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A Supplementary Figures and Tables

FIGURE A.1: REFINANCING HAPPENS WHEN THE RESET RATE KICKS IN
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Notes: The figure shows the distribution of the time to refinance, excluding individuals where the date on which the
reset rate kicks in is unobserved. The figure shows individuals individuals who refinance more than 6 months after their
reset rate kicks in in black, individuals who refinance more than 2 months before their reset rate kicks in in white, and
the remainder who refinance around their reset date in gray.
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FIGURE A.2: ESTIMATING INTEREST RATE JUMPS WITH BORROWER DEMOGRAPHICS
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Notes: The figure shows the conditional interest rate as a function of the Loan-To-Value (LTV) ratio based on a regression
like (1), but adding controls for borrower demographics. Specifically, we add controls for age, income, single/couple
status, and the reason for refinancing. In each LTV bin, we plot the estimated coefficient on the LTV bin dummy plus
a constant given by the mean predicted value E [r̂i] from all the other covariates. The figure shows that the mortgage
interest rate evolves as a step function with sharp notches at LTV ratios of 60%, 70%, 75%, 80%, and 85%. These notches
are virtually unchanged compared to the specification without borrower demographics.
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FIGURE A.3: EQUITY EXTRACTION BY PASSIVE LTV FOR NON-BUNCHERS
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Notes: The figure shows the moving average of equity extracted on the y-axis, calculated among households that do
not bunch in the actual LTV distribution. The x-axis is the passive LTV, i.e. the LTV that results from applying the
amortization to the previous mortgage and using the new lender-assessed property valuation. This moving average is
used to adjust the passive LTV distribution to obtain the counterfactual LTV distribution.
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FIGURE A.4: COUNTERFACTUAL LTV DISTRIBUTION CORRECTING FOR SELECTION INTO

BUNCHING
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Notes: The figure shows the observed distribution of Loan to Value Ratios in black circles. The figure also shows two
counterfactual distributions. First, in orange exes, the counterfactual created by adjusting the passive LTV distribution
(Figure 4A) for equity extraction using non-bunchers to predict equity extraction by both bunchers and non-bunchers.
Second, in blue crosses, the counterfactual created by estimating equity extraction correcting for sample selection created
by selection into bunching. Both methods are described in greater detail in section 2.4.
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FIGURE A.5: NUMBER OF PAST AND FUTURE BUNCHING EVENTS BY CURRENT LTV
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Notes: The figure shows the average number of past and future bunching events as a function of current LTV choice.
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FIGURE A.6: STRUCTURAL EIS VS REDUCED-FORM ELASTICITY
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Notes: The figure shows the reduced-form borrowing elasticity ε as a function of the structural EIS σ, assuming that
δ = R = 1. The correspondence between the two follows from equation (10). The three curves correspond to three values
of the loan-to-wealth (LTW ) ratio, which is the ratio of the mortgage loan to total future housing and human wealth. The
reduced-form elasticity is increasing in σ, but is also affected by LTW . A given reduced-form estimate is thus consistent
with a wide range of structural estimates of the EIS.
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FIGURE A.7: OBSERVED VS SIMULATED LTV DISTRIBUTIONS WHEN CALIBRATING NON-EIS
PARAMETERS

Panel A: σ = 0.06; Realistic δ, y,P
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Panel B: σ = 1; Calibrated δ, y,P
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Notes: The figure shows two simulations of a model introduced in Section 3. In the upper panel, the EIS is calibrated (to
σ = 0.06) to minimize the MSE of the bunching moments, while other parameters are externally calibrated to realistic
values. In the lower panel, the EIS is set to σ = 1 and remaining parameters are calibrated to minimize the MSE of
the bunching moments. The blue lines show the predicted LTV distribution if households choose leverage optimally
according to the model. The black lines show the empirical LTV distribution. The model can match the LTV distribution
when calibrating the EIS alone, but has difficulty in doing so when σ = 1, even if all other parameters are set for
this purpose. Further, the parameter values arising from this latter calibration are unrealistic, with a discount factor
of δ = 0.24, house price expectations of −12% annually and income growth expectations of −42% annually.
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FIGURE A.8: OBSERVED VS SIMULATED LTV DISTRIBUTIONS WITH FRICTION ADJUSTMENT

Panel A: σ = 0.12 Panel B: σ = 0.5
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Panel C: σ = 1 Panel D: σ = 2
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Notes: The figure shows simulations of a model introduced in Section 3 for a range of EIS values. The simulations include
a friction adjustment so that a fraction a∗of non-bunching households are assumed to be “non-optimizers”, who behave
as though they face the counterfactual interest rate schedule (and thus choose the corresponding counterfactual LTV). The
blue lines show the predicted LTV distribution from the model. The black lines show the empirical LTV distribution. The
upper left hand corner has σ = 0.12, which is the EIS that minimizes the MSE of the predicted bunching masses. Higher
EIS values predict far greater bunching masses than found in the data, with a large share of households jumping more
than one notch in the LTV distribution to exploit lower interest charges. The distribution largely hollows out between
notches, in contrast to the data.
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FIGURE A.9: LTV DISTRIBUTION IN THE NO-NOTCH SAMPLE

Panel A: No-Notch Sample vs Full Sample
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Panel B: Round-Number Bunching in the No-Notch Sample
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Notes: This figure shows frequency of refinancers in the neighborhood of notches, in bank-month observations where the
bank didn’t feature a interest rate jump at the notch. Panel A show this distribution alongside the frequency of refinancers
in the neighborhood of notches, in bank-month observations where a notch was present. It demonstrates that “no-notch
banks” are a relatively small portion of our sample. Panel B zooms in on the distribution of mortgages at “no-notch
banks”, together with the counterfactual distribution. It shows a small amount of round number bunching. We correct
our estimates of bunching in response to interest rates with the magnitude of round number bunching.
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FIGURE A.10: INTEREST RATE SCHEDULES IN BANKS WITH AND WITHOUT NOTCHES
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Notes: This figure shows the average interest rate in the neighborhood of the pooled notch for bank-months that featured
a notch and those that did not. The interest rate is estimated using equation (1) for these subsamples. Relative to “no-
notch banks”, banks with notches offer a discount at LTVs below the notch.“notched
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TABLE A.1: BUNCHING AND EIS ESTIMATES WITH SELECTION-CORRECTED COUNTERFAC-
TUAL DISTRIBUTION

Statistic
Notch

60 70 75 80 85 Pooled

Panel A: Bunching Evidence

b
1.54 1.61 5.57 8.05 18.32 4.22
(0.27) (0.14) (0.32) (0.93) (2.45) (0.19)

a
0.42 0.27 0.20 0.20 0.12 0.08
(0.04) (0.02) (0.02) (0.03) (0.05) (0.00)

bAdj
2.14 1.70 5.98 8.29 18.49 6.12
(0.50) (0.21) (0.39) (1.19) (3.18) (0.29)

∆λAdj
0.42 0.42 1.93 2.57 5.45 1.59
(0.09) (0.05) (0.11) (0.38) (1.22) (0.08)

Panel B: Elasticities

EIS σ
0.02 0.02 0.06 0.07 0.28 0.05
(0.00) (0.00) (0.01) (0.03) (0.10) (0.01)

Reduced-form ε
0.52 0.52 0.54 0.55 0.65 0.54
(0.00) (0.00) (0.00) (0.01) (0.04) (0.00)

Notes: This table shows estimates of bunching, LTV responses, and the implied Elasticity of In-
tertemporal Substitution and reduced-form LTV elasticity when using the selection-corrected equity
extraction predictions described in section 2.4 to form the counterfactual LTV distribution shown in
figure A.4. The results are extremely similar to our baseline results in Table 2 using non-bunchers
to predict equity extraction.
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TABLE A.2: PARAMETER VALUES IN THE FULL STRUCTURAL MODEL

Parameter Value Source

Refinancing Cost Ω £1,000 Moneyfacts

House Price Process
Autocorrelation ρh 0.875 Nationwide

Trend p1 0.006 mortgage data
Variance σ2

p 0.006 1974–2016

Quadratic lifecycle linear 1,360 Her Majesty’s
income profile coefficients quadratic 14 Revenue & Customs

Unemployment probability 5% Historical average

Replacement Rate 60% Benefit formulas

Future Bank of England policy rate Calibrated to yield curve

Inflation expectations 2% Bank of England target

Bequest motive Γ 0.1 Internally calibrated

Mortgage amortization rate µt 1 / (70 - Age + 1) Moneyfacts

Risk aversion γ 2 Literature

Housing depreciation d 0.025/annum Harding et al. (2007)

Discount factor δ 0.96 Literature

Notes: This table shows calibrated parameters, their values, and source. A detailed description is found in Section D.2.
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B Proofs of Propositions in the Simple Model

B.1 Proposition 1

The Euler equation (4) and the budget constraints (2) and (3) imply:

y1 −RλP0H + (1− d)P1H = (δR)σ [W0 + y0 − (1− λ)P0H ] . (B.1)

Applied to the marginal buncher at the counterfactual, this gives (5). Applied at the optimal interior

LTV it gives

λIP0H =
y1 + (1− d)P1H − (δ (R+ ∆R))σ (W0 + y0 − P0H)

(δ (R+ ∆R))σ + (R+ ∆R)

Then consumption in period zero at the optimal interior LTV is given by

cI0 = W0 + y0 −
(
1− λI

)
P0H

=
1

(δR)σ
((δR)σ +R+ ∆R)

(
y1
P0H

+ (1− d)Π1

)
− (R+ ∆R) ((δR)σ +R) (λ∗ + ∆λ)

(δ (R+ ∆R))σ + (R+ ∆R)
P0H. (B.2)

Using the Euler equation, the value of bunching at the interior is given by

V I =
σ

σ− 1

(
1 + δσ (R+ ∆R)σ−1

) (
cI0
) σ−1

σ .

Plugging (B.2) into this last equation gives the value of the best interior LTV in (6).

Using the budget constraints (2) and (3), with LTV at the notch, λ∗, gives consumption of

cN0 = W0 + y0 − P0H + λ∗P0H

=
y1
P0H

+ (1− d)Π1 −Rλ∗ − ((δR)σ +R)∆λ
(δR)σ

P0H

and

cN1 = y1 −Rλ∗P0H + (1− d)P1H

=

(
y1
P0H

+ (1− d)Π1 −Rλ∗
)
P0H.

Together, these give lifetime utility as in (7). The marginal buncher is defined as one who is indif-
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ferent between the optimal interior c_{0}=c_{1}LTV and bunching at the notch, so that V N = V I ,

giving the statement in Proposition 1.

B.2 Proposition 2

At an optimal interior LTV choice, (2) to (4) give

λ =
y1 + (1− d)P1H + (δR)σ (P0H −W0 − y0)

((δR)σ +R)P0H
.

Differentiating this equation with respect to the interest rate R gives (10).

B.3 Proposition 3

As σ → 0, the Euler equation gives c1 = c0. Lifetime utility converges to Leontief preferences and

utility is equal to the smaller of c0 and c1. The Euler equation holds at the best interior LTV so that

lifetime utility is given by period zero consumption cI0. Bunching at the notch requires forgoing cur-

rent consumption for future consumption, so that cN0 < cN1 and lifetime utility at the notch is given

by cN0 . Thus households are better off bunching at the notch even with a zero EIS for counterfactual

LTVs that give cI0 < cN0 .

Applying the Euler equation c1 = c0 and the budget constraints (2) and (3) at the counterfactual

with σ = 0 imply that initial wealth satisfies:

W0 + y0 − P0H = y1 + (1− d)P1H − (R+ 1) (λ∗ + ∆λ)P0H.

At this level of initial wealth cI1 = cI0 and the budget constraints imply that the best interior LTV is

λI =
R+ 1

R+ ∆R+ 1 (λ∗ + ∆λ) .

Applying this to (2) gives period zero consumption of

cI0 = y1 + (1− d)P1H −
(R+ 1) (R+ ∆R)

R+ ∆R+ 1 (λ∗ + ∆λ)P0H.

Applying (2) at the notch, where λ = λ∗ and the interest rate is R gives

cN0 = y1 + (1− d)P1H + (λ∗ − (R+ 1) (λ∗ + ∆λ))P0H.
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As noted above, a region of the counterfactual distribution is strictly dominated by bunching if

cN0 > cI0 even as σ → 0. Applying the last two equation to this inequality gives

λ∗ + ∆λ
λ∗

≤ R+ ∆R+ 1
R+ 1 ,

or

λ∗ + ∆λ <
(

1 + ∆R
R+ 1

)
λ∗,

giving the dominated range in (11).

C Multi-Period Version of the Simple Model

The two-period model in section 3 can easily be extended to have many periods, t = 0, 1, ...,T . In the

multi-period version of the model, we assume that households face a notched interest rate schedule

in period 0, but do not face notches after this time. We also assume that house price growth net of

depreciation is constant. Households maximize their lifetime utility from non-housing consumption
σ
σ−1 ∑T

t=0 δ
t
(
cit
) σ−1

σ and face a sequence of budget constraints given by

ct =


y0 +W0 − (1− λ1)P0H0 if t = 0

yt −RtλtPt−1Ht−1 + λt+1PtHt if 1 ≤ t < T

yT −RTλTPT−1HT−1 + PTHT if t = T

(C.3)

In the absence of notches, household maximization yields the Euler equation

ct = (δRt)
σ ct−1 1 ≤ t ≤ T − 1. (C.4)

Combining this with the budget constraints from period 1 onward, period 1 consumption satisfies

c1 =
Y + (RH −R1λ1)P0H0

R̃
(C.5)

where R̃ ≡ ∑T
t=1 (δ

σ)t−1 ∏t−1
s=1 (Rs+1)

σ−1 is a sufficient statistic for the future path of interest rates,

RH ≡
(
∏T
s=2R

−1
s ΠT

)
gives the value of house price appreciation to period T , and Y ≡ ∑T

t=1 yt ∏t−1
s=1R

−1
s+1

is the net present value of the household’s income from period 1 inwards. Note that if interest

rates are constant at R these become R̃ =
[
1−

(
δσRσ−1)T ] /

[
1−

(
δσRσ−1)], RH = RT−1ΠT , and
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Y =
(
1−R−T

)
/
(
1−R−1).

To derive the indifference condition of the marginal buncher in the multi-period model, we start

by analyzing the marginal bunching household’s counterfactual LTV choice at a constant interest

rateR1, λ∗1 + ∆λ1. This choice satisfies the Euler equation (C.4) in period 1 and using (C.5) allows us

to express the marginal bunching household’s wealth as a function of the other parameters of the

model through

W0 = P0H0 − y0 +

Y
R̃
+
[
RH
R̃
−
(
R1
R̃

+ (δR1)
σ
)
(λ∗1 + ∆λ1)

]
P0H0

(δR1)
σ (C.6)

The marginal buncher’s optimal interior choice of LTV λI at the higher interest rateR1 +∆R also

satisfies the Euler equation in period 1. Inserting the period-0 budget constraint (C.3), the period-1

budget constraint (C.5) and the expression for wealth (C.6) yields

λI1P0H =
Y
R̃
+ RH

R̃
P0H0 − [δ (R1 + ∆R)]σ (y0 +W0 − P0H)

R1+∆R
R̃

+ [δ (R1 + ∆R)]σ
(C.7)

Inserting equations (C.6) and (C.7) into the period-0 budget constraint, this choice of LTV yields

consumption of

cI0 = y0 +W0 − P0H + λI1P0H

=

(
Y
R̃
+ RH

R̃
P0H0

) [
(δR1)

σ + R1+∆R
R̃

]
− (λ∗1 + ∆λ1)

R1+∆R
R̃

[
R1
R̃

+ (δR1)
σ
]
P0H0

(δR1)
σ
[
R1+∆R

R̃
+ [δ (R1 + ∆R)]σ

] (C.8)

and so the lifetime non-housing consumption utility of the marginal buncher at the interior choice

λI is given by

V I =
σ

σ− 1

[(
cI0
) σ−1

σ + δR̃
(
cI1
) σ−1

σ

]
=

σ

σ− 1

[(
cI0
) σ−1

σ + δR̃
(
[δ (R1 + ∆R)]σ cI0

) σ−1
σ

]
=

σ

σ− 1
R̃

R1 + ∆R

[
R1 + ∆R

R̃
+ [δ (R1 + ∆R)]σ

] 1
σ

(δR1)
1−σ

×
([

Y

R̃
+
RH

R̃
P0H0

] [
(δR1)

σ +
R1 + ∆R

R̃

]
− (λ∗1 + ∆λ)P0H0

R1 + ∆R
R̃

[
R1

R̃
+ (δR1)

σ

]) σ−1
σ

(C.9)

If instead the marginal buncher chooses to be at the notch, the household’s period-0 consump-
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tion is gets

c∗0 = y0 +W0 − P0H + λ∗1P0H

=

Y
R̃
+
[
RH
R̃
−
(
R1
R̃

+ (δR1)
σ
)
(λ∗1 + ∆λ1)

]
P0H0 + λ∗P0H0 (δR1)

σ

(δR1)
σ (C.10)

where the second equality follows by substituting wealth using equation (C.6). Equation (C.5) im-

plies that their period-1 consumption is

c∗1 =
Y + (RH −R1λ

∗
1)P0H0

R̃
(C.11)

giving lifetime consumption utility of

V N =
σ

σ− 1


 Y

R̃
++

[
RH
R̃
−
(
R1
R̃

+ (δR1)
σ
)
(λ∗1 + ∆λ1)

]
P0H0 + λ∗P0H0 (δR1)

σ

(δR1)
σ


σ−1
σ

+δR̃

(
Y + (RH −R1λ

∗
1)P0H0

R̃

) σ−1
σ

]
(C.12)

The EIS in the extended model is therefore the solution to V N = V I .

We can also derive the reduced-form elasticity ε in the multi-period model by differentiating the

period-1 Euler equation with respect to the period-1 interest rate (holding all future interest rates

constant), yielding

ε ≡ − d log λ1
d logR1

=

(
R1/R̃

)
+ σ (δR1)

σ(
R1/R̃

)
+ (δR1)

σ −
σ (δR1)

σ P0H0−y0−W0
(Y +RHP0H0)/R̃

1 + (δR1)
σ P0H0−y0−W0

(Y +RHP0H0)/R̃

(C.13)

As σ → 0, ε→ R1/R̃
(R1/R̃)+1

' 1
1+T bounding ε from below in the generalized model.

D Solving the Full Structural Model

In each period, households face a choice between the liquid asset and consumption. At the end of

an existing mortgage (every m periods), or when moving, they refinance and also face a choice of

debt (or LTV). Finally, households face a discrete choice of housing quality (moving choice). We

analyze these three margins in turn.

LIQUIDITY CHOICE: A household that neither moves (Ht+1 = Ht) nor refinances (Dt+1 = (1− µt)Dt)
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chooses consumption ct and liquidity Lt+1 to maximize lifetime utility, i.e.

V L
t (Lt,Ht,Dt) = max

Lt+1,ct

σ

σ− 1
(
cαt H

1−α
t+1

) σ−1
σ + δEt {Vt+1 (Lt+1,Ht+1,Dt+1)}

subject to the budget constraint

ct = yt + (1− πt)Lt −Lt+1 − (rt + µt)Dt − dPtHt.

V L
t (.) gives the value to a borrower entering period t, if she chooses to remain in the same house

and with the same mortgage. Vt+1 (.) gives the value to a borrower entering period t + 1. This

maximization problem gives the following short-run Euler equation:

ψt = δEt {(1− πt+1)ψt+1}+ ζt, (D.14)

where ζt is the shadow value of relaxing the liquidity constraint, and ψt is the marginal utility of

non-durable consumption given by

ψt ≡ α
(
Ht+1
ct

)1−α (
cαt H

1−α
t+1

)− 1
σ . (D.15)

Equation (D.14) is a standard Euler equation that governs how a household draws down or accu-

mulates liquidity in order to smooth non-housing consumption. The non-negativity constraint on

liquidity creates a precautionary motive to hold liquid assets. In effect, a household that neither

moves nor refinances faces a cake-eating problem as it runs-down liquidity until the next time it

refinances.

MORTGAGE DEBT CHOICE: When refinancing an existing house, the household faces the following

decision problem

V R
t (Lt,Ht,Dt) = max

Lt+1,Dt+1,ct

σ

σ− 1
(
cαt H

1−α
t+1

) σ−1
σ + δEt {Vt+1 (Lt+1,Ht+1,Dt+1)} (D.16)

subject to the budget constraint

ct = yt + (1− πt)Lt −Lt+1 − dPtHt +Dt+1 −RtDt −Ω. (D.17)

Here V R
t (.) is the value to a borrower entering period t, conditional on refinancing. Recall that the
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interest rate in the following period(s) is a function of the choice of current LTV and therefore of

current debt. Specifically, it is a flat function of LTV between notches and features discrete jumps

at notches. Hence, the continuation value Vt+1 (Lt+1,Ht+1,Dt+1) is discontinuous at the critical

LTV ratios and therefore at critical values of debt Dt+1.46 The choice of debt Dt+1 can therefore

be separated into a discrete and continuous component. We define V I
t (Lt,Ht,Dt) as the value

of choosing the best interior value of debt, i.e. the value of maximizing (D.16) s.t. (D.17) while

ignoring the presence of notches. Moreover, we define V N
t (Lt,Ht,Dt) as the value of borrowing to

the notch, i.e. the value of maximizing (D.16) s.t. (D.17) when restricting to Dt+1 = λ∗PtHt+1. A

household chooses to bunch at the notch iff V N
t (Lt,Ht,Dt) ≥ V I (Lt,Ht,Dt). This is equivalent to

the bunching decision in the 2-period model of Section 3 that led to the indifference equation (8).

Hence V R
t (Lt,Ht,Dt) ≡ max

{
V N
t (Lt,Ht,Dt) ,V I (Lt,Ht,Dt)

}
gives the value of refinancing.47

Whether borrowing at the interior optimum or at the notch, liquidity choice is given again by

(D.14). When refinancing, a household chooses the liquid buffer stock it wishes to store in antici-

pation of the cake-eating it will face while locked in to the current mortgage. The interior choice of

debt is given by

ψt = −δEt
{
∂Vt+1 (Lt+1,Ht+1,Dt+1)

∂Dt+1

}
,

where Ht+1 = Ht (not moving). The envelope theorem cannot generally be used to evaluate the

marginal cost of debt (the right hand side of the equation), because of the fixed cost to refinancing

and the discontinuities in the value function due to the notched mortgage schedule. But conceptu-

ally, the marginal cost of debt is driven by the discounted marginal utility of non-durable consump-

tion at the next refinancing event. Specifically, if the time of next refinancing were known with

certainty and the household never ran of out liquidity between mortgages, the first order condition

would be rewritten as

ψt = δmEt {Rt,t+mψt+m} , (D.18)

where Rt,t+m is the cumulative marginal cost of a unit of debt carried until the next refinancing

year.48 This is a long-run Euler equation governing the choice of debt over the lifecycle. The long-

and short-run Euler equations echo those studied in Kaplan & Violante (2014). Using their termi-

nology, households in this model are wealthy hand-to-mouth: They have positive net worth, but
46This was also the case in the liquidity choice problem discussed above, but didn’t affect the analysis of liquidity

choice.
47The household may also choose to jump several notches, so formally this comparison must be done against all interest

rate notches.
48Rt,t+m is a function of the mortgage interest rate, the inflation rate and the amortization rate in the years of the

existing mortgage’s duration.
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can liquidate their wealth between refinancing episodes only at a cost. When they do not refi-

nance, households can only use their liquid wealth for intertemporal substitution. In contrast, in a

refinancing period, housing wealth becomes liquid again. Hence two separate Euler equations gov-

ern household behavior in these two instances. The short-term Euler equation governs the house-

hold’s liquidity management between mortgages and–when the liquidity constraint binds–their

quasi-hand-to-mouth behavior. The long-run Euler equation determines the household’s longer-

term lifecycle debt management choices.

How do the two Euler equations relate to each other? Assuming zero consumer good inflation

(to sharpen the intuition) and using the law of iterated expectations, the two combine to give

Et

{
m

∑
s=0

δsζt+s

}
= Et {Rt,t+mψt+m} −Et {ψt+m} . (D.19)

This equation equates the marginal benefit of paying down debt to that of holding liquidity. The left

hand side of the equation gives the marginal value of holding liquidity, given by the expected net

present value of the shadow cost of the liquidity constraint. The right hand side gives the marginal

benefit of paying down debt. It gives the excess return on (paying down) mortgage debt relative to

the (zero) return on liquid assets: The liquidity premium.

HOUSING CHOICE: A moving household faces the following decision:

VM
t (Lt,Ht,Dt) = max

Lt+1,Ht+1,Dt+1,ct+1

σ

σ− 1
(
cαt H

1−α
t+1

) σ−1
σ + δEt {Vt+1 (Lt+1,Ht+1,Dt+1)}

subject to

ct = yt + (1− πt)Lt −Lt+1

+ Pt ((1− d)Ht −Ht+1)

+Dt+1 −RtDt −Ω.

The first-order conditions (D.14) and (D.18) still hold: The household is on its short-run and long-

run Euler equations. In choosing a new mortgage, households face a similar bunching decision as

in the refinancing decision described above. Housing choice is given by

[
1− δ (1− d)Et

{
Pt+1
Pt

ψt+1
ψt

}]
PtHt+1
ct

=
α

1− α , (D.20)
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This first-order condition gives the relative expenditure on consumption ct and housing Ht+1. With

Cobb-Douglas preferences, relative expenditure on commodities is equal to the ratio of their load-

ings in the Cobb-Douglass function (in this case α and 1 − α). However, in evaluating housing

expenditure, the price of housing isn’t evaluated at its spot price Pt, but also includes an additional

term (given in in square brackets) that considers the asset value of housing.

MOVING CHOICE: The household moves if VM
t (Lt,Ht,Dt) exceeds V R

t (Lt,Ht,Dt) (when refi-

nancing) or V L
t (Lt,Ht,Dt) (when not refinancing). Conceptually, households will choose to move

when housing expenditure is sufficiently far from optimal, as per (D.20). When refinancing, house-

holds extract or inject equity when they are sufficiently far off of their long-run Euler equations.

This occurs when interest rates are low relative to the value of liquidity (equity extraction decision)

or interest rates are high and the household has sufficient liquidity (equity injection).

BEQUESTS: Finally, in period T , the households may no longer borrow and choose housing and

liquidity as follows:

VT (LT ,HT ,DT ) = max
LT+1,HT+1

σ

σ− 1

[(
cαTH

1−α
T+1

) σ−1
σ + δ (ΓVT+1)

σ−1
σ

]
.

The overall magnitude of bequests is largely driven by the bequest parameter Γ. We evaluate termi-

nal wealth at period T prices. Hence there is no reason to bequeath any amount of the liquid asset

unless house prices are expected to decline. Evaluating bequests at expected prices adds a portfolio

motivation to bequeath some quantity of the liquid asset as a hedge against declining house prices,

but doesn’t impact estimates of the EIS that are based on bunching decisions taken more than 30

years earlier.

D.1 Bunching and Solving for the EIS computationally

We now consider the bunching decision in more detail and how we confront it with the bunching

moments to estimate the EIS. The model is solved computationally via backward induction starting

from age 70 (bequest decision) and solving back to the age τ at which we observe households in the

data (age 38 on average in the full sample, but this varies across cuts of the data). For each guess

of σ, we iterate on the model to solve for the value function Vτ+1 (Lτ+1,Hτ+1,Dτ+1|σ). We use this

value function to evaluate households’ continuation value as they make their refinancing choice.

Households observed in the data are non-moving refinancers. In our model, they therefore face a

choice of debt, liquidity, and consumption at time τ . Given their debt choice Dτ+1 and using initial
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wealth Wτ , we can solve for optimal consumption and liquidity as the maximands of

Vτ (Wτ |σ) =
σ

σ− 1
(
cατH

1−α
τ+1

) σ−1
σ + δVτ+1 (Lτ+1,Hτ+1,Dτ+1|σ) ,

subject to the budget constraint

cτ = Wτ −Lτ+1 − (1− λτ+1)PτHτ+1, (D.21)

where λτ+1 = λ∗ when bunching and λτ+1 = λI is solved as the optimal interior LTV choice. In

either case, debt is given by Dτ+1 = λτ+1PτHτ+1. The solution of the liquidity-choice problem for

the two cases gives value functions V N
τ (Wτ |σ) (bunching) and V I

τ (Wτ |σ) (interior). The marginal

buncher is indifferent between bunching at locating at the optimal interior LTV. For this borrower,

the indifference equation

V B
τ (Wτ |σ) = V I

τ (Wτ |σ) (D.22)

holds and can be solved for σ. This is done by repeating the entire process for a range of σ values

and searching for the EIS that solves the indifference equation.

Of course, (D.22) contains parameters other than σ and a number of state variables. How, then,

is σ identified from this equation? The discount factor δ is an important determinant of the level

of borrowing, but has only second order implications for the marginal response to interest rates, as

discussed in Section 3. Accordingly, we find that our results are robust to a wide range of δ and

to hyperbolic discounting. Risk aversion γ could potentially play a role in bunching responses as

it governs the elasticity of demand for liquidity. We experiment with a wide range of values for

this parameter and show that for any degree of risk aversion, a low EIS is nevertheless necessary to

explain the magnitude of bunching moments. Expectations are affected by the stochastic processes

of house prices and income and the future path of interest rates (as well as the depreciation rate

and bequest motives). We discuss their calibration below. However, as we show in our robustness

analysis, our empirical methodology isn’t sensitive to the calibration of these processes. This is

because expectations shift both sides of (D.22) by similar amounts and roughly cancel out from the

estimating equation.

Finally, we do not observe initial wealth directly in our data, but use the method outlined in

Section 3 to estimate it. That is, we back out initial wealth Wτ from the optimality condition of the

marginal buncher at the counterfactual. In the context of the full model, we define initial wealth as
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the sum of housing net worth and the liquid asset, net of the refinancing fee:

Wτ ≡ (1− πτ )Lτ + (1− d)PτHτ −RτDτ −Ω.

In the extended model studied here, a closed-form solution for initial wealth is unavailable, but

we can solve computationally for initial wealth with the following steps.

1. Invert the Euler equations (D.14) and (D.18) and use the counterfactual LTV λ+ ∆λ from the

bunching moment to back out optimal consumption cτ and liquidity Lτ+1.

2. Use the budget constraint (D.21), the counterfactual LTV, cτ , and Lτ+1 to back out initial

wealth Wτ .

To see how this is applied in practice, let λ∗ + ∆λ be the counterfactual LTV estimated for the av-

erage marginal buncher. We observe house value PτHτ+1 in the data and can translate this into

debt Dτ+1 = (λ∗ + ∆λ)PτHτ+1. The solution of the lifecycle model gives us the value function

Vτ+1 (Lτ+1,Hτ+1,Dτ+1|σ) and the long- and short-run Euler equations give

ψτ = −δEτ
{

∂

∂Dτ+1
Vτ+1 (Lτ+1,Hτ+1,Dτ+1|σ)

}

and

ψτ = δEτ

{
∂

∂Lτ+1
Vτ+1 (Lτ+1,Hτ+1,Dτ+1|σ)

}
.

The marginal utility of consumption ψτ is a function of consumption cτ and housing Hτ+1 as in

(D.15). Given housingHτ+1, the two Euler equations can be solved (computationally) for consump-

tion cτ and liquidity choice Lτ+1.49 We can then use the budget constraint to back out initial wealth:

Wτ = cτ − yτ + Lτ+1 − (1− (λ∗ + ∆λ))Pτ+1Hτ+1. (D.23)

Initial wealth Wτ can then be applied to the budget constraint (D.21) when evaluating the indiffer-

ence equation (D.22).

49We observe the nominal value of housing PτHτ+1, but housing quality Hτ+1is unobservable. In our baseline esti-
mates, we assume households have the lowest house quality at the bunching choice, consistent with the lifecycle pattern
of housing choices. Results were robust to allowing any value of initial housing quality. This is partially due to the
unit elasticity between housing and non-housing consumption in our assumed preferences. Strong complementarities
between housing and non-housing consumption would lead to behavior that is observationally equivalent to a low EIS
in our model. See Flavin (2012) for a discussion. As we discuss below, strong complementarity between housing and
consumption are a potential alternative explanation for the low EIS estimated in our model.
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D.2 Calibration

Calibrated parameter values are summarized in Table A.2. We now detail how these parameters

were calibrated.

GENERAL ASSUMPTIONS: We assume that households always refinance when the reset rate kicks

in and setm = 3, based on the average time to refinance in our data. The household faces a liquidity

choice in all periods, as summarized by the short term Euler equation (D.14). In addition, the

household faces a refinancing (and potentially housing) choice every third period. These variables

are chosen in accordance with the the short term and long term Euler equations (D.14) and (D.18)

and housing choice (D.20). We set the fixed refinancing cost to Ω = £1, 000, which is the origination

fee on the typical mortgage product in the UK.

HOUSE PRICES: We assume house prices follow a log linear AR(1) process around a deterministic

growth rate. Accordingly:

lnPt = p0 + p1t+ ρh lnPt−1 + εpt

εpt ∼ N
(
0,σ2

p

)
Using data from the mortgage lender Nationwide from 1974 to 2016 we calibrated the parameters

of this process to ρh = 0.875, p1 = 0.006, and σ2
p = 0.006. We set p0 so as to match the house price at

the time of refinancing in our own data, i.e. we treat individual house prices as having a constant

level shift relative to the national house price process. We will show that our results are robust to

different assumptions about house-price growth and uncertainty.

INCOME: We assume that households face i.i.d. unemployment shocks around a deterministic age

profile yLCt . The i.i.d assumption reduces the state space and eases computation. We will show

that our results are robust to different degrees of income uncertainty and different lifecycle income

patters. Using HMRC data, the average lifecycle profile yLCt is roughly quadratic with

yLCt = 1, 360 ∗Age− 14 ∗Age2 − yi0. (D.24)

In the data the average intercept is yi0 = 6, 830. However, we observe households’ income and age

at time t = τ : The bunching decision. We can therefore match individual’s yi0 based on their age

in the data. In other words, we treat the household’s cross-sectional deviation from the average

age-income profile as a permanent level shift.

We set the probability of unemployment to 5%, roughly the historical average, although results
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are robust to different probabilities as we show in our robustness analysis. Applying formulae for

unemployment benefits to the typical household in our sample gave a replacement rate of approx-

imately 60% in the first year of unemployment when considering all available benefits, including

the universal credit and the job seeker’s allowance. Given our i.i.d. assumption, households rarely

face an unemployment spell exceeding a year.50

INTEREST RATES: We assume households face a fixed interest rate for the m = 3 years of the

mortgage. Mortgage interest rates have a risk premium ρ (λ) over the Bank of England Policy (real)

rate r0
t . We assume that the risk premium is a constant function of LTV as represented in the notched

LTV schedule shown in Figure 3, but that the reference policy rate varies over time. We assume that

the policy rate follows a deterministic time path to reduce the dimensionality of the problem and

ease computation. We forecast the (real) Bank of England policy rate with forward rates implied by

the UK yield curve. This implies a slowly increasing path of interest rates over time.

INFLATION (EXPECTATIONS): We assume inflation is 2% a year each year, as per the Bank of Eng-

land’s target. Higher or stochastic inflation has some implications for portfolio choice (high inflation

expectations make nominal liquid assets relatively less attractive), but little implication for the esti-

mated EIS.

BEQUEST MOTIVE: We experimented with a range of parameters for the bequest motive Γ. Bequests

are 30 years removed from the bunching decision for the average household in our sample and thus

have little impact on our estimates of the EIS. The median British household leaves no bequests and

the median British homeowner leaves only housing wealth as a bequest. The assumption Γ = 0.1

leads to bequests that are of similar magnitude to those observed in the data and we use this in our

baseline simulations.

RISK AVERSION: We estimate the model with Epstein-Zin-Weil preferences. In our baseline esti-

mates, we set risk aversion to γ = 2, as is common in the macro literature. We conduct robustness

analysis with respect to risk aversion, including the possibility of γ = 1
σ , e.g. CRRA preferences.

DEPRECIATION: Harding et al. (2007) estimate an annual depreciation rate of d = 0.025 per annum.

This rate is close to UK estimates of the office of the deputy prime minister, as reported by Attanasio

et al. (2012).

DISCOUNTING: We set δ = 0.96, as is common in the literature and conduct robustness checks with
50One might expect the probability of unemployment to be lower for homeowners than the general population. More-

over, couples comprise half our sample and their replacement rate is higher if only one breadwinner is unemployed.
Our results are robust to a wide range of unemployment probabilities and replacement rates. Generally, unemployment
affects liquidity choice, but not the estimated EIS.
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respect to this parameter. We also allow for hyperbolic discounting in additional robustness checks.

D.3 Model Simulation

As we turn to the results, it is useful first to illustrate the workings of the extended model. We do

so by showing the output from a single (illustrative) simulation round of the model. The output is

shown in Figure ??. This simulation assumes σ = 0.1, which is within our range of estimates. We

consider a household that begins in the neighborhood of the 75% interest notch at age 38 (a typical

household in our sample). The top panels show the evolution of the exogenous state variables:

house prices and income. House prices grow over time, but feature two slumps in this simulation

round: one beginning when the borrower is 41 years old and the other in her late 50s. Income

follows a lifecycle pattern, peaking in the early 50s. This pattern is punctuated by a brief spell of

unemployment at age 49.

The middle panels show the borrower’s housing and mortgage choices. Housing follows a life-

cycle pattern: the borrower begins with the lowest housing quality (by assumption) and increases

her house quality in her early 40s and again in her late 40s. She then downsizes late in life. Note that

this occurs without any exogenously imposed lifecycle needs (e.g. children), but rather through an

endogenous accumulation of wealth over the lifecycle. The borrower times her housing upgrades

to take advantage of low prices during the first housing slump.

Turning to leverage, the borrower repays her mortgage over the lifecycle at the assumed amorti-

zation rate between mortgages. Early in life, the borrower tends to extract equity when refinancing

and she then repays more towards the end of life. The household borrows to finance the two hous-

ing upgrades and notice that that household bunches at the 70% notch at the second move.

Turning to the bottom panels, the household chooses its lifetime amortization profile to smooth

consumption over the lifecycle, giving a flat lifetime consumption profile.51 There is a gradual

increase in consumption at the end of the life, because the precautionary savings motive represses

consumption at earlier ages. The net present value of lifetime (non-housing) consumption is smaller

than the net present value of income because of housing purchases, maintenance, and debt servic-

ing. House prices follow a very persistent process, so that the household views house price increases

as reflecting substantial increases in net worth and she increases her consumption accordingly. This

is particularly true late in life, when the increase in net worth allows a large increase in annual con-

51A hump-shaped consumption profile would be more empirically accurate and could be easily accommodated by
adding an exogenous demand shifter. This addition has essentially no implications for the estimated EIS. We therefore
abstract from lifecycle consumption preferences in the current specification.
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sumption. At each refinancing episode, the household takes out a substantial amount of equity in

the liquid asset (around £30,000) and runs down this liquidity over the duration of the mortgage.52

Recalling that the borrower faces an unemployment spell at age 49, note that she rapidly draws

down her liquid holdings to smooth the shock. This shock unfortunately hits shortly after she up-

graded her property. Hefty precommitted mortgage repayments combined with the income loss

due to unemployment rapidly exhausts the borrower’s liquid holdings and requires a reduction

in consumption. This is precisely the “wealthy hand-to-mouth” behavior that Kaplan & Violante

(2014) postulate.

52The increased demand for liquid holdings later in life is because the liquid asset is the only financial asset available
to households in the model and the household has already the maximal house quality allowed in our model.
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