arguments and Fy(-) is continuous at infinity. Hence, another

application of implicit function theorem implies that
(c1(0,2y(0),LU),c.(0,5y(0),LU))
are continuous on
{Sy(0)>0,L<U:(Zy(0),Y () eR* LERU{—00}U ERU{0} },

as we wanted to show. [J
D.1.5 Proofs for Uniformity Results

Proof of Proposition 9 Note that
ﬂa,n Z/"LY,TL (émP) — Hyn (émp> € CSU,f,n

for C'Sy._,, = (—00, flan). Hence, by Lemma 5, to prove that (31) holds it suffices to
show that for all {ns} and {P, } such that conditions (1)-(3) of the lemma hold with
C’n(P)zl{é’n:é}, we have

lim Prp, { iy, (éns ;Pns) €CSy_.

5§—00

0, :é} = (56)

To this end, recall that for Fry (Y (0);1,2y (0),LU) as defined in (45), the estimator
flo,n SOlVes
Fr (Yn (én> .Sy <én> Ly ,un) —1—a,
where (£,,,U,,) are defined following Lemma 7. This cdf is strictly decreasing in p as argued
in the proof of Proposition 8, and is increasing in Y,, (9) Hence, fiqn> iy (9n;P) if and
only if
Fry (Yn (9n> iy <9n;P> ,ixn (9n> ,Ln,un) >1—a.
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Note, next, that by Lemma 7 and the form of the function Fry,
Fre (Yo (00 )ity (80P ) Svin (B0 ) L0 ) = P (Vi (80 ):0, 5 () L34
SO flan > [y n <9n;P> if and only if
Frxe (Y, (8):0 S (60) £324;) 2 101

Lemma, 8 shows that (Y: (9%) ,iyms <9ns> Ly U ,9%) converges in distribution as s — oo,
so since Fry is continuous by Lemma 9 while argmaxy X™*(6) is almost surely unique and

continuous for X* as in Lemma 8, the continuous mapping theorem implies that

(FTN (Y,;; (éns) 05y, (@)ns) L M:;) ,1{éns _ 9})
Ny (FTN (Y* (é) 055 (9) ,L*,u*) ,1{@):9}).

Since we can write

Prp, {FTN (Y,;; (0%) 0.y <9n> L un) >1—alf,. = é}

Ep, [1{FTN (Yn <0n> 0.5y, (9n8) L5 ,u;s) > 1—04}1{@”5 :é}]

Ep, [1{@% :éH |

and by construction (see also Proposition 1 in the main text),

Frn (Y* <9) 0,55 (9) ,L*,u*,é) 0=0~U10,1],
and Pr{@zé} =p* >0, we thus have that
Pr,. {FTN (Yn*s (éns) 05y, (an) L ,u;s) >1—al,, = é}

—>P7‘{FTN (Y* (é);o,z; (?)) ,E*,Z/{*) 21—a|é=é}:a,
which verifies (56).
Since this argument holds for all € ©, and Assumptions 3 and 4 imply that for all
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0,0 © with 640,
lim sup Prp{Xn(H) =X, (9) } =0,

n=Opep,

Lemma 6 implies (32). OJ
Proof of Corollary 1 By construction, CSgr, = [ﬂa J2m5b—a /QV,J, and fi1_a /2.5 > [la/2,n
for all aw< 1. Hence,
P?“p{/uby’n (émp> GOSET’n’én:é}
:PrP{,UJY,n (9717])) S ﬂlfa/2,n|én :é} _PTP{,U'Y,n (émP> Sﬂa/ln@n :é}a
so the result is immediate from Proposition 9 and Lemma 6. [J

Proof of Proposition 10 Note that by the definition of C'Sy,,

. (%P) €CSun
— Yn(n> e [cl (uym (9n;P),im <9n) ,/:n,un) Ca (Wm (én;P),iym (9n> ,,cn,un)]

where
(Cl(M’EY(Q)ﬂﬁau)acu(usz(6>7£au))
are defined immediately before Lemma 10. Hence, by Lemmas 7 and 10,
Hyn (én,P) c CSU’n
=17 (0n) € [ (0.5 (8) L5247 ) (0.8 (00) L2247
By Lemma 5, to prove that (33) holds it suffices to show that for all {ns} and {F,,}

satisfying conditions (1)-(3) of Lemma 5,

lim PT‘an {,uy,ns (éns> € CSU,ns

§—00

9%:9}:1—04.

Thus, it suffices to show that

S§—00

_ p [a(o,im(éns),£;57u;5>, .
PP Yo (9715)6 Cu<0,§Y,ns(Ans)yl":ﬁbs?u;s)} A
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To this end, note that by Lemma 8,
(Y* cou Zns,l{ﬁ 9}) -y (Y*,,c*,u*,zu{é:é}),

and thus, by Lemma 10 and the continuous mapping theorem, that

O obon om ) ooy

By construction (see also Proposition 2 in the main text),

Pr{y* (é) € [cl <0,£*7u*,2; (é)) c <07£*’u*72; <é> )} yé:é} i

and Y*( > ]9 0,L* U* follows a truncated normal distribution, so

Pr{v(8) =a(0zy(8).c'ur) }=Pr{y*(0) =cu(0.55 (0).£704) } =

Hence,

Prp, (Y e |03y, (0n, )L Uz ) cu( 0.8y, (On, ).L5 U ) |16, =0
{Epn(s[{) [ < Ozygs@))ﬁ Uy )>C¢(ngms(@ns)(vﬁnszf:s)}} {92}9}] }
By, [ ?ns@}]

E[l{Y*(9)6[01(O,E*Y(é),ﬁ*,u*?,cg 0,55 (0),£*u*)| }1{o=0}] TN
B[1{0=0}]

as we wanted to show, so (33) follows by Lemma 5.
Since this result again holds for all § € ©, (34) follows immediately by the same

argument as in the proof of Proposition 9. [J

Proof of Proposition 11 By the same argument as in the proof of Lemma 5, to show
that (35) holds it suffices to show that for all {n,}, {P,.} satisfying conditions (1)-(3) of
Lemma 5,

liminf Prp, {uyms <én$;Pns) € CSRnS} >1—a.

n—o0
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To this end, note that
HY ns (éns 3B ns) € CSP,ns
=1 (00 € en (B ) 5 (B0 ) () B (60|

for ¢,(Xy) the 1—a quantile of maxy|£(0)|/1/Zy (8) where £~ N(0,Zy ). Next, note that
¢o(Xy) is continuous in ¥ on S as defined in (41). Hence, for all 0, ¢, (3y)/2y(0) is

continuous as well. Assumptions 2 and 4 imply that
(3/7'11 ’ins ’éns> %d <Y*?Z*7é) 9

which by the continuous mapping theorem implies
(y (5,)) () ay(ans))ﬂ <y* (3).ca(s3) z;(é)).
Hence, since Pr{ ‘Y* (@) ‘ —ca (V)2 /25 (@) :O} =0,

Pro v (B0 ) €S ) %pr{y* ()<

—Ca(Zi) B3 (0) ea(S5) 2;(9)” (57)

where the right hand side is at least 1—a by construction. [

Proof of Proposition 12 Note that
ﬂin > [y <9n;P) = lyn (9n;P> € CS{]{_,H
for CSff_,, = (—oo,jul!,]. Hence, by Lemma 5, to prove that (36) holds it suffices to
show that for all {n,} and {P,,} such that conditions (1)-(3) of the lemma hold with
Cn(P)= 1{971 = é,,uy,n (9n;Pn) € CSIB%}, we have
lim Prp,_ {[Ly’ns (én.s;Pn.;) eCSH 10, =011y, <9n;;Pns) cCss } =a.
S5—00 v i s

Recall that for Fry (Y (6);,5y (0),LU) defined as in (45), il solves

Fry (Y;z (én) ;M:iY,n (én) 7'6751(#)?2/{7?(#)) =l-aq,
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for
LH (1) :max{ﬁn,u—ca (iyn> Sy <@n) }
u;;fw):mm{un,m@m) gy(@n)}_

The proof of Proposition 8 shows that Fry <Y;1 <9n) ;/L,iym (971) LH () U (u)) is strictly

decreasing in p, so for a given value py,

il > pyo <= Fry (Yn (én) ;,UY,Oin,n (én> 7£f(ﬂ)ﬁ0)auf(ﬂ}ﬁ0>> >1—a.
As in the proof of Proposition 9

o 50 02) S 1) £ o () 2 o 2
— Fry (Yn* (9n 0.5y (en) LCH i ) ,

where £,{7* = max{ﬁfl,—ca (f]yn) 1/ iy (9n> } and L[Tf]* :min{Z/{;,ca (iyn) f]y (@n) }

SO ﬂfm > [y <@n;P> if and only if
Fre (Y, (0) 0.8 (00) L1 1) 2 1~ 01
Lemma 8 implies that
(Vi Sy £ T D0, ) v (Y 35, L7 U D)

where £7* and UH* are equal to £7* and U* after replacing (Xn,Yn,in) with (X,Y,>*).
Then by the continuous mapping theorem and (57),

(FTN (YT: (‘971) 50,§Y,ns (éns) L ,Uﬁ.*> 1 {é"s =01y, (é”s ;P"S) © CS]BD T })
()3 ) s s G5 )

Hence, by the same argument as in the proof of Proposition 9,

lim Prp, {uyms (@ns;Pns> 60551_ n|9ns Zé,MYnS (@HS;P%) EC’Sﬁn }:04,
5—00 s ’ "hs
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as we aimed to show.
To prove (37), note that for CSUJrn (! ,,00),

Man—MYn(0n7P> <:>Myn( n >¢CSU+n

and thus that the argument above proves that

lim sup Prp{uyn<9n,P> eCsy, et (9 P) } —(1—a))PrP{0,fj (é;P) } —0

n=oopep,

for CH (é;P) as in the statement of the proposition. Since

ZPrp{éns :é,,uyms (@nS;PnS> € C’Sﬁ,’ns } :Prp{uym (9nS;PnS) € C’S}i}ns}—i—o(l),

and Proposition 11 shows that

liminf inf P?”p{,uyn (GnS;PnS>€C'S§nS}21—B,

s—00 PEPp,

Lemma 6 together with (36) implies that

liminf inf Prp{uan <pyn (QH,P> } >(1—a)(1-8)=(1-a)—pF(1—a)

n—oo PeP,

and
limsup sup Prp{ﬂgn <Hyn (én;P) } <l-a(l-p)=(1—a)+pa

n—oo PP,

from which the second result of the proposition follows immediately. []

Proof of Corollary 2 Note that by construction

H __ | ~H ~H
OSET,n* Hoa=p M a=p 1|5
3(1-5) 3(1-5)

where i, <,u o . provided = 5 < 1. Hence,
e et

Prp { . (én;P) ecst. [cH (é,P) }

(58)

—profva(0iP) <t s JCH(0P) p-Produa (B.iP) <iths cl(5.0) .
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so Proposition 12 immediately implies (38).

Equation (58) in the proof of Proposition 12 together with Lemma 6 implies that

-«
-3

so (39) holds. We could likewise get an upper bound on coverage using Lemma 6, but

liminf inf Prp{ Hyn <@n;P) eC SgTvn} >

n—oo PEP,

(1-f)=1-a

obtain a sharper bound by proving the result directly. Specifically, note that
. <9n;Pn> €CSH. = piyn <9n;Pn) cCsy.
Hence,

Prp{uym <5’n;P> € C’SﬁTm}
_ Prp{ fvm <@n;P) €CSH, ity <@n;Pn> e CSgn}Pr{ . <9n;Pn> € ngn}.

By the first part of the proposition, this implies that

. 1— .
limsup sup Prp{uym <0n;P> € CSng} < —alimsup sup Pr{uxn <9n;Pn> GC’SIEDH}
n—oo PeP, ' 1_6 n—oo PEP, ’

1-a
< PEGE)
=13

so (40) holds as well. [J

Proof of Proposition 13 The first part of the result follows by the same argument
as in the proof of Proposition 10, where as in the proof of Proposition 12 we use the
conditioning event {@n:é,uxn <9n;Pn> EC’S]@“} and replace (£, U,) by (Ef Ut ) The

second part of the result follows by the same argument as in the proof of Corollary 2. [
D.2 Asymptotic Validity of Norm-Maximization

We next turn to the asymptotic validity of our results in norm-maximization settings.
As discussed in the main text and Appendix B.2, the norm-maximization problem arises
when we follow Elliott and Miiller (2007, 2014) and Wang (2018) and model the degree
of parameter instability as shrinking with the sample size. If we instead take the degree of
parameter instability to be fixed, one can show that the threshold regression and structural
break models reduce to level maximization asymptotically.

The issue here is similar to the difference in the asymptotic distribution of the Vuong
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(1989) test between the nested and non-nested cases. As this analogy suggests, it may be
possible to develop asymptotic results for threshold regression and structural break models
that, analogous to the results of Shi (2015) and Schennach and Wilhelm (2017) for the
Vuong test, cover cases with both fixed and local parameter instability. We are unaware of
such results for existing procedures inthreshold regression and structural break literatures,
however, and this point is far afield from our primary focus in this project. Hence, in this
section we follow Elliott and Miiller (2007, 2014) and Wang (2018) and limit attention
to cases with local parameter instability and, refer readers interested in fixed parameter
instability to the level-maximization results discussed above.

Section D.2.1 states the bounded asymptotic means assumption. Section D.2.2 then
states our uniformity results for norm-maximization settings. Section D.2.3 collects ad-
ditional technical lemmas for this setting. Finally, Sections D.2.4 and D.2.5 collect proofs

for the lemmas and the uniformity results, respectively.
D.2.1 Assumptions

To prove uniform asymptotic validity for norm maximization, we will continue to impose
Assumptions 2-4 of the last section. To limit attention to the case with local parameter

instability, we further impose the following assumption.

Assumption 5

There ezxists a finite constant C'>0 such that

limsup sup ([|12xn(P)|[+[|pya(P)I)) < C.

n—oo PeP,

This assumption requires that ||px,,(P)|| and ||py,,(P)]| be uniformly bounded over
P, by a constant that does not depend on the sample size. Given the scaling of (X,,,Y;,)
in our threshold regression and structural break examples, this corresponds to the case
with local parameter instability. It may be possible to relax this assumption, but it holds
in all settings we have encountered that give rise to the norm-maximization problem
asymptotically. Specifically, note that Assumption 5 holds if we take P,, to correspond
to any finite collection of local sequences of the sort studied by Elliott and Miiller (2007,
2014) and Wang (2018). If we instead consider nonlocal sequences, then as discussed above

we instead obtain a level-maximization problem asymptotically.
D.2.2 Norm Maximization Uniformity Results

For 6, =argmaxg|| X,,(0)|| we obtain the following results.
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Proposition 14
Under Assumptions 2-5, for 0, = argmaxy | X,,(0)|| and jia the a-quantile unbiased

estimator,

lim sup Prp{/la,n >y, <9n;P> |@n :é} —a’Prp{én zé} =0, (59)

nHOOPepn

for all0€®©, and
lim sup P?”P{ﬂam > Ly, <9n;P) } —oz‘ =0. (60)

n—oopep,
Corollary 3
Under Assumptions 2-5, for 6, =argmaxg|| X,,(0)|| and C'Sgr,, the level 1—a equal-tailed

confidence set,

lim sup Prp{uy’n(@n;P) GCSET’nlén:é}—(1—04)’Prp{@n:9}:O,

n—)OOPGPn

for all 0€©, and

lim sup PT’p{/Ly,n <9n;P> € C’SET,H} —(1—04)‘ =0.
n=Opep,

Proposition 15

Under Assumptions 2-5, for 6, = argmaxy||X,(0)|| and CSy,, the level 1 —a unbiased

confidence set,

lim sup Prp{uxn(@n;P> ECS’U’n@n:é}—(1—04)‘]37"1:{9“:9}:0, (61)

noOpPep,

for all 0€©, and

lim sup Prp{uxn (9H;P> EC’SU,H}—(l—a)‘:O. (62)
n—oopep,,
Proposition 16
Under Assumptions 2-5, for 0, = argmaxy|| X,,(0)|| and CSp,, the level 1 —a projection
confidence set,
liminf inf P’)”P{/,Lym (@H;P) € C’Spvn} >1—a.

n—oo PePy,
Proposition 17
Under Assumptions 2-5, for 6, = argmaxg || X, (0], [t the a-quantile unbiased hybrid
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estimator based on initial confidence set CSIgn, and
C’f (é;P) = 1{9n :é,uxn <9n;P) € CSlgn},
we have

lim sup Prp{,uan>,uyn<9n,P>]CH<9 P)—l} ‘Ep{ (9 P)} 0,

n—o0pep,

for all 0€©. Moreover

limsup sup Prp{ﬂgn > Ly, (@H;P) } —04‘ <max{a,1—a}p.
n—oo PeP,

Corollary 4

Under Assumptions 2-5, for 6, =argmaxy|| X, (0)|| and C Spr. the level 1—a equal-tailed

hybrid confidence set based on initial confidence set C’S]ﬁ%,

H -« H
Jim_sup Prp{uyn<0n,P> €CSt|CE (9 P)_1} i EP{C (9 P)} 0,
for all 0O,
>
hnrgloréfplggnPrp{uyn <9n,P) ECSETn} >1—
and )
limsup sup Prp{uyn (Hn,P> € C’SETn} < 1_a <l—a+p.

n—oo PeP,

Proposition 18
Under Assumptions 2-5, for 6, = argmaxg || X,,(9)|| and CS,?” the level 1 —a unbiased

hybrid confidence set based on initial confidence set C’S]ﬁ%,

i sup Prp{wn <9n,P> ccst (cH (9 P) - 1} - 1_—; EP{C,? (é;P) } —0,
for all €O,
liminf lgfnprp{ v (0P ) €CSEL h 21—
and o
hgf;pﬁélgnprp{uyn (en,P) c CSUn} gsimats
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D.2.3 Auxiliary Lemmas

To prove uniformity in norm-maximization settings, we rely on some of the lemmas in

Section D.1.3 along with a few additional results.

Lemma 11
Under Assumptions 3 and 5, for any sequence of confidence sets C'S,,, any sequence of sets
Cn(P) indexed by P, C,(P)= {(Xn,Y;L,E )GC (P )}, and any constant «, to show that

limsup sup Prp{uxn <9n;P> €CS,|C,(P)= 1} —oz’Prp{Cn(P) =1}=0

n—oo PeP,

it suffices to show that for all subsequences {ns} C{n}, {P.,} €P>*=x>2,P, with:

1. ¥(P,,)—=X*€S for S as defined in (41)

S

2. (x s (B )sbtvn, (B,)) = (W3 o1ty) Jor (1 ,15) finite
we have

lim Prpns {/lyms <9ns ;Pm) €CS,,|C.(Pn,)= 1} =aq.

To state the next result, for Z; , . the jth element of Zj , as defined in Lemma 7, let

us define " i
10(88) =5 (0) "S- [Brvns(8) S (09) ]
j=1
510 (09) 250 ) S [5r ) 0) S 03) 0,0
j=1

C2(00) = 2::{ Zss(0) - W(f))ﬂ,
Dy (é,e) =By, (é,e) 44, (é,e) Cun (é,e) ,

B i e GO W *W

,9

and



Based on these objects, let us further define

2o (é) - max{()e@:An(éﬁin%?; Z,n(é,e)zoGZ’" (éﬁ) ’9g@;An(é,@ﬁ%zm(é,g)wlfz’” (9’0) }

o (9’9) B max{eee;An(a,e)ni%,)jaz,”(é,e)>oGZ’" (é’9> ’9e@;An(é,e§i%§Zm(é,e)>oHZ’” (é,e) Czin @’9) }

ulz n <é,0) =min _ min ) Kz, (é,@) , _ min } Hyz, (é,@) Kzn (9,9)
’ 0€6:4,,(60,0)<0,D7,,(6,0)>0 0€0:4,,(0,0)=0,B7,(0,0)<0

uy, (é) =min min Kz, (@ ,0) , min Hyz, (éﬁ) .
' ee@:An(é,9)<0,DZ,n(é,9)zo 0€0:An (0,0)=0,Bz.(0,0)<0

Lemma 12
Under Assumptions 2 and 4, for any {ns} and {P,.} satisfying conditions (1) and (2) of

Lemma 11,
(Yn Sl (9) . (99) . (99) . (9))
.y (Y*,z*,é,ﬂ; (9) o (é,e) il (é,e) uZ (9)) :

where the objects on the right hand side are calculated based on (X*Y™*¥*) for

X* * *
( e > ~N(u*x").

To state our next two lemmas, we consider sets that can be written as finite unions

of disjoint intervals, Y* =UK | [Ek,uk}.

Lemma 13
For FTN(~;,u,Ey(9),yK ) the distribution function for ¢ with

CNg‘feyKagNNO'LJEY(e))?
Frn (Y (0);1,2y(0),Y%) is continuous on the set

{ (Y (0),1,Ey (0)) €R3 ¢! € [—00,00),
{

_ 2y (0) >0, ’uk—ﬁk‘>0,uk2€k2uk_l for all k 5.
Ek}kKZQG]R,{uk}lelGR,uKG(—oo,oo] v () ;
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To state the next lemma, let

(a(.Sy (0).Y5) cu(11.Zv (0), V7)) (63)
solve
Pr{¢ele,c)}=1-a
E[(H{Ce[acl]=(1-a)E[(]
for ¢ as in Lemma 13.

Lemma 14
The function (63) is continuous in (M,EY(G),)/K ) for Lebesque almost-every {Ek,uk }szl
on the set

{ (1,Sy (0)) ER2 0! € [—00,00),

, Yy (0) >0, F_ k) >0uF >0 >0kt k.
{gk}SZQGR,{uk}lelGR”UIKG(—OO,OO} Y( )> ;|Uz |> u = ~U fOT‘a }

Moreover, if we fix any (1,2y (0)) in this set, and fiz all but one element of {Ek,uk}le,

(63) is almost-everywhere continuous in the remaining element.
D.2.4 Proofs of Auxiliary Lemmas
Proof of Lemma 11 Follows by the same argument as in the proof of Lemma 5.

Proof of Lemma 12 Note that Assumption 4 along with condition (2) of Lemma 11

Xn, — X N(p* )
Yns d y* 22 )

while Assumption 2 implies that f]ns —p 2"

imply that

If we define

(A* (é,e) B (9,9) C (é,e) D3 (9,9) G (é,e) K (é,e) H (é,e))

as the analog of

<An (é,e) By (9,9) Con (9,9) D, (9,9) G (9,9) Ky (é,e) Hy, (é,e) )

based on (X*Y* ¥*), the continuous mapping theorem implies that

(Ans (é,e) Bz, (é,e) Cm, (é,e) ) 5 <A* (é,e) B (é,e) s (é,e))
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where this convergence holds jointly over all (9,9) €O? If A* (é,@) #0, another application

of the continuous mapping theorem implies that°

(Dz,ns (é,e) G (é,e) Ko, (é,e)) iy (D*Z (é,e) G (9,9) K (9,0) ) .

If instead A* <@,9) =0, note that

7 (0)=X*(0)— o (09)

550)=X; 5 (0) ve(0)=x; 5 (0) '(9).

Hence, in this setting
B (é,e) —9%y (9) By [X; (9) —X;(e)]
j=1

and condition (1) of Lemma 11 implies that PT{B} (é,@) :0} —0 for all ##6. Hence,
Pr{D} <é,9) >0} =1. Moreover, note that for b#0 and all ¢

i —b—/b2—4ac {19, it b<0
im =

a0 2a oo ifb>0

while

li

. —b+vb2—dac |oo ifb<O
m = .
-0 2a —< ifp>0

b

Hence, if A* (9,@) =0,

By, (é,e) /Dy (é,e)

24, <é,9)

—q—00-1{ By (0.0) >0} +H;(0.9)

30Note that we allow the possibility that <D Zn (9,9) D7 (9,0)) may be negative, so
(G Zn (9,9) Kzn (é,ﬁ)) and (G*Z <t§,9) K (@,9)) may be complex-valued.
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and

~ By, (9,9) +/Dyn (9,9)
A —>doo-1{B} (9,0) <o}+H; (9,9),
24, (9,9)
with the convention that co-0=0. Finally, another application of the continuous mapping
theorem shows that when A* (é,@) =0,

Hy,. (é,e) o H (é,e) .

Since all of these convergence results hold jointly over <9,é> € ©?, another application

of the continuous mapping theorem implies that

(0 (0) 2, (0.0) ik, (0.0) 42, (8) ) —a (€2 (9).2(0.0) ik (90) w2 (9) ).

Moreover,  is almost everywhere continuous in X*, so that (Y, 5. ,0,.) —a (Y*,5%,6),
where this convergence occurs jointly with that above. Thus, we have established the
desired result. [

Proof of Lemma 13 Note that we can write

s (s(2255) ()
Fr (Y (0);0.5y (0),Y%) = - - - . :
uf—p _ 0F—p
2 (FN (\/zyw)) b ( \/zy(m))
Hence, we trivially obtain continuity for ¥y (6)>0,Y(#) eR,peR, 0<> ", ‘uk —Kk’ < 00.

Moreover, as in the proof of Lemma 9 we retain continuity as we allow ¢! — —oc and/or

uf — 00, in the sense that for a sequence of sets y,ff with

ko, kK ko, kK
{Em,um}kzl — {Koo,uoo}kzl
with ¢}, =—o0 and/or uX =00 and the other elements finite,

Frn (Y(0):1,2y(0).Y5) = Fra (Y (0):.5y (6) VX)),
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Proof of Lemma 14 Note that

N {CE[%H:Zkl{ukz@,cuzek}(FN(u;g;_(—;)_FN(@%))
() (7))

ElC{¢e .} =E[CICE el Pri{C €leicu]}

while

where

ElCIcelascdl=ptvEr(0)

S zanze) (1 G2 ) - ()

zkl{ukzchcuzgk} (FN(uk/\Cuﬂ _
Sy (0)

Thus,

E[a{ce[cz,cu}}]qul{Uk>cl’C“>€k}gFN(%) _FN(W))
o) (%)

VEy (©0)
. " Cove—p \ uFAcy—p
Zkl{u chvcuzg }(fN( 25/(9)) fN<‘/Zy(9)>>

5
7N
}:

+4/ Ey(e)

and

(]= (0) .
I () ()

Using analogous reasoning to that in the proof of Lemma 10, we can write (63) as the

(/S (0).97) =0 (64)

solution to

for

g (cw,\/ Ey(e),yK> =
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S b > e, > 00} (FN <“\/AZW§‘> —Fy (%) —(1-a) (FN (jﬁ) —Fy <\;Ey+;)>>>
Sttt 2z (i (Gt ) - (2t ) ~0-0 (v (S ) (7))
Note that by construction

(cu\/yy) (C 10,7/ Sy (0), V5 — )

which implies that

(a(.Sy (0). V") cu(11.2y (0),Y7) ) = (1+c (0,5 (0), Y5 — 1) ot (0,54 (), Y5 — 1) )

so to prove continuity it suffices to consider the case with p=0.
Next, note that g(c;O,\ /Yy (0), VK ) is almost everywhere differentiable with respect

to (¢,c.), with derivative

k kY 1 < k k 1 Lo
Sl{uF > >¢ }\/gy(e)fN(\/zy(9)> Spl{uf>e, >0 }\/Ey(e)fN(\/zy(e))

k C k k Cu Cu
Zkl{u > >/ }2 (9) \/2;(9) Zkl{u >c, >l }EY(H)fN Vo 0)

though it is non-differentiable if ¢, € {uk,ﬁk} or ¢ € {uk,ﬁk} for some k.

Note, however, that if we fix all but one element of { ﬁk,uk},i; and change the remaining
element, the set of values for which there exists a solution ¢ to (64) with ¢, € (¢ ,u7) and
qe (Ek,uk) for some j,k has Lebesgue measure one by arguments along the same lines as
in the proof of Lemma 10. Likewise, the set of values such that there exists a solution ¢
to (64) with ¢;=¢, has Lebesgue measure zero as well. The implicit function theorem thus
implies that (63) is almost-everywhere continuously differentiable in the element we have
selected. Since we can repeat this argument for each element of {Ek ,uk}szl, we obtain that
(63) is continuously differentiable in {Ek ,uk}szl Lebesgue almost-everywhere. Moreover,
as in the proof of Lemma 10 the form of (63) implies that the same remains true if we

take /! — —o0 or uff — oo.
D.2.5 Proofs of Uniformity Results

Proof of Proposition 14 As in the proof of Proposition 9, note that

ﬂa,nZMY,n (émP) <:>///Y,n (9717P> EC(SU,—,n
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for 'Sy, = (=00, fla]. Hence, by Lemma 11, to prove that (59) holds it suffices to
show that for all {ns} and {P,_} such that conditions (1) and (2) of the lemma hold with
anl{én:é}, we have

lim Prp, { fivm, (en ;Pns> eCSp—n b, = é} —a (65)

5—00

To this end, note that for Fry (Y (6);u,3y (0),YX) as defined in the statement of Lemma

13, the estimator fi,,,, solves

Fry (Yn @n) ;Min,n <én> 7yn) =1—a,

Vo= N 15 (0) k(00) |0 |2,,(00) 2, (8)] (66)

0€0:4,(0,0)>0,D7,(6,0)>0

for

(see Proposition 4 in the main text). The set ), can be written as a finite union of disjoint
intervals by DeMorgan’s Laws.
The cdf Fry (Yn (971) ;/L,ixn <§n) ,yn) is strictly decreasing in p as argued in the proof

of Proposition 8, and is increasing in Y, (5’) Hence, flon> ttyn <én;P> if and only if
Fr (Yo (00 )ty (00:P) Sy (80) D) 21 =0

Lemma 12 shows that (Y}L (9%) ,iyms <9ns> ,yns,éns) converges in distribution as s — 00,3!

so since Fry is continuous by Lemma 13 while argmaxg||X*(6)|| is almost everywhere

)

continuous for X*, the continuous mapping theorem implies that

(FTN (Yns (éns) MY ng (éﬂpns) 7§Y,n ( ns 7yn5>7 { é
G e ()5 5
where Y* is the analog of ), calculated based on (X*)Y™* ¥*).

Since we can write

PTpns {FTN (Yns (ém) MY, (95Pn5> aiY,ns (éns) 7yns> > 1_a|9ns :é}

31Since ), can be represented as a finite union of intervals, we use ),, —4 )™ to denote joint convergence
in distribution of (i) the number of intervals and (ii) the endpoints of the intervals.
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Y

EPM |:1{én =0 }

and by construction
Frn (Y (8) v, (B:P, ) B3 (9).70) =0~ V0.1,
and Pr{=0) =p" >0 by Assumption 5, v ths have tha
Pre, {Brx (Yo, (0. )ity (0:n.) Sy, (.. . ) 21-0lf, =8

e B (v (0)i (3).55 (9) ) 21—l =0} =a,
which verifies (65).
Since this argument holds for all fe O, and Assumptions 3 and 4 imply that for all
0,0 €O with 640,
lim sup PTP{HXn(Q)H - HX“ (9) H}:o,

n—=Opep,
Lemma 6 implies (60). OJ
Proof of Corollary 3 Follows from Proposition 14 by the same argument used to prove

Corollary 1. O
Proof of Proposition 15 Note that by the definition of C'Sy,,

Hyn <9n;P) €eCSyp
e ) (37) 1)) o () () )

where ), is as defined in (66) while (¢;(14, 2y (0).Vn),cu(16, 2y (0),Vy)) are as defined imme-
diately before Lemma 14, after replacing Y with J,.

By Lemma 11, to prove that (61) holds it suffices to show that for all {n} and {F,,}
satisfying conditions (1) and (2) of Lemma 11,
lim PTpn5 {,U,y,ns (éns> S CSU,n5

§—00

9nszé}:1—a.
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Thus, it suffices to show that

[Cl (/JJY,ns (9>Pns) viYms (éns) 7ynS)7 9% 2 G

lim Prp, ¢ Y, <@ns> € . ~ .
s7ro0 Cy (,uY,ns (97Pns> ;EY,nS (Qng> 7yns>}
To this end, note that by Lemma 12,

(VoD S 1, =0} ) = (v 320 1{0=0}).

and thus, by Lemma 14 and the continuous mapping theorem, that3?

(v ()cz(wns(é Po) Sy, (0): 90 ) a1 (8.2, ) Svin, (8) D, ) 18, =0})
= (v (0) s (0).5 @NWMW@ﬁﬁwgﬁﬁﬂ

By construction,

(v () <o )95 ) s )75 9) =3} =1

and Y™ (é) |é:é,y* follows a truncated normal distribution, so

Py (0) =l (9) 55 () 37) p=r{y (8) = o (7) 35 (9) ) }

Hence,

0.

[Cl (MY,ns (97Pns> viYns ( ns) 7ynS)7 0 ~

e (i (3.2 ) S g ]
b

_ Brn [1{%0s (s J€fer(12v.0s (B.Prs ) Bvins (B ) Vs ) (1175 (B:Prs ) S (B ) Vs )| 140, =8} ]

[1{0n~0}]
B[y (0)cler (5 (0) 25 (0) ) eu (13 (8)- 55 (0)- ) [}1{0=0}] _ | _ |

Prp, { Y, <9n> e

as we wanted to show, so (61) follows by Lemma 5.
Since this result again holds for all § € O, (62) follows immediately by the same

argument as in the proof of Proposition 14. [J

32Note that when 0 = é, Y* is either equal to the real line, or contains at least one interval with a
continuously distributed endpoint. Hence, the almost-everywhere continuity established in Lemma 14
is sufficient for us to apply the continuous mapping theorem.
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Proof of Proposition 16 Follows by the same argument as in the proof of Proposition
11. O

Proof of Proposition 17 Follows by an argument along the same lines as in the proof
of Proposition 12, using Lemmas 11, 12, and 13 in place of 5, 8, and 9, and using the
conditioning event {Y,,(6,) € Y71 ={Y;(6,) €V, }N {,qu (én,Pn) € C’S]@’n}. O

Proof of Corollary 4 Follows by the same argument as in the proof of Corollary 2. [J

Proof of Proposition 18 Follows by the same argument as the proof of Proposition

17, using Lemma 14 rather than Lemma 13. [J

E Additional Simulation Results for Stylized Example

In the stylized example discussed in Section 2 of the main text, we focus on the median length
of confidence sets and the median absolute error of estimators. In this section, we report
results for other quantiles, in particular that 7-th quantiles for 7€ {0.05,0.25,0.5,0.75,0.95}.

Figures 6 and 7 show the unconditional quantiles of the length of the 95% confidence
sets C'Sy and C'Sgr, for cases with |©|=2, 10, and 50 policies. In each case and for each
7€{0.05,0.25,0.5,0.75,0.95}, the 7-th quantile is monotonically decreasing in u(6;)—p(0-1).
Noting the different scales of the y-axes, we see that the upper quantiles grow as the
number of policies increase, particularly for small p(6;)—p(6_1).

Figures 8 and 9 show the unconditional quantiles of the length of 95% hybrid confidence
sets C'SH and CSH, with 3=0.005. Compared with Figures 6 and 7, the upper quantiles
are much smaller, especially for small 1(61)—p(6_1). This substantial reduction in length
directly comes from the construction of the hybrid confidence sets, which ensures that
CSH and CSE, are contained in C'S5. For the case of |©] =50, even the 95% quantiles
of the length of C'SH and C'SH,. are shorter than the length of C'Sp uniformly over the
range of u(61)—pu(0_1) values we consider.

Figures 10, 11, and 12 examine the performance of point estimators for ,u(@) They plot
the unconditional quantiles of the absolute error of the conventional estimator, the median
unbiased estimator, and the hybrid estimator, respectively. In spite of the severe median
bias shown in Figure 1 in the main text, the distribution of the conventional estimator is
relatively concentrated compared to that of the median unbiased estimator. In particular,
the upper quantiles of the absolute errors of ji1/, are very large for small ju(6;) —p(6-1)
(similar to the quantile plots of the length of C'Syy and C'Sgr shown in Figures 6 and 7).

At the cost of a small median bias, the hybrid estimator substantially reduces the
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absolute errors (Figure 12). The 95% quantile of the absolute errors of the hybrid estimator
is overall similar to the 95% quantile of the absolute errors of the conventional estimator
with a notable exception of the case of 2 policies. In contrast, for |©| = 10 and 50, and
for quantiles other than 95%, the hybrid estimator outperforms the conventional estimator
over a wide range of values for 14(6;)—p(6_1). These numerical results show that the hybrid

estimator successfully reduces bias without greatly inflating the variability of the estimator.

F Additional Results for EWM Simulations

Tables 8 and 9 provide the ratios of the 5%, 25" 50t", 75" and 95" quantiles of the lengths of
CSgr, CSy, CSH, and C'SH relative to the corresponding length quantiles of C'Sp for the
EWM data-calibrated designs described in Section 6 of the main text. Looking at the upper
quantiles in Table 8, we can see that the conditional confidence sets C'Sgr and C'Syy can be-
come very wide when the maximal element of p1x is not well-separated from the others. On
the other hand, Table 9 shows that the hybrid approach is very successful at mitigating this
problem. Indeed, C'SE. and C'S{ dominate C'Sp across nearly all quantiles and simulation
designs considered. Table 10 reports the same quantiles of the studentized absolute errors

of j1 1 fi and Y(@) Here we can see that, although the hybrid estimator fi{’ does not dom-
2 2

inate the conventional estimator Y () according to this performance measure, it does domi-
nate [ 1 across all quantiles and DGPs considered. This dominance is especially pronounced
at higher quantiles. The underlying message here is a bit more nuanced than that which

applies to the confidence sets: when minimal bias is desired, i is the preferred estimator.
2

Table 8: Ratios of Length Quantiles Relative to C'Sp

CSgr Quantile C'Sy Quantile
DGP 5th o5th  5oth  75th ggth 5th o onth  5th - 75th g5th
Class of Threshold Policies
(i) 0.75 132 1.17 197 888 0.75 148 127 194 7.17
(ii) 0.74 0.75 0.75 0.75 076 0.74 075 075 075 0.75
(iii) 0.74 0.74 0.82 122 330 074 07 093 145 3.65
Class of Interval Policies

(i) 1.11 141 154 231 1078 127 154 1.65 191 872
(ii) 0.63 0.63 063 064 064 0.63 0.63 0.64 0.64 0.64
(iii) 066 0.71 078 114 439 0.70 0.76 0.88 136 3.61
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Table 9: Ratios of Length Quantiles Relative to C'Sp

5th

CSH. Quantile

2 5th

50th 75th 95th 5th 25th

50th

CSH Quantile

75th

9 5th

0.76
0.76
0.77

0.75
0.64
0.67

0.85
0.76
0.78

0.76
0.65
0.72

Class of Threshold Policies

0.63 093 0.99 0.76 0.77
0.76 0.77 0.77 0.76 0.76
0.84 092 0.98 0.79 0.81

Class of Interval Policies

0.77 0.85 0.88 0.63 0.74
0.65 0.65 0.65 0.64 0.65
0.76 0.85 0.89 0.69 0.76

0.64
0.76
0.89

0.76
0.65
0.81

0.95
0.76
0.96

0.86
0.65
0.88

1.01
0.77
1.00

0.89
0.65
0.92
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G Additional Results for Tipping Point Simulations

Tables 11 and 12 provide the ratios of the 5%, 25", 50, 75" and 95" quantiles of the
lengths of CSpy, CSy, CSH. and CSH relative to the corresponding length quantiles
of C'Sp for the tipping point data-calibrated designs described in Section 7 of the main
text. The main takeaways from these tables are analogous to those that apply to tables
8 and 9 for the EWM data-calibrated designs. Table 13 reports the same quantiles of the
studentized absolute errors of fi 1, [ﬂ; and Y(@) Again, the main features of this table are
similar to those of Table 10. However, note that in this application, the hybrid estimator
[ﬂ; not only exhibits minimal bias, in contrast to the standard estimator Y'(6), but also

exhibits lower studentized absolute errors across most quantiles and designs considered.

Table 11: Ratios of Length Quantiles Relative to C'Sp

CSgr Quantile C'Sy Quantile
DGP 5th - o5th  pth  75th gnth - 5tho o g5th - g5oth  g5th g5t
Chicago Data Calibration

(i) 088 113 133 154 187 092 120 1.38 1.58 1.89

(ii) 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.74

(iii) 0.74 074 082 122 330 0.74 0.76 093 145 3.65
Los Angeles Data Calibration

(i) 092 127 126 099 0.76 094 131 129 1.00 0.77

(i) 0.68 0.68 0.68 0.68 0.68 0.67 0.68 0.68 0.68 0.69

(iii) 0.68 0.68 0.68 0.79 212 0.68 0.68 0.70 0.89 232

Table 12: Ratios of Length Quantiles Relative to C'Sp

CSE, Quantile CSfl Quantile
DGP sith - 25th 5oth 75t g5th Bt o5th 5ot 75t g5t
Chicago Data Calibration
(i) 0.69 091 094 093 096 0.60 090 094 0.93 0.96
(i1) 0.74 0.74 074 0.74 0.74 0.74 0.74 0.74 0.74 0.75
(iii) 0.75 075 0.82 093 097 0.76 0.78 087 094 097
Los Angeles Data Calibration

(i) 073 091 086 082 076 0.65 091 085 0.82 0.76
(ii) 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.70
(iii) 0.69 0.69 0.70 0.79 091 0.68 0.69 0.72 084 0092
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G.1 Additional Results for Split-Sample Approaches

Table 14 provides the ratios of the 5, 25" 50", 75" and 95" quantiles of the length of our
newly proposed equal-tailed split-sample confidence set C'S4 relative to the corresponding
length quantiles of the conventional split-sample confidence set C'Sgg for each of the tipping
point data-calibrated designs described in Section 7 of the main text. Since every entry
in this table is less than one, we can see that the dominance result illustrated in Table
7 of the main text is further reinforced: the length quantiles of C'Sgy are shorter than
those of C'Sgg across all quantiles and simulation designs considered. Table 15 reports
the same quantiles of the studentized absolute errors of our newly proposed split-sample
estimator ﬂ‘;s’ ! and those of the conventional split-sample estimator YQ(@I). Though both
of these estimators are median unbiased for iy (6'), ﬂg&% dominates Y2(6') in terms of

studentized absolute errors across all quantiles and simulation designs considered.

Table 14: Ratios of Length Quantiles of CSg‘S Relative to C'Sgg

Quantile
DGP 5th o5th - poth - 75th g5th
Chicago Data Calibration

(i) 0.69 079 083 0.84 0.87

(ii) 0.57 0.58 0.58 0.58 0.58

(iii) 0.59 059 0.64 0.73 0.86
Los Angeles Data Calibration

(i) 0.74 085 0.78 0.68 0.57

(i) 0.57 0.58 0.58 0.58 0.58

(iii) 0.57 0.58 0.59 0.66 0.81

Table 15: Quantiles of )ﬂ—uy(@l)‘/\/ﬁy(@)l

[i5 1 Quantile Y2(0') Quantile
DGP 5 25 50 75 95t 5 o5 B 7t g5
Chicago Data Calibration

(i) 0.05 027 057 095 1.61 0.06 031 067 1.15 1.97

(ii) 0.04 0.18 0.38 0.65 1.13 0.06 0.31 066 1.14 1.96

(iii) 004 021 044 077 138 0.07 032 0.67 1.15 2.00
Los Angeles Data Calibration

(i) 0.05 025 055 093 156 0.07 032 069 116 1.96

(i) 0.04 018 0.39 066 1.13 0.06 031 067 1.15 1.96

(iii) 0.04 020 042 071 125 0.06 032 068 1.16 1.98
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