WEB APPENDIX

This appendix summarizes the microfoundations of the simple general equilibrium model of
section 4.

A  Households

Individuals live for two periods, young and old, and maximize utility from consumption of one
aggregate good according to:
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where the u(c) = "f:; is a constant relative risk aversion (CRRA) preference function. ¢} and

c¢f,; are household’s consumption respectively when young and old. When young, individuals

earn income in period ¢ by renting their labor endowment [, to firms at wage w,;. After paying

taxes 7; the young use their net income to consume in period ¢ and to save s; for consumption

when old by accumulation ?lf p)rivate capital supplied to firms for production during the next
+it

period for a gross real rent T such that:

Kts-i-l = Ntyst (4)

where N/ is the size of young generation at time . When old, individuals dissave to consume,

earning a gross real return % on their savings from previous period (3). We derive the first

order conditions of this problem by maximizing the Lagrangian®:
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First-order conditions:
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Perfect foresight young individuals are at an interior solution and their consumption-saving
choices satisfy a standard Euler equation given by
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!The expectations operator is ignored since the model is deterministic.
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Let R; = (Uti) —q 4 r¢. Then the previous expression can be written as
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where g, , = iRt%a =Y B. Directly from the budget constraint of the old(3) we have

St = BRioC) (11)

Savings of the young s; can then be derived by replacing the previous expression of ¢/ with
respect to s; in the budget constraint of the young(2):
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Capital supply:

Because aggregate savings in period t is equal to the capital supplied in the following period,
we have:
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where k7 is capital supplied per young individual at time ¢, 1 + g, = N/, ;/N/ is population
growth rate, and defining an aging parameter as the ratio of old to young at time ¢ + 1:
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No-arbitrage condition:

The return on savings R; accounts for the rent RfH on capital firms pay to individuals, and
a capital depreciation d. So, the budget constraint of the old can alternatively be expressed by:

1
C§+1 = T—H [(1 - 5)kf+1 + Rf+1kf+1] = St(l -0+ Tf+1) (16)

Implying the following no-arbitrage condition:

Rl =R +6—-1 (17)



B Firms

We assume that firms produce only one good, are perfectly competitive, and take prices as
given. They hire labor at a wage w; and rent capital at rate r¥ to maximize period-by-period
profits. They operate using a standard Cobb-Douglas production function, and their problem is
given by:

max PY; — WiLy — P,RFK, (18)
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The firm’s capital and labor demand equilibrium conditions are given by:

RF = A (20)
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Each individual of the young generation supplies his labor endowment inelastically at I. Since for

now we are assuming wages are flexible, and full-employment, then L, = N/I. Let k! = fé{, = Ktl

Then:
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Defining © = In z:

C Government

We assume the Government budget is balanced, G; = T;. And that Government spending is
exogenously proportional to full-employment output G; = QY;.
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where 7 = . is exogenously determined. (27)

Capital supply per young individual can then be expressed by:
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iy is the employment ratio of the young, equal to 1 for now. Replacing w; by (22) and taking
logs the previous expression becomes:
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D Comparative statics

Without loss of generality we assume full depreciation of capital in one period d =1 = R, =
RY.,. Assuming the system is on a steady state equilibrium where R, = R,
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(i) If 0 =1 then fr, = and R and khas the following closed form expression
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(In)Aging A has a one for one negative impact on R
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(77) For the general case where o > 0 we can use the Theorem of the Implicit Function to express
the former derivative
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which is still negative (and equal to —1 when o = 1). Also, aging has a stronger impact on real
rates when the Relative Risk Aversion o is higher. Aging expands the supply of capital which
effect has to be offset by a reduction of the real rate in order to sustain a general equilibrium.
This real rate change has to be higher if the Elasticity of Intertemporal Substution is lower (or
o higher). This is consistent with the data used.
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(77i) Impact of aging on output per capita yP°
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Since we are assuming full-employment L; = N/. Then,
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Finally by replacing R by its steady state expression and taking the derivative of g¥° with respect
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The first term of the expression is the capital deepening effect of aging which is positive, and the
second one is the negative demographic effect of aging. Aging has a positive impact on output
per capita when the capital deepening effect prevail over the demographic effect:
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We see directly from this expression that for greater values of o the capital deepening effect is

stronger, such that we would expect a stronger positive 1mpact of aging on output per capita

in those countries. Note also that the demographic effect - A = Ny]\-fF s, SO in countries where

people live longer we would expect a weaker positive relation between aging and output per
capita. This is suggested by the data where the significance of the results for OECD countries is

much weaker.

E Transition dynamics

Define
T = steady state of In(x) (44)
then from (24) and (29), and having R, = Ry, ,,
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Equilibrium

ki =k (48)
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Transition from one steady state to another. Initial steady state: at t = ¢, — 1 aging A;,_1 = A}
and Ry,—1 = R] = Ry. At { = to aging changes for a change in g from Aj to Aj. Define
A* = Ay — A, R = RY* — R and RF = RF — R~

(i)o=1and § = 1:

I%fﬂ = aRF for t > t, (50)
RF = !t Rk (51)
RE =t (R = RY) + R (52)

« €]0; 1], the series converges monotonically to the new steady state. The sign of the convergence
process is opposite to aging change. Note that if o = 1 then R* = —A*

RE = R — (1= o) (4 - A7) (53)

(ii) General case for o and ¢ €]0,1]: log linearizing (49),

RF, | = (age,)RF for t >t (54)
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where apr , = « .
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the series always converges monotonically to the new steady state. The sign of the convergence

process is opposite to aging change. The convergence process takes longer for higher level of o
and lower levels of §.

F Aggregate Demand

(i) Consumption function

From the Euler equation (10) and budget constraint of the old (16), and assuming full depre-



ciation of capital in each period, § =1
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(ii) Investment function
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(iii) Aggregate Demand
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(iv) Aggregate Demand per capita
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(v) Aggregate Demand per capita in steady state

- al 6Ro
pc _ | _ pc —,Gpc 67
y [ +a+ }y 1T bns (67)

Assuming that the system is determined, and taking logs, "¢ is expressed in terms of R and A
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G Impact of aging on output per capita at the ZLB

We now assume that ¢ = 0, II = R = 1,and also that ¢ = 1 without loss of generality. Then
an increase in aging leads unambiguously to a decrease of output per capita, and:
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