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This online appendix is organized as follows. Appendix C contains details and extensions of the
model in Section 3. Appendix D contains additional results for the placebo exercises in Sections 2
and 5. Appendix E contains additional results for the empirical applications in Section 6.

Appendix C Stylized economic model: details and extensions

In Appendix C.1, we derive the relationship between the sector-level price index and fundamental
economic shocks for the model described in Appendix A. In Appendices C.2 and C.3, we provide
alternative microfoundations for the equilibrium relationship in eq. (8). Finally, in Appendix C.4, we
incorporate migration into the baseline microfoundation described in Appendix A.

C.1 Sector-specific price index

According to the microfoundation in Appendix A, the price change in every sector s, P̂s, depends on
the shocks Âis, γ̂s and v̂i of all sectors and regions of the world economy. Specifically, the change in
the sector-specific price index is

P̂s = −∑
s′

θss′
J

∑
j=1

x0
js′(Âjs′ + λ̃jv̂j − λ̃j ∑

k
l0
jk[γ̂k + (σk − 1)Âjk]), (C.1)

where λ̃j ≡ λj/φ =
[
φ + ∑s l0

isσs
]−1, {θss′}S,S

s=1,s′=1 are positive constants, and x0
js is the share of

the world production in sector s that corresponds to region j in the initial equilibrium; i.e. x0
js ≡

X0
js/ ∑J

i=1 X0
is.

Imposing that all regions in a country c are small is equivalent to assuming that x0
js ≈ 0 for all

j ∈ Jc and for s = 1, . . . , S. Therefore, when all regions j ∈ Jc are small, we can rewrite the change in
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the sector-specific price index as

P̂s = −∑
s′

θss′ ∑
j/∈Jc

x0
js′(Âjs′ + λ̃jv̂j − λ̃j ∑

k
l0
jk[γ̂k + (σk − 1)Âjk]). (C.2)

In this case, P̂s does not depend on the labor supply shocks and technology shocks in any region j
included in country c; i.e. P̂s depends neither on {Âjs′}S

j∈Jc,s=1 nor on {v̂j}j∈Jc

Proof of eq. (C.1). Equations (A.7) and (A.16) imply that

P̂s −∑
k

θ̃skP̂k = ∑
j

x0
js(λ̃j ∑

k
l0
jk[γ̂k + (σk − 1)Âjk]− λ̃jv̂j − Âjs),

where θ̃sk ≡ ∑j x0
jsl

0
jkλ̃j(σk − 1). Let us use bold variables to denote vectors, y ≡ [ys]s, and bar bold

variables to denote matrices, ā ≡ [ask]s,k. Thus,

(
I − θ̄

)
P̂ = η̂,

with η̂s ≡ ∑j x0
js

(
λ̃j ∑k l0

jk

[
γ̂k + (σk − 1)Âjk

]
− λ̃jv̂j − Âjs

)
.

In order to obtain eq. (C.1), it is sufficient to show that
(

I − θ̄
)

is a nonsingular m-matrix and,
therefore, it has a positive inverse matrix. To establish this result, notice that θ̃sk ∈ (0, 1) because
σk > 1 and φ > 0 imply that

0 < l0
jkλ̃j(σk − 1) =

l0
jk(σk − 1)

φ + ∑k l0
jkσk

<
l0
jkσk

φ + ∑k l0
jkσk

< 1.

Finally, to show that
(

I − θ̄
)

is nonsingular, it is sufficient to establish that it is diagonal dominant:

|1− θ̃sk| −∑
k 6=s
|θ̃sk| = 1−∑

j
x0

js

l0
js(σs − 1)

φ + ∑k l0
jkσk
−∑

k 6=s
∑

j
x0

js

l0
jk(σk − 1)

φ + ∑k l0
jkσk

,

= ∑
j

x0
js

(
1−

∑k l0
jk(σk − 1)

φ + ∑k l0
jkσk

)

= ∑
j

x0
js

(
φ + 1

φ + ∑k l0
jkσk

)
> 0. �

C.2 Sector-specific factors of production

We extend here the model described in Appendix A to incorporate other factors of production. In
particular, we introduce a sector-specific factor, as in Jones (1971) and, more recently, Kovak (2013).

C.2.1 Environment

The only difference with respect to the setting described in Appendix A.1 is that the production
function in eq. (A.1) is substituted for a Cobb-Douglas production function that combines labor and
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capital inputs:
Qis = Ais (Lis)

1−θs (Kis)
θs .

We assume that capital is a sector-specific factor of production (sector-s capital has no use in any
other sector) and that, for every sector, each region has an endowment of sector-specific capital K̄is.

C.2.2 Equilibrium

Consumption. The consumer’s problem is identical to that in Appendix A.2.

Labor supply. The labor supply decision is identical to that in Appendix A.2.

Producer’s problem. Conditional on the region-i equilibrium wage ωi and rental rate of sector-s
capital Ris, the cost minimization problem of the sector-s region-i representative firm and the market
clearing condition for sector-s region-i specific capital imply that

1− θs

θs

K̄is

Lis
=

ωi

Ris
.

Conditional on the sector-s region-i final good price pis, the firm’s zero profit condition implies that

pis Ais θ̃s = (ωi)
1−θis (Ris)

θis ,

where θ̃s ≡ (θs)
θs (1− θs)

1−θs . The combination of these two conditions yields the demand for labor
in sector s and region i,

Lis =
1− θs

θs
K̄is

(
pis Ais θ̃s

ωi

) 1
θs

, (C.3)

and the total sales of the sector-s region-i good as a function of the output price pis are

Xis =
1

1− θs
ωiLis =

K̄is

θs

(
pis Ais θ̃s

) 1
θs (ωi)

1− 1
θs . (C.4)

Goods market clearing. Applying the same normalization as in Appendix A.1, W = 1, the total
expenditure in the sector-s region-i good is equal to xisγs, with xis defined in eq. (A.7) as a function
of the equilibrium prices pis. Equating xisγs and eq. (C.4), we can solve for the equilibrium value of
pis as a function of the sector-s price index Ps:

pis =

[
K̄is

θs

(
Ais θ̃s

) 1
θs (ωi)

1− 1
θs
(Ps)1−σs

γs

]−θisηis

, (C.5)

where δs ≡ (1 + θs(σs − 1))−1 ∈ (0, 1). Additionally, combining the expressions in eqs. (C.3) and (C.5),
we obtain an expression for labor demand in sector-s region-i as a function of the equilibrium wage
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ωi, the sector-s price Ps and other exogenous determinants:

Lis = κisγ
δs
s (AisPs)

(σs−1)δs (ωi)
−σsδs , (C.6)

where κis ≡ (1− θs)(K̄is θ̃
1
θs
s /θs)1−δs . Note that this labor demand equation is analogous to that in

eq. (3), with the region- and sector-specific demand shifter Dis defined as

Dis = κis(γs)
δs (AisPs)

(σs−1)δs ,

and with the labor demand elasticity now defined as σsδs. Note that the labor demand elasticity in
eq. (3) is identical to that in eq. (C.6) in the specific case in which δs = 1, which will hold when θs = 0.

If, without loss of generality, we split the region- and sector-specific productivity Ais into a sector
component As and a residual Ãis, Ais = As Ãis, and we further consider Ps as our sectoral shock of
interest, we can decompose Dis as in eq. (4), with

χs = Ps, (C.7)

ρs = (σs − 1)δs, (C.8)

µs = (As)
(σs−1)δs(γs)

δs , (C.9)

ηis = κis(Ãis)
(σs−1)δs . (C.10)

Labor market clearing. Given the sector- and region-specific labor demand in eq. (C.6), total labor
demand in region i is

Li =
S

∑
s=1

κisγ
δs
s (AisPs)

(σs−1)δs (ωi)
−σsδs . (C.11)

Labor market clearing requires labor supply in eq. (A.8) to equal labor demand in eq. (C.11):

vi(ωi)
φ =

S

∑
s=1

κisγ
δis
s (AisPs)

(σs−1)δis (ωi)
−σsδis , j = 1, . . . , J. (C.12)

Equilibrium. Given productivity parameters {Ais}J,S
i=1,s=1, sector- and region-specific capital inputs

{K̄is}J,S
i=1,s=1, preference and production function parameters {σs, γs, θs}S

s=1, labor supply parameters
{vi}J

i=1, and normalizing world income to equal 1, W = 1, we can use eq. (A.6), eq. (C.5), and
eq. (C.12) to solve for the equilibrium wage in every world region, {ωi}J

i=1, the equilibrium price
of every sector-region specific good {pis}J,S

i=1,s=1, and the sectoral price indices {Ps}S
s=1. Given these

equilibrium wages and sectoral price indices, we can use eq. (C.11) to solve for the equilibrium level
of employment in every region, {Li}J

i=1.

C.2.3 Labor market impact of sectoral shocks

We assume that the production function parameters {θs}S
s=1 are constant over time and focus on

the labor market outcomes in a country c formed by a set of N small open regional economies; see
Appendix A.3 for details on the definition of these small regional economies.
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Across periods, the microfoundation described in Sections C.2.1 and C.2.2 implies that the changes
in labor market outcomes in all N regions of country c, {ωi, Li}i∈Jc , are generated by changes in
sectoral prices {Ps}S

s=1, changes in an aggregate of all other sectoral shocks, {(As)(σs−1)δs(γs)δs}S
s=1,

changes in labor supply parameters of all regions in country c, {vi}i∈Jc , and changes in a composite
of sector- and region-specific productivity parameters and capital inputs, {κis(Ãis)

(σs−1)δs}S
i∈Jc,s=1.

Isomorphism. Up to a first-order approximation around the initial equilibrium, eqs. (C.11) and (C.12)
imply that

L̂i =
S

∑
s=1

l0
is

[
βisP̂s + λi((σs − 1)δs Âs + δsγ̂s) + λi((σs − 1)δs

ˆ̃Ais + κ̂is)
]
+ (1− λi) v̂i, (C.13)

with βis = (σs − 1)δsλi and λi ≡ φ(φ + ∑s l0
isσsδs)−1. Given the equivalences in eqs. (C.7) to (C.10)

and the expression for λi, the expression in eq. (C.13) is identical to that in eq. (8). Consequently,
the environment described in Sections C.2.1 and C.2.2 does indeed provide a microfoundation for the
equilibrium relationship in eq. (8).

C.3 Sector-specific preferences

We extend the model described in Appendix A to allow workers to have idiosyncratic preferences for
being employed in the different s = 1, . . . , S sectors and for being non-employed s = 0.

C.3.1 Environment

The only difference with respect to the setting described in Appendix A.1 is that the utility function in
eqs. (A.4) and (A.5) is substituted by an alternative utility function that features workers idiosyncratic
preferences for being employed in the different s = 1, . . . , S sectors and for being non-employed s = 0.
Specifically, we assume here that, conditional on obtaining utility Ci from the consumption of goods,
the utility of a worker ι living in region i is

Uis = us(ι)Ci, (C.14)

and, to simplify the analysis, we assume that us(ι) is i.i.d. across individuals ι and sectors s with a
Fréchet cumulative distribution function; i.e. for every region i = 1, . . . , J and sector s = 0, . . . , S,

Fu(u) = e−visu−φ
, φ > 1. (C.15)

A similar modeling of workers’ sorting patterns across sectors has been introduced in Galle, Rodríguez-
Clare and Yi (2017) and Burstein, Morales and Vogel (2018). See Adão (2016) for a framework that
relaxes the distributional assumption in eq. (C.15). Given that individuals have heterogeneous prefer-
ences for employment in different sectors, workers are no longer indifferent across sectors and, thus,
equilibrium wages {ωis}S

s=1 may vary across sectors within a region i. As in the main text, we as-
sume that workers that choose the non-employment sector s = 0 in region i receive non-employment
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benefits bi.

C.3.2 Equilibrium

Consumption. The consumer’s problem is identical to that in Appendix A.2.

Labor supply. Conditional on the equilibrium wages {ωis}S
s=1, the labor supply in sector s = 1, . . . , S

of region i is

Lis = Mi
vis(ωis)

φ

Φi
with Φi ≡ vi0bφ

i +
S

∑
s=1

vis(ωis)
φ, (C.16)

and the labor supply in the non-employment sector s = 0 is

Li0 = Mi
vi0(bi)

φ

Φi
. (C.17)

Producer’s problem. In perfect competition, firms must earn zero profits and, therefore,

pis =
ωis

Ais
. (C.18)

Goods market clearing. The conditions determining the equilibrium in the good’s market and,
consequently, the region- and sector-specific labor demand equations are identical to those in Ap-
pendix A.2.

Labor market clearing. Combining the region- and sector-specific labor supply equation (C.16) with
the region- and sector-specific labor demand equation in eq. (A.10), and imposing the normalization
W = 1, the labor market clearing condition in every sector s = 1, . . . , S and region i = 1, . . . , J is

Mi
vis(ωis)

φ

Φi
= (ωis)

−σs (AisPs)
σs−1 γs. (C.19)

Equilibrium. Given productivity parameters {Ais}J,S
i=1,s=1, preference parameters {σs, γs}S

s=1, labor
supply parameters {vis}J,S

i=1,s=0, and normalizing world income to equal 1, W = 1, we can use eq. (A.6),
eq. (C.18), and eq. (C.19) to solve for the equilibrium wage in every sector and region, {ωis}J,S

i=1,s=1, the
equilibrium price of every sector- and region-specific good {pis}J,S

i=1,s=1, and the sectoral price indices
{Ps}S

s=1. Given these equilibrium wages and sectoral price indices, we can use eqs. (C.16) and (C.17)
to solve for the equilibrium level of employment in every sector and region, {Lis}J,S

i=1,s=0.

C.3.3 Labor market impact of sectoral shocks

We focus on the labor market outcomes in a country c formed by a set of N small open regional
economies; see Appendix A.3 for details on the definition of these small regional economies.

6



Across periods, the microfoundation described in Sections C.3.1 and C.3.2 implies that the changes
in labor market outcomes in all N regions of country c, {ωi, Li}i∈Jc , are generated by changes
in sectoral prices {Ps}S

s=1, changes in an aggregate of all other sectoral shocks, {(As)(σs−1)γs}S
s=1,

changes in labor supply parameters and productivities of all regions in country c and all sectors,
{vis, (Ãis)

(σs−1)}S
i∈Jc,s=1, and changes in benefits in all regions in country c, {bi}i∈Jc .

Isomorphism. Given that the total population of a region, Mi, is fixed across time periods, it holds
that, to a first-order approximation, l0

i0 L̂i0 + (1− l0
i0)L̂i = 0, where L̂i denotes the log-change in total

population in region i. Therefore, the change in total employment in region i may be written as

L̂i = −
l0
i0

1− l0
i0

L̂i0

=
l0
i0

1− l0
i0
(Φ̂i − φb̂i − v̂i0)

=
l0
i0

1− l0
i0
(

S

∑
s=0

l0
isv̂is + φl0

i0b̂i + φ
S

∑
s=1

l0
isω̂is − φb̂i − v̂i0). (C.20)

From eq. (C.19), we can express the changes in wages in every sector and every region of country c
as

ω̂is = (φ + σs)
−1 (Φ̂i + γ̂s + (σs − 1)(Âis + P̂s)− v̂is

)
. (C.21)

Combining eqs. (C.20) and (C.21), we can re-express the change in total employment in region i as

L̂i =
S

∑
s=1

l0
is[βisP̂s + λi(φ + σs)

−1((σs − 1)Âs + γ̂s) + λi(φ + σs)
−1(σs − 1) ˆ̃Ais] + ν̂i, (C.22)

where ν̂i = l0
i0(1− l0

i0)
−1(v̂i− φb̂i− v̂i0), v̂i = (1− φ ∑S

s=1 l0
is(φ+ σs)−1)−1(φl0

i0b̂i + l0
i0v̂i0 +∑S

s=1 l0
isσs(φ+

σs)−1v̂is), βis = (σs − 1)(φ + σs)−1λi, and λi = φl0
i0(1− l0

i0)
−1(1− φ ∑S

s=1 l0
is(φ + σs)−1)−1.

The expression in eq. (C.22) is identical to that in eq. (8) under the following equivalences

χs = Ps,

ρs = (σs − 1)(φ + σs)
−1,

µs = (As)
(σs−1)(φ+σs)−1

(γs)
(φ+σs)−1

,

ηis = (Ãis)
(σs−1)(φ+σs)−1

,

and the adjustment of the expression for λi and ν̂i. Consequently, the environment described in
Sections C.3.1 and C.3.2 does indeed provide a microfoundation for the equilibrium relationship in
eq. (8).
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C.4 Allowing for regional migration

We extend here the baseline environment described in Appendix A.1 to allow for mobility of individ-
uals across regions within a single country c. We still assume that the number of individuals living
in each country c is fixed and equal to Mc.

C.4.1 Environment

The only difference with respect to the setting described in Appendix A.1 is that the mass of indi-
viduals living in a region i, Mi, is no longer fixed. Instead, we assume that, before the realization
of the shock u(ι) in eq. (A.4), individuals must decide their preferred region of residence taking into
account their idiosyncratic preferences for local amenities in each region. Specifically, we assume that
the utility to individual ι of residing in region i is

U(ι) = ũi(ι) (Ūi(ωi/P, bi/P)− 1) (C.23)

where Ūi(ωi/P, bi/P) is the expected utility of residing in region i, as determined by eqs. (A.4)
and (A.5), and ũi(ι) is the idiosyncratic amenity level of region i for individual ι. For simplicity, we
assume that individuals draw their idiosyncratic amenity level independently (across individuals and
regions) from a Type I extreme value distribution:

ũi(ι) ∼ Fũ(ũ) = e−ũ−φ̃
, φ̃ > 0. (C.24)

A similar modeling of labor mobility has been previously imposed, among others, in Allen and
Arkolakis (2016), Redding (2016), Allen, Arkolakis and Takahashi (2018), Monte, Redding and Rossi-
Hansberg (2018) and Fajgelbaum et al. (2018), among others. See Redding and Rossi-Hansberg (2017)
for additional references.

C.4.2 Equilibrium

Consumption. The consumer’s problem is identical to that in Appendix A.2.

Labor supply. To characterize the labor supply in region i, we first compute Ūi(wi/P, bi/P):

Ūi(ωi/P, bi/P) =
ωi

P

∫ ∞

bi/ωi

udFu(u) +
bi

P

∫ bi/ωi

νi

dFu(u),

= φ
ωi

P

∫ ∞

bi/ωi

( u
νi

)−φ
du +

bi

P

∫ bi/ωi

νi

φ

νi

( u
νi

)−φ−1
du,

=
φ

φ− 1
ωi

P
ν

φ
i

(ωi

bi

)φ−1
+

bi

P

(
1− ν

φ
i

(ωi

bi

)φ)
,

=
bi

P

(
1 +

1
φ− 1

ν
φ
i

(ωi

bi

)φ)
.

To simplify the analysis, we assume that the unemployment benefit is identical in all regions and
equal to the price index P; i.e. bi = P for all i ∈ J. Defining vi ≡ (νi/bi)

φ as in eq. (A.8), the
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assumption that bi = P for all i ∈ J implies that vi ≡ νi/P and, thus,

Ūi(ωi/P, bi/P) = 1 +
1

φ− 1
vi

(ωi

P

)φ
,

and the share of national population in region i is

Mi = Pr
[
ũi(ι) (Ūi(ωi/P, bi/P)− 1) > ũj(ι)

(
Ūj(ωj/P, bj/P)− 1

)
, ∀j ∈ Jc

]
= Pr

[
ũi(ι)vi(ωi)

φ > ũj(ι)vj(ωj)
φ, ∀j ∈ Jc

]
.

Given the distributional assumption in eq. (C.24), it holds that

Mi =
vi(ωi)

φm

Φc
Mc such that Φc = ∑

j∈Jc

vj(ωj)
φm and φm ≡ φ̃φ. (C.25)

Given the value of Mi, total employment in region i is determined as in eq. (A.8). Therefore, the total
labor supply in region i is

Li =
vi(ωi)

φm

∑j∈Jc
vj(ωj)φm

Mcvi(ωi)
φ. (C.26)

Producer’s problem. The producer’s problem is identical to that in Appendix A.2.

Goods market clearing. The conditions determining the equilibrium in the good’s market and,
consequently, the region- and sector-specific labor demand equations are identical to those in Ap-
pendix A.2.

Labor market clearing. Combining the region- and sector-specific labor supply equation in eq. (C.26)
with the aggregate labor demand equation in eq. (A.15), and imposing the normalization W = 1, the
labor market clearing condition in every region i ∈ Jc is

vi(ωi)
φm

∑j∈Jc
vj(ωj)φm

Mcvi(ωi)
φ = ∑

s
(ωi)

−σs (AisPs)
σs−1 γs, (C.27)

or, equivalently,
(Φc)

−1Mcvi(ωi)
φ+φm = ∑

s
(ωi)

−σs (AisPs)
σs−1 γs, (C.28)

for every region i in every country c.

Equilibrium. Given productivity parameters {Ais}J,S
i=1,s=1, preference parameters {σs, γs}S

s=1, labor
supply parameters {vi}J

i=1, and normalizing world income to equal 1, W = 1, we can use eq. (A.6),
eq. (A.9), and eq. (C.28) to solve for the equilibrium wage in every region, {ωi}J

j=1, the equilibrium

price of every sector- and region-specific good {pis}J,S
i=1,s=1, and the sectoral price indices {Ps}S

s=1.
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Given these equilibrium wages and sectoral price indices, we can use eq. (C.26) to solve for the
equilibrium level of employment in every region, {Li}J

i=1.

C.4.3 Labor market impact of sectoral shocks

We focus on the labor market outcomes in a country c formed by a set of N small open regional
economies; see Appendix A.3 for details on the definition of these small regional economies.

Across periods, the microfoundation described in Sections C.4.1 and C.4.2 implies that the changes
in labor market outcomes in all N regions of country c, {ωi, Li}i∈Jc , are generated by changes in
sectoral prices {Ps}S

s=1, changes in an aggregate of all other sectoral shocks, {(As)(σs−1)γs}S
s=1, changes

in productivities of all regions in country c and all sectors, {(Ãis)
(σs−1)}S

i∈Jc,s=1, and changes in labor
supply parameters in all regions in country c, {vi}i∈Jc .

Isomorphism. According to eq. (C.26), the change in employment in any region i in country c is

L̂i = 2v̂i + (φ + φm)ω̂i − Φ̂c. (C.29)

Assuming that {Mc}C
c=1, {σs}S

s=1, and (φ, φm) are fixed and totally differentiating eq. (C.27) with
respect to the remaining determinants of ω̂i, we can express the changes in wages in every region i
of country c as

ω̂i = λiΦ̂c + λi

S

∑
s=1

l0
is
[
γ̂s + (σs − 1)(Âis + P̂s)

]
− λiv̂i, (C.30)

where λi ≡ (φ + φm + ∑s l0
isσs)−1. Using the expression in eq. (C.25), we can also express

Φ̂c = ∑
i∈Jc

m0
i (φmω̂i + v̂i) , (C.31)

where m0
i is the share of individuals living in country c that had residence in region i at the initial

period 0; i.e. m0
i ≡ M0

i /M0
c , with M0

c ≡ ∑i∈Jc
M0

i .
Combining eqs. (C.29) and (C.30), we can express the change in total employment in region i as

L̂i = [(φ + φm)λi − 1]Φ̂c +
S

∑
s=1

l0
is[βisP̂s + λi(φ + φm)((σs − 1)Âs + γ̂s) + λi(φ + φm)(σs − 1) ˆ̃Ais]

+ [2− (φ + φm)λi]v̂i (C.32)

where βis = (σs − 1)(φ + φm)λi. If it were to be the case that Φ̂c = 0, the expression in eq. (C.32)
would be identical to that in eq. (8) under the following equivalences

χs = Ps,

ρs = (σs − 1)(φ + φm),

µs = (As)
(σs−1)(φ+φm)(γs)

(φ+φm),
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ηis = (Ãis)
(σs−1)(φ+φm),

and the necessary adjustment of the expression for λi and ν̂i. However, the term Φ̂c will generally
not be zero and, as indicated in eq. (C.31), it will generally capture the effect of shocks to all regions
in the same country c as the region of interest i. In the specific case in which σs = σ for all sectors s,
it will be the case that λi = λ for all regions i, and, consequently, the term [(φ + φm)λi − 1]Φ̂c will be
common to all regions i belonging to the same country c. In this special case, the parameter βis will
no longer capture the total effect of the price shifters P̂s but the differential effect of this price shifter
on region i relative to all other regions in the same country c.

Appendix D Placebo Exercise

In Appendix D.1, we present results illustrating the impact of confounding sector-level shocks on
different estimators of the coefficient on the shift-share covariate of interest. In Appendix D.2, we
provide additional results on the placebo exercises described in Sections 2 and 5.

D.1 Confounding sector-level shocks: omitted variable bias and solutions

In this appendix, we investigate the consequences of violations of the assumption that observed sec-
toral shocks of interest (X1, . . . ,XS) are independent from other sectoral shocks affecting the outcome
variable of interest. We study in this section the impact that violations of this assumption have on
the properties of the OLS estimator of the coefficient on the shift-share regressor of interest. We also
consider the properties of two solutions to this problem: (i) the inclusion of regional controls as a
proxy for sector-level unobserved shocks (discussed in Section 4.2), and (ii) the use of a shift-share
instrumental variable constructed as a weighted average of exogenous sector-level shocks (discussed
in Section 4.3.2).

To generate both confounding sectoral shocks and an instrument for the sectoral shock of interest,
we extend the baseline placebo exercise and, for each sector s and simulation m, we take a draw of a
three-dimensional vector

(Xa,m
s ,Xb,m

s ,Xc,m
s ) ∼ N(0; Σ̃),

where Xa
s is the variable of interest, Xb

s is the unobserved confounding effect, Xc
s is an observed

instrumental variable. Specifically, the matrix Σ̃ is such that var(Xa
s ) = var(Xb

s ) = var(Xc
s ) = σ̃,

cov(Xa
s ,Xb

s ) = cov(Xa
s ,Xc

s ) = ρ̃σ̃, and cov(Xb
s ,Xc

s ) = 0. Thus, we impose that Xa
s has a correlation

of ρ̃ with both Xb
s and Xc

s , but Xb
s and Xc

s are independent. In our simulations, we set ρ̃ = 0.7 and
δ̃ = 12.

To assign the role of a confounding effect to Xb
s , we generate an outcome variable as

Ym
i = Yobs

i + δ
S

∑
s=1

wisX
b,m
s ,

where Yobs
i is the observed 2000–2007 change in the employment rate in CZ i, and δ is a parameter
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controlling the impact of the unobserved sectoral shocks (Xb
1 , . . . ,Xb

S ) on the simulated outcome Ym
i .

Thus, the parameter δ captures the magnitude of the confounding effect of the unobserved shock Xb
s

on the dependent variable. We explore the impact of confounding effects by simulating data both
with δ = 0 and with δ = 6.

In addition, we assume that we observe a regional variable that is a noisy measure of CZ i’s
exposure to the unobserved sectoral shocks (Xb

1 , . . . ,Xb
S ),

Xb,m
i = um

i + ∑
s

wisX
b,m
s where um

i ∼ N(0, σu).

The parameter σu thus modulates the measurement error in Xb
i as a proxy for the impact of the

unobserved sectoral shocks (Xb
1 , . . . ,Xb

S ) in CZ i. We explore the impact of σu by simulating data
both with σu = 0 and with σu = 6.1

For each set of parameters (δ, σu) and for each simulation draw, we compute three estimators of the
impact of Xa

i ≡ ∑S
s=1 wisX

a
s on Yi. First, we ignore the possible endogeneity problem and compute the

OLS estimator without controls; i.e. the estimator in eq. (11). Second, we consider the OLS estimator
in a regression that includes Xb

i as a proxy for the vector of unobserved confounding sectoral shocks;
i.e. the estimator in eq. (19). Third, we consider the IV estimator that uses Xc

i ≡ ∑i wisX
c
s as the

instrumental variable; i.e. the estimator in eq. (32). For each of these three estimators, we compute
four estimates of its standard error: Robust, St-cluster, AKM and AKM0. All results are reported in
Table D.1.

When there is no confounding sectoral shock (δ = 0), Panel A shows that all three estimators yield
an average coefficient close to zero. Panels B and C report results in the presence of confounding
sectoral shocks (δ > 0), in which case the OLS estimator in a simple regression of Yi on Xa

i without
additional covariates is positively biased (β̂ = 4.2). The introduction of the regional control only
yields unbiased estimates when it is a good proxy for the underlying confounding sectoral shock (i.e.
if σu = 0 as in Panel B). In contrast, the IV estimate always yields an average estimated coefficient
of zero due to the orthogonality between the sector-level instrumental variable and the sector-level
unobserved confounding shock.

Similarly to our baseline placebo, traditional inference methods under-predict the dispersion of
estimated coefficients both in the case of the OLS and the IV estimators. As discussed above, this
is driven by the correlation between the unobservable residuals of regions with similar sector em-
ployment compositions. By allowing for such a correlation, our proposed methods yield, on average,
estimates of the median length of the 95% confidence interval equal or higher to the standard devi-
ation of the empirical distribution of estimates. As a result, Table D.2 in Appendix D reports that,
while traditional methods overreject the null H0 : β = 0 in the context of both OLS and IV estimation,
our methods yield the correct test size for both estimators.

1Using the notation in Section 4.2, the simulated variable Xa
s corresponds to Xs, the simulated variable Xb

s is a column
in the matrix Z (which also includes a column of ones), ui corresponds to Ui, and Xb

i to Zi. The value of the parameter γ
in eq. (22) is thus equal to ρ̃.
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Table D.1: Magnitude of standard errors—Confounding effects

Estimates Median effective std. error

Average Std. dev Robust St-cluster AKM AKM0

Panel A: No confounding effect (δ = 0)
OLS without controls −0.01 1.29 0.47 0.59 1.23 1.43
OLS with regional control 0.00 1.80 0.67 0.83 1.72 1.97
2SLS 0.00 1.85 0.69 0.85 1.75 2.02

Panel B: Confounding effect (δ = 6) and perfect regional control (σu = 0)
OLS without controls 4.22 1.48 0.58 0.70 1.37 1.60
OLS with regional control 0.02 1.8 0.67 0.83 1.71 1.97
2SLS 0.02 1.84 0.69 0.85 1.75 2.02

Panel C: Confounding effect (δ = 6) and imperfect regional control (σu = 2)
OLS without controls 4.21 1.47 0.58 0.69 1.37 1.60
OLS with regional control 4.11 1.46 0.58 0.69 1.39 1.60
2SLS −0.21 2.45 0.93 1.10 2.11 2.66

Notes: All estimates in this table use the total employment share in each CZ as the outcome variable Yi . For the inference
procedure indicated in the first row, “median effective std. error” refers to the median length of the 95% confidence interval
across the simulated datasets divided by 2× 1.96. Robust is the Eicker-Huber-White standard error; St-cluster is the standard
error that clusters CZs in the same state; AKM is the standard error in eq. (25); AKM0 is the confidence interval Remark 6.
30,000 simulation draws.

Table D.2: Rejection rate of H0 : β = 0 with significance level of 5%—Confounding effects

Estimates Rejection rate of H0 : β = 0 at 5%

Average Std. Dev Robust St-cluster AKM AKM0

Panel A: No confounding effect (δ = 0)
OLS without controls −0.01 1.29 48.1% 37.6% 7.9% 4.8%
OLS with regional control 0.00 1.80 48.1% 38.1% 8.1% 4.8%
2SLS 0.00 1.85 48.0% 38.1% 8.0% 4.9%

Panel B: Confounding effect (δ = 6) and perfect regional control (σu = 0)
OLS without controls 4.22 1.48 97.9% 96.8% 81.7% 72.9%
OLS with regional control 0.02 1.80 48.1% 37.9% 8.1% 5.0%
2SLS 0.02 1.84 47.6% 37.7% 8.0% 4.8%

Panel C: Confounding effect (δ = 6) and imperfect regional control (σu = 2)
OLS without controls 4.21 1.47 98.0% 96.8% 81.6% 72.7%
OLS with regional control 4.11 1.46 97.7% 96.4% 79.5% 71.3%
2SLS −0.21 2.45 41.1% 33.8% 8.3% 4.9%

Notes: All estimates in this table use the total employment share in each CZ as the outcome variable Yi . For the inference
procedure indicated in the first row, this table indicates the percentage of the simulated datasets for which we reject the
null hypothesis H0 : β = 0 using a 5% significance level test. Robust is the Eicker-Huber-White standard error; St-cluster is
the standard error that clusters CZs in the same state; AKM is the standard error in eq. (25); AKM0 is the test in Remark 6.
30,000 simulation draws.
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D.2 Additional results

Figure D.1 reports the empirical distribution of the estimated coefficients when: (a) the dependent
variable is the 2000–2007 change in each CZ’s employment rate; in each simulation draw m, we draw
a random vector (Xm

1 , . . . ,Xm
S−1) of i.i.d. normal random variables with zero mean and variance

var(Xm
s ) = 5, and set Xm

S = 0; and (c) the vector of controls Zi only includes a constant. The empirical
distribution of the estimated coefficients resembles a normal distribution centered around β = 0. For
more details in the placebo exercise that generates this distribution of estimated coefficients, see
Section 2.
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Figure D.1: Empirical distribution of estimated coefficients in the placebo exercise.

Notes: The blue line indicates the average estimated coefficient; the red lines indicate the 2.5% and 97.5% percentiles of dis-
tribution of β̂m across the m = 1, . . . , 30, 000 simulations. The dependent variable is the 2000–2007 change in the employment
rate.
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For the placebo exercise based on the change in the CZ’s employment rate, Figure D.2 reports the
empirical distribution of the effective standard errors, its median and, for comparison, the standard
deviation of the OLS estimates {β̂m}30,000

m=1 . The top bracket in each histogram combines all draws
whose effective standard error is above 5. Our new standard error estimators have a larger dispersion
than the traditional ones, but are centered close to the standard deviation of estimated parameters.
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Figure D.2: Empirical distribution of effective standard errors for different standard error estimators
in the placebo exercise.

Notes: In each of the four panels, the red line indicates the standard deviation of the empirical distribution of estimated coefficients
represented in Figure D.1; the green line indicates median of the estimated effective standard error (95% confidence interval divided by
2× 1.96) and the light blue bars represent the distribution of the effective standard errors across the 30,000 simulations. The dependent
variable is the 2000–2007 change in the employment rate in all four panels.
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Table D.3 investigates the sensitivity of our results to the definitions of geographic units. We
report results of our main placebo exercise using counties as the geographic unit i rather than CZs.
As in our baseline exercise, we use the CBP data to construct employment by county and sector using
the imputation procedure in Autor, Dorn and Hanson (2013). Since this procedure does not yield
wage bill information at the county-level, suppressed payroll values prevent the construction of wage
variables for a large fraction of counties. For this reason, we only implement the placebo exercise for
the employment variables in Panel A. Results indicate that rejection rates for all inference procedures
are very similar to those obtained in the baseline placebo exercise reported in Panel A of Tables 1
and 2.

Table D.3: Rejection rate of H0 : β = 0 at 5% significance level: County-level analysis.

Robust St-cluster AKM AKM0

Panel A: Change in the share of working-age population
Employed 47.7% 36.7% 7.9% 4.7%
Employed in manufacturing 66.5% 51.9% 8.2% 4.6%
Employed in non-manufacturing 28.0% 25.1% 8.6% 4.6%

Notes: This table reports rejection rates of H0 : β = 0 at 5% significance level. Content analogous to
that in columns (5)–(6) of Tables 1 and 2. The only difference is that the placebo exercise is based on
actual labor market outcomes in 3107 counties instead of 722 CZs. 30,000 simulations draws.

Finally, we investigate the performance of different inference procedures when we consider sim-
ulated random shocks to 331 occupations. In this exercise, we construct occupation-region shares
using actual occupation employment shares in 1990 for the 722 U.S. CZs. Table D.4 shows that the
overrejection of traditional inference methods is more severe with shift-share regressors based on
occupations. In this case, our inference procedure under the null yields the correct test size.

Table D.4: Rejection rate of H0 : β = 0 at 5% significance level: Occupation employment shares.

Robust St-cluster AKM AKM0

Panel A: Change in the share of working-age population
Employed 83.6% 62.5% 25.4% 4.2%
Employed in manufacturing 90.0% 75.8% 33.7% 3.3%
Employed in non-manufacturing 65.7% 39.2% 18.1% 4.0%

Panel B: Change in average log weekly wage
Employed 85.4% 63.5% 31.0% 3.5%
Employed in manufacturing 56.2% 26.8% 11.6% 4.8%
Employed in non-manufacturing 85.4% 65.1% 32.3% 3.3%

Notes: This table reports rejection rates of H0 : β = 0 at 5% significance level. Content analogous to
that in columns (5)–(6) of Tables 1 and 2. The only difference is that the placebo exercise is based on
actual labor market outcomes of 311 occupations in 722 CZs. 30,000 simulations draws.
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Appendix E Empirical application: additional results

E.1 Effect of Chinese exports on U.S. labor market outcomes

Table E.1: Effect of Chinese on U.S. Commuting Zones in Autor, Dorn and Hanson (2013): Reduced-
Form Regression

Change in the employment share Change in avg. log weekly wage

All Manuf. Non-Manuf. All Manuf. Non-Manuf.
(1) (2) (3) (4) (5) (6)

Panel A: All Workers
β̂ -0.49 -0.38 -0.11 -0.48 0.10 -0.48
Robust [-0.71,-0.27] [-0.48,-0.28] [-0.31,0.08] [-0.80,-0.16] [-0.5,0.69] [-0.83,-0.13]
St-cluster [-0.64,-0.34] [-0.45,-0.30] [-0.27,0.05] [-0.78,-0.18] [-0.51,0.70] [-0.81,-0.15]
AKM (indep.) [-0.80,-0.18] [-0.52,-0.23] [-0.33,0.11] [-0.83,-0.13] [-0.46,0.65] [-0.87,-0.09]
AKM0 (indep.) [-1.10,-0.25] [-0.64,-0.26] [-0.52,0.07] [-1.07,-0.16] [-0.91,0.57] [-1.22,-0.17]
AKM (4d cluster) [-0.79,-0.18] [-0.53,-0.23] [-0.33,0.11] [-0.86,-0.10] [-0.49,0.68] [-0.89,-0.08]
AKM0 (4d cluster) [-1.12,-0.25] [-0.66,-0.25] [-0.53,0.07] [-1.16,-0.15] [-1.00,0.59] [-1.29,-0.16]
AKM (3d cluster) [-0.81,-0.16] [-0.52,-0.23] [-0.35,0.13] [-0.87,-0.09] [-0.50,0.69] [-0.92,-0.04]
AKM0 (3d cluster) [-1.25,-0.24] [-0.68,-0.25] [-0.64,0.08] [-1.26,-0.12] [-1.15,0.60] [-1.46,-0.13]

Panel B: College Graduates
β̂ -0.27 -0.37 0.11 -0.48 0.29 -0.47
Robust [-0.42,-0.12] [-0.48,-0.26] [-0.04,0.25] [-0.82,-0.13] [-0.10,0.68] [-0.83,-0.11]
St-cluster [-0.39,-0.14] [-0.48,-0.27] [-0.04,0.26] [-0.83,-0.13] [-0.14,0.72] [-0.81,-0.12]
AKM (indep.) [-0.45,-0.08] [-0.50,-0.25] [-0.03,0.24] [-0.81,-0.14] [-0.11,0.69] [-0.82,-0.12]
AKM0 (indep.) [-0.58,-0.10] [-0.56,-0.24] [-0.11,0.24] [-0.99,-0.14] [-0.35,0.67] [-1.06,-0.15]
AKM (4d cluster) [-0.45,-0.08] [-0.51,-0.23] [-0.04,0.25] [-0.84,-0.11] [-0.14,0.71] [-0.84,-0.10]
AKM0 (4d cluster) [-0.59,-0.10] [-0.59,-0.23] [-0.12,0.25] [-1.07,-0.13] [-0.42,0.70] [-1.13,-0.14]
AKM (3d cluster) [-0.46,-0.08] [-0.52,-0.23] [-0.04,0.25] [-0.86,-0.09] [-0.14,0.72] [-0.88,-0.06]
AKM0 (3d cluster) [-0.63,-0.09] [-0.59,-0.20] [-0.17,0.25] [-1.19,-0.10] [-0.46,0.73] [-1.31,-0.11]

Panel C: Non-College Graduates
β̂ -0.70 -0.37 -0.34 -0.51 -0.06 -0.52
Robust [-1.02,-0.38] [-0.48,-0.25] [-0.60,-0.07] [-0.90,-0.13] [-0.69,0.56] [-0.94,-0.10]
St-cluster [-0.92,-0.48] [-0.47,-0.26] [-0.55,-0.12] [-0.84,-0.19] [-0.53,0.40] [-0.87,-0.17]
AKM (indep.) [-1.19,-0.21] [-0.55,-0.18] [-0.69,0.02] [-1.07,0.04] [-0.69,0.56] [-1.14,0.10]
AKM0 (indep.) [-1.71,-0.33] [-0.73,-0.22] [-1.03,-0.06] [-1.59,-0.07] [-1.27,0.44] [-1.8,-0.05]
AKM (4d cluster) [-1.18,-0.22] [-0.55,-0.18] [-0.68,0.01] [-1.08,0.05] [-0.69,0.57] [-1.14,0.10]
AKM0 (4d cluster) [-1.72,-0.34] [-0.75,-0.22] [-1.03,-0.06] [-1.64,-0.07] [-1.31,0.44] [-1.82,-0.05]
AKM (3d cluster) [-1.22,-0.18] [-0.55,-0.18] [-0.71,0.04] [-1.08,0.05] [-0.71,0.58] [-1.15,0.12]
AKM0 (3d cluster) [-1.97,-0.31] [-0.80,-0.22] [-1.22,-0.04] [-1.79,-0.06] [-1.54,0.44] [-2.03,-0.04]

Notes: N = 1, 444 (722 CZs × two time periods). Models are weighted by start of period CZ share of national population. All
regressions include the full vector of baseline controls in ADH. 95% confidence intervals in square brackets. Robust is the Eicker-
Huber-White standard error; St-cluster is the standard error that clusters of CZs in the same state; AKM is the standard error in eq. (29)
with 3-digit SIC clusters; AKM0 is the confidence interval with 3-digit SIC clusters described in the last sentence of Section 4.3.1.

17



Table E.2: Effect of Chinese on U.S. Commuting Zones in Autor, Dorn and Hanson (2013): 2SLS
Regression

Change in the employment share Change in avg. log weekly wage

All Manuf. Non-Manuf. All Manuf. Non-Manuf.
(1) (2) (3) (4) (5) (6)

Panel A: All Workers
β̂ -0.77 -0.60 -0.18 -0.76 0.15 -0.76
Robust [-1.10,-0.45] [-0.78,-0.41] [-0.47,0.12] [-1.23,-0.29] [-0.81,1.11] [-1.27,-0.25]
St-cluster [-1.12,-0.42] [-0.79,-0.40] [-0.45,0.10] [-1.26,-0.26] [-0.81,1.11] [-1.28,-0.24]
AKM (indep.) [-1.20,-0.35] [-0.81,-0.38] [-0.50,0.15] [-1.28,-0.24] [-0.75,1.05] [-1.31,-0.22]
AKM0 (indep.) [-1.42,-0.41] [-0.90,-0.39] [-0.66,0.11] [-1.46,-0.26] [-1.14,0.98] [-1.57,-0.28]
AKM (4d cluster) [-1.20,-0.35] [-0.84,-0.35] [-0.51,0.15] [-1.32,-0.19] [-0.79,1.09] [-1.34,-0.18]
AKM0 (4d cluster) [-1.48,-0.42] [-0.97,-0.38] [-0.67,0.12] [-1.59,-0.23] [-1.25,1.03] [-1.68,-0.26]
AKM (3d cluster) [-1.25,-0.29] [-0.85,-0.35] [-0.54,0.18] [-1.36,-0.16] [-0.80,1.10] [-1.41,-0.12]
AKM0 (3d cluster) [-1.72,-0.39] [-1.02,-0.36] [-0.85,0.13] [-1.76,-0.19] [-1.49,1.03] [-1.97,-0.21]

Panel B: College Graduates
β̂ -0.42 -0.59 0.17 -0.76 0.46 -0.74
Robust [-0.64,-0.20] [-0.81,-0.37] [-0.08,0.41] [-1.29,-0.22] [-0.19,1.11] [-1.29,-0.20]
St-cluster [-0.67,-0.18] [-0.84,-0.34] [-0.07,0.41] [-1.37,-0.14] [-0.22,1.14] [-1.34,-0.15]
AKM (indep.) [-0.70,-0.15] [-0.83,-0.36] [-0.07,0.40] [-1.28,-0.23] [-0.22,1.13] [-1.26,-0.22]
AKM0 (indep.) [-0.79,-0.16] [-0.87,-0.33] [-0.15,0.40] [-1.42,-0.21] [-0.45,1.12] [-1.45,-0.24]
AKM (4d cluster) [-0.70,-0.15] [-0.85,-0.33] [-0.08,0.41] [-1.32,-0.19] [-0.26,1.18] [-1.29,-0.20]
AKM0 (4d cluster) [-0.83,-0.16] [-0.93,-0.32] [-0.15,0.42] [-1.54,-0.20] [-0.54,1.18] [-1.55,-0.23]
AKM (3d cluster) [-0.72,-0.13] [-0.86,-0.32] [-0.08,0.42] [-1.36,-0.16] [-0.25,1.17] [-1.36,-0.13]
AKM0 (3d cluster) [-0.92,-0.14] [-0.96,-0.28] [-0.23,0.41] [-1.70,-0.15] [-0.61,1.21] [-1.81,-0.18]

Panel C: Non-College Graduates
β̂ -1.11 -0.58 -0.53 -0.81 -0.10 -0.82
Robust [-1.58,-0.64] [-0.76,-0.40] [-0.93,-0.13] [-1.35,-0.28] [-1.07,0.87] [-1.41,-0.23]
St-cluster [-1.61,-0.61] [-0.77,-0.39] [-0.94,-0.13] [-1.28,-0.34] [-0.84,0.63] [-1.31,-0.33]
AKM (indep.) [-1.77,-0.45] [-0.83,-0.33] [-1.03,-0.04] [-1.60,-0.03] [-1.08,0.88] [-1.70,0.06]
AKM0 (indep.) [-2.15,-0.57] [-0.96,-0.36] [-1.29,-0.11] [-2.00,-0.12] [-1.55,0.77] [-2.20,-0.09]
AKM (4d cluster) [-1.77,-0.46] [-0.85,-0.31] [-1.02,-0.04] [-1.62,-0.01] [-1.08,0.88] [-1.70,0.06]
AKM0 (4d cluster) [-2.22,-0.58] [-1.03,-0.36] [-1.31,-0.11] [-2.11,-0.12] [-1.63,0.77] [-2.28,-0.09]
AKM (3d cluster) [-1.87,-0.35] [-0.87,-0.30] [-1.09,0.03] [-1.66,0.04] [-1.11,0.91] [-1.77,0.12]
AKM0 (3d cluster) [-2.66,-0.52] [-1.14,-0.35] [-1.62,-0.07] [-2.43,-0.10] [-1.99,0.76] [-2.70,-0.06]

Notes: N = 1, 444 (722 CZs × two time periods). Models are weighted by start of period CZ share of national population. All
regressions include the full vector of baseline controls in ADH. Robust is the Eicker-Huber-White standard error; St-cluster is the
standard error that clusters CZs in the same state; AKM is the standard error in Remark 5 (for independent shocks), or that in eq. (29)
(for correlated shocks). AKM0 is the test in Remark 6 (for independent shocks) or that described in the last sentence of Section 4.3.1
(for correlated shocks). The table reports confidence intervals computed under the assumption of independent shocks, 4-digit SIC
correlated shocks, and 3-digit SIC correlated shocks.
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Table E.3: Rejection rate of H0 : β = 0 with significance level of 5%. Placebo exercise based on the
first-stage regression in Autor, Dorn and Hanson (2013):

Estimates Rejection rate of H0 : β = 0 at 5%

Average St Dev Robust St-cluster AKM AKM0

Panel A: Baseline simulation without controls
0.01 1.74 42.1% 37.3% 6.9% 4.5%

Panel B: Controlling for ADH IV
0.00 0.79 18.3% 17.0% 6.9% 4.5%

Panel C: Controlling for ADH IV and baseline controls
0.00 0.67 13.8% 13.6% 5.4% 3.5%

Notes: Dependent variable is the “shift-share” regressor in ADH contructed
from the interaction of CZ’s employment share in 4-digit SIC manufacturing
industries and the normalized U.S. imports from China in the same indus-
tries. The first row indicates the inference procedure employed to compute
the share of the 30,000 simulated datasets for which we reject the null hypoth-
esis H0 : β = 0 using a 5% significance level. Robust is the Eicker-Huber-White
standard error; St-cluster is the standard error that clusters CZs in the same
state; AKM is the standard error in Remark 5; AKM0 is the test in Remark 6.
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E.2 Effect of Immigration on U.S. local labor markets

Table E.4: Origin Countries

Afghanistan France Liechtenstein and Lux. Scandinavia
Africa Greece Malaysia Scotland
Albania Gulf States Maldives Singapore
Andorra and Gibraltar India Malta South America
Austria Indonesia Mexico Spain
Belgium Iran Nepal Switzerland
Brunei Iraq Netherlands Syria
Cambodia Ireland Oceania Thailand
Canada Israel/Palestine Other Turkey
Central America Italy Other Europe Vietnam
China Japan Other USSR and Russia Wales
Cuba and West Indies Jordan Philippines Yemen
Cyprus Korea Portugal
Eastern Europe Laos Rest of Asia
England Lebanon Saudi Arabia
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Table E.5: Effect of Immigration on U.S. Commuting Zones

Change in log Change in avg. log weekly wage

native employment All workers High-Skill. Low-Skill

Panel A: 2SLS Regression
β̂ −0.49 0.13 0.27 −0.2
Robust [−1.12, 0.14] [−0.37, 0.63] [−0.09, 0.64] [−0.85, 0.44]
St-cluster [−0.98, 0.01] [−0.15, 0.41] [0.08, 0.47] [−0.49, 0.08]
AKM [−1.05, 0.08] [−0.39, 0.65] [−0.13, 0.67] [−0.80, 0.39]
AKM0 [−1.09, 0.83] [−0.33, 1.56] [−0.08, 1.41] [−0.76, 1.37]

Panel B: OLS Reduced-Form Regression
β̂ −0.19 0.05 0.11 −0.08
Robust [−0.39, 0.02] [−0.16, 0.26] [−0.07, 0.28] [−0.30, 0.14]
St-cluster [−0.37, 0.00] [−0.07, 0.17] [0.01, 0.20] [−0.17, 0.01]
AKM [−0.41, 0.04] [−0.16, 0.26] [−0.08, 0.29] [−0.29, 0.13]
AKM0 [−0.64, 0.50] [−0.10, 1.91] [−0.02, 1.72] [−0.24, 1.54]

Panel C: 2SLS First-Stage
β̂ 0.38
Robust [0.20, 0.57]
St-cluster [0.27, 0.49]
AKM [0.22, 0.55]
AKM0 [0.24, 1.49]
Notes: N = 2, 166 (722 CZs × three time periods). Models are weighted by start of period CZ
share of national population. All regressions include period dummies. 95% confidence intervals
in square brackets. Robust is the Eicker-Huber-White standard error; St-cluster is the standard
error that clusters of CZs in the same state; AKM is the standard error in Remark 5; and AKM0
is the confidence interval in Remark 6
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