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A Extensions

A.1 Welfare gains from optimal point mechanisms

This section estimates the gain in welfare from moving to the point mechanism described
above. This gain is equal to the deadweight loss that can be avoided by rewarding hospitals
optimally as in Theorem 1. The following proposition derives an approximation to the
hospital deadweight loss.

Proposition A.1. Consider an aggregate supply of pairs, q0, that results when hospitals

choose supply optimally given rewards, p0. Further, consider strictly positive aggregate supply,

q∗, and rewards, p∗, that maximize hospital welfare as in Theorem 1. Assume that the matrix

DP S(q0)−D2f(q0) is �nite and non-singular and that the production function has constant

returns to scale at q∗. Then, the deadweight loss in hospital welfare at q0 can be approximated

by either

1

2
[∇f (q0)− p0] · (q∗ − q0) .

or
1

2
[∇f (q0)− p0] ·

[
DP S(q0)−D2f(q0)

] −1 [∇f (q0)− p0]
′
. (A1)

The error in both approximations is o(‖q∗ − q0‖2).

These formulas are a multidimensional version of the Harberger triangle formulas in one-
dimensional linear commodity taxation. The �rst formula is the multidimensional version
of the one half base times height formula. The second formula is the equivalent of the one
half of the tax wedge squared times the inverse of the di�erence between the derivative of
inverse supply and the derivative of inverse demand. The second formula shows that the
deadweight loss is one half of a quadratic expression in the wedge ∇f 0 − p0. The term
DP S(q0) accounts for the fact that a more elastic supply leads to larger deadweight losses.
The term D2f accounts for the change in marginal products in response to a change in q.
For example, the deadweight loss is lower if increasing the supply of overdemanded pairs
results in these pairs becoming less useful.

We use equation (A1) to quantify the deadweight losses for a range of supply elasticities. We
restrict attention to mechanisms that set reward vectors for the categories in the regression
tree analysis above (Figure A1). The wedge ∇f 0 − p0 and the curvature matrix D2f for
these categories are estimated using our production function. To use equation (A1), we
need to specify supply elasticities through the matrix DP S(q0). One challenge in directly
specifying this quantity is that di�erent submission types may respond di�erently to rewards.
For example, the submission of hard-to-match types to the system may not substantially
decrease when rewards are lowered because there are few other avenues for matching them.
Our approach is to calculate the maximum deadweight loss under varying bounds on the
maximum elasticity of any type of submission. This method allows us to be agnostic about
the supply elasticities of di�erent submission types. The deadweight loss is zero when we
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Figure A1: Hospital-Welfare Deadweight Loss from the Current Mechanism
Notes: The horizontal axis represents aggregate quantity and the vertical axis represents rewards vectors,

marginal costs and marginal products, so both axes represent I-dimensional vectors. The deadweight loss from

the current mechanism is the shaded area between marginal products and the supply curve (mathematically,

the area is a path integral going from current rewards p0 to optimal rewards p∗). Current rewards are

p0, equal to the probability of matching each type of submission, while optimal rewards p∗ equal marginal

products. Current quantities q0 and rewards p0 are observed. Marginal products ∇f , including the current

value ∇f (q0), can be calculated from the production function. In contrast, the supply curve P S = ∇C and

optimal rewards p∗ and quantities q∗ are not observed and depend on the elasticity of supply.

assume that the maximum elasticity is zero because the submissions will not respond to the
rewards system, resulting in q∗ = q0. As we increase the bound on the elasticity, submissions
respond and the maximum implied deadweight loss increases. Further, we repeat this exercise
for varying assumptions on cross-elasticities.1

Figure A2a plots the maximum hospital deadweight loss for bounds on the own-price elas-
ticities ranging from 0 to 6. The curve in the middle describes the results for zero cross-price
elasticities, and the other two curves present results for non-zero cross-price elasticities. The
hospital deadweight loss is zero if supply is perfectly inelastic and is increasing in elastic-

1Speci�cally, we solved the problem

max
DPS(q0)

1
2 (∇f0 − p0)[DP S(q0)−D2f(q0)]

−1(∇f0 − p0)
′

s.t.

(
∂PS,j

∂qj

)−1
p0,j
q0,j

∈ [0, ε] , for all j ∈ 1 . . . I,

(
∂PS,k

∂qj

)−1
p0,k
q0,j

= ρ

(
∂PS,j

∂qj

)−1
p0,j
q0,j

+

(
∂PS,k

∂qk

)−1
p0,k
q0,k

2
, for all j, k ∈ 1 . . . I with k 6= j.

for each value of the bound on elasticities, ε.
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(a) Hospital-Welfare Deadweight Loss
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(b) Transplants Lost in the Platform

Figure A2: Losses Due to the Current Mechanism
Notes: Estimated losses from the current mechanism, using the approximation from Proposition A.1, as

a function of the elasticity matrix of supply. Maximum own-elasticities are in the horizontal axis. The

parameter ρ governs the cross-price elasticity of supply as formally described in footnote 1.

ity. The deadweight loss is above 40 transplants per year if the maximum elasticity is at
least 2. For very high elasticities, the deadweight loss increases at a slower rate because of
production function curvature. The deadweight loss at an elasticity of 6 is only between 80
and 105 because the marginal products of the productive types that the optimal mechanism
attracts decrease with supply. Although the results for large elasticities are subject to greater
approximation error, it is unlikely that the deadweight losses come close to the e�ciency loss
relative to the �rst-best allocation, even for elasticities of about 6.

As discussed in Section 6.2, hospital deadweight losses will understate the loss in social
welfare if hospitals undervalue transplants. Figure A2b shows the total increase in transplants
facilitated by the NKR if it adopts the optimal points system. To do this, we added the area
under P S = ∇C to the hospital deadweight loss numbers calculated above (see Figure A1).
Because a transplant increase at the NKR will come at the cost of fewer transplants at
hospitals, this calculation overstates the loss in total welfare from the current mechanism.
Not surprisingly, the estimated losses are higher than the previous �gure. A little under 40
transplants are lost if the maximum elasticity is 1. This number is between 95 and 120 for
an elasticity of 6. Therefore, social deadweight loss is higher than hospital deadweight loss,
but the two are qualitatively similar.

A.2 Maximizing social welfare

Theorem 1 describes mechanisms that maximize hospital welfare. A natural alternative would
be to use mechanisms that directly maximize social welfare. However, since hospitals consider
private rather than social cost in response to a rewards vector, they won't necessarily choose
submissions vectors that minimize the aggregate social cost. To account for this subtlety,
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de�ne the reward-moderated social cost by

SC (q) =
H∑

h=1

SCh
(
Sh (P S (q))

)
.

We assume that each hospital's supply is single-valued to ensure that this function is well-
de�ned.

The reward-moderated social cost represents the aggregate social cost of inducing an aggre-
gate supply q by using a linear and anonymous rewards scheme. Our next result describes
the rewards in mechanisms that maximize social welfare.

Proposition A.2 (Optimal Rewards for Maximizing Social Welfare). Consider a vector of

rewards p and an allocation
(
qh
)
H
h=1 with strictly positive aggregate quantity q =

∑
h q

h that

maximize social welfare subject to all hospitals choosing qh ∈ Sh (p) and subject to the total

rewards allocated being the same as the number of transplants produced, that is, f (q) = p ·q.
Assume the production function has constant returns to scale at the optimal q, and SC (q)
is di�erentiable. Then:

1. The platform rewards each type of submission with its marginal product plus an adjust-

ment term.

p = ∇f(q) +ASW (q) ,

where

ASW (q) =
1

1 + λSW
[∇C (q)−∇SC(q)]− λSW

1 + λSW
q′DP S(q).

and

λSW =
[∇C (q)−∇SC(q)] · q

q′DP (q) · q
.

2. The adjustment term ASW (q) can be non-zero even with constant returns to scale at

q.

3. The allocation (qh)Hh=1 maximizes f (q)−SC (q) if and only if, at the optimum, the aver-

age wedge between marginal cost and marginal reward-moderated social cost, [∇C (q)−∇SC(q)]·
q, is zero.

Part 1 shows the optimal mechanism rewards submissions by their marginal products plus an
adjustment term. The adjustment equals an externality term, which is greater for submissions
whose marginal social costs are less than their marginal private costs, minus a shading term
that depends on elasticities. At the optimum, hospitals are rewarded for their marginal
contributions to the platform as well as to compensate them for any components of marginal
private cost that aren't a part of marginal social cost. However, if there are not enough
transplants to pay for these di�erences, the planner has to shade rewards. As in optimal
linear commodity taxation, it is also better to shade rewards for submissions with more
inelastic supply.
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Part 2 shows that the key di�erence in this case, relative to Theorem 1, is that the adjustment
term is not zero, even for constant returns to scale. Therefore, the optimal rewards depend
on more information. To set optimal rewards, one must know, for each type of submission,
the wedge between marginal private and social costs. Such knowledge requires identifying the
submission types for which hospital objectives deviate most from social objectives. Moreover,
one needs to know the elasticity matrix in order to measure how much shading must be done
for each submission type. Elasticities matter so long as the average wedge between marginal
private and social cost is non-zero because it results in the multiplier λSW being non-zero
and an adjustment term that depends on elasticities. Finally, part 3 shows that the optimal
reward vector does not attain �rst-best social welfare. Therefore, allocations that achieve
�rst-best social welfare require non-linear and complex incentives for hospitals.

Taken together, using only the kidney exchange mechanism to maximize social welfare, as op-
posed to hospital welfare, runs into important challenges. Optimal rewards are more complex,
depend on more information, and are sensitive to changes in the incentives facing hospitals
that can a�ect overall externalities. These results suggest that solving agency problems is an
important complement to improving the design of the kidney exchange mechanism.

A.3 Competing platforms

Two natural policy responses to the fragmentation are to mandate participation in a single
platform or to merge platforms. These recommendations raise questions about the optimal
strategy for competing platforms and the e�ciency costs of imperfect competition. We now
consider a platform that maximizes the number of transplants it facilitates.

Proposition A.3 (Oligopolistic Platforms). Consider a platform facing a smooth inverse

residual supply curve of submissions PRS(·). Consider a vector of rewards p and a strictly

positive aggregate quantity q that maximize the number of transplants in the platform subject

to p = PRS (q) and subject to allocating the same number of transplants that are produced,

that is, p · q = f (q). Assume the production function has constant returns to scale at the

optimal q. Then:

1. The platform rewards each type of submission with its marginal product, plus an ad-

justment term,

p = ∇f(q) +AC (q) ,

where

AC (q) =

(
q′DPRS(q) · q

f(q)

)
∇f(q)− q′DPRS(q).

2. The adjustment term AC (q) can be non-zero, even with constant returns to scale at q.
In particular, rewards are di�erent from the rewards in Theorem 1.

3. If residual supply is perfectly elastic, so that the matrix DPRS is zero, then rewards

equal marginal products, as in Theorem 1.
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The proposition shows that a platform that maximizes the number of facilitated transplants
does not set socially e�cient rewards. Instead of setting rewards equal to marginal products,
the platform subsidizes submissions that have elastic supply and are very productive. To see
this, consider the simplest case, where DPRS is a diagonal matrix (i.e. all cross-elasticities
of residual supply are zero). Then, for each type i, the reward is marked down from marginal
product according to an analogue of the Lerner index formula,

∂f
∂qi

(q)− pi
pi

=
1

εRS
i

− 1

λ
·

∂f
∂qi

(q)

pi
,

where εRS
i is the own-price residual supply elasticity and λ is the Lagrange multiplier on the

constraint f (q) = PRS (q) ·q. The expression shows the platform has incentives to skew the
rewards: optimal markdowns are larger for submissions with low elasticities and submission
categories that are less productive on the margin.

The proposition implies that competing, empire-building platforms exploit their market
power and set rewards ine�ciently. Additionally, the proposition implies that platforms
set e�cient rewards if the market is very competitive. Optimal rewards are close to marginal
products if residual supply is very elastic, i.e. if εRS

i is close to in�nity or, more generally,
DPRS is close to zero.

B Proofs

B.1 Preliminary results

We begin with a lemma showing that hospital supply can be aggregated, so that hospitals
behave as a single hospital that takes the aggregate cost curve into account. This is similar
to standard aggregation results in neoclassical �rm theory.

Lemma B.1. Fix a vector of rewards p. Aggregate supply S(p) is the Minkowski sum of

individual supply Sh(p) for all hospitals. Moreover, if there is a set of individual supply

vectors (qh)Hh=1 with each qh ∈ Sh(p), then

H∑
h=1

Ch(qh) = C

(
H∑

h=1

qh

)
. (B2)

Proof. Note that

max
(qh)Hh=1

[
p ·
(

H∑
h=1

qh

)
−

H∑
h=1

Ch(qh)

]
=

max
q∈RI

+

max
(qh)Hh=1

[
p ·
(

H∑
h=1

qh

)
−

H∑
h=1

Ch(qh)

]
,

s.t.
H∑

h=1

qh = q,

= max
q∈RI

+

[p · q − C(q)] .

(B3)
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Consider q0 =
∑H

h=1 q
h
0 with each qh

0 in Sh(p). By the optimality of aggregate cost, we have
that

p · q0 − C(q0) ≥ p ·

(
H∑

h=1

qh
0

)
−

H∑
h=1

Ch(qh
0). (B4)

Optimality of the qh
0 implies that the right-hand side of this inequality attains the maximum

in the left-hand side of equation (B3). Hence,

p · q0 − C(q0) ≥ max
q∈RI

+

[p · q − C(q)] ,

so that q0 is in S(p). Inequality (B4) holds as an equality, which implies (B2) as desired.

Conversely, consider q0 in S(p). Equation (B3) implies that

p · q0 − C(q0) = max
(qh)Hh=1

[
p ·

(
H∑

h=1

qh

)
−

H∑
h=1

Ch(qh)

]
.

Let (qh
0) be supply vectors that minimize the sum of costs conditional on total supply being

q0. Then

p · q0 − C(q0) = p ·

(
H∑

h=1

qh
0

)
−

H∑
h=1

Ch(qh
0).

Therefore, each qh
0 is in Sh(qh).

Given the assumptions in the body of the paper, we can treat aggregate supply and aggregate
inverse supply as functions rather than correspondences.

Lemma B.2. The aggregate supply S (p) is a single-valued correspondence.

Proof. Since we assume that the maximum of each hospital's objective is attained for some
quantity for every vector of rewards, Lemma B.1 implies that S (p) is non-empty for any
rewards vector p. Because C (q) is strictly convex, S (p) is the unique maximizer of the
function p · q − C (q).

Lemma B.3. For any strictly positive q, P S (q) is single-valued and P S (q) = ∇C (q).

Proof. Since q is interior and C (q) is smooth and strictly convex, the �rst-order necessary
conditions are also su�cient for a maximum of the aggregate supply program.
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B.2 Proof of the Main Theorem

Proof of Theorem 1. Let (p∗, (qh∗)h=1,...,H) maximize hospital welfare subject to all hospitals
choosing qh in Sh (p) given p and subject to allocating the number of transplants that are
produced. Mathematically, the tuple (p∗, q∗, (qh∗)h=1,...,H) in RI × RI

+ × RIH
+ maximizes

f (q)−
h∑

h=1

Ch(qh)

subject to

q =
H∑

h=1

qh, (B5)

to each h
qh ∈ Sh(p), (B6)

and to
p · q = f(q). (B7)

Lemma B.1 implies that this maximization problem is equivalent to �nding a pair (p∗, q∗) in
RI × RI

+ that maximizes
f(q)− C(q) (B8)

subject to
q ∈ S(p), (B9)

and to (B7).

By Lemma B.3, constraint (B9) is equivalent to p = ∇C(q). Thus, q∗ maximizes (B8) in
RI

++ subject to
∇C(q) · q = f(q).

The production function and aggregate cost function are smooth, and RI
++ is an open set.

Therefore, the Lagrange multiplier theorem implies that there exists λ such that q∗ maximizes

f(q)− C(q) + λ · {f(q)−∇C(q) · q} .

Setting the derivative equal to zero, we have

∇f(q)−∇C(q) =
λ

1 + λ
q′D2C(q).

To solve for the Lagrange multiplier, we multiply by q on the right, and use the equality
∇C · q = f . We have

∇f(q) · q − f(q) = λ

1 + λ
q′D2C(q)q.

Therefore,
∇f(q) · q − f(q)

q′D2C(q)q
=

λ

1 + λ
.
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Substituting λ we get the �nal formula,

∇C(q) = ∇f(q)−
(∇f(q) · q − f(q)

q′D2C(q)q

)
· (q′D2C(q)).

Lemma B.3 allows us to replace D2C(q) with DP S(q).

Part 1 of the theorem follows by substituting p = ∇C(q). Part 2 follows because, with
constant returns to scale, ∇f(q) · q − f(q) = 0 so that λ = 0. Part 3 follows because, with
no agency problems, welfare and social welfare coincide.

B.3 Additional Proofs

Proof of Proposition A.1. In what follows, we are considering an asymptotic where q0 → q∗.
Note that, by Lemma (B.1) and the fact that q∗ is strictly positive, p∗ = ∇C(q∗). Further,
since q0 is positive, we have that p0 = ∇C(q0).

Part 1: Approximation of q∗ − q0:

Theorem (1) shows that
∇f(q∗)−∇C(q∗) = 0.

Taking a Taylor expansion of the left-hand side about q0, we have

∇f(q0)−∇C(q0) + (q∗ − q0)
′ [D2f(q0)−D2C(q0)

]
+ ε1 = 0, (B10)

where ‖ε1‖ is o(‖q∗ − q0‖). Therefore,

q∗ − q0 = −
[
D2f(q0)−D2C(q0)

]−1 · [∇f(q0)− p0]
′ + ε2, (B11)

where the error term
ε2 = −

[
D2f(q0)−D2C(q0)

]−1 · ε′1
has a magnitude that is o(‖q∗ − q0‖).

Part 2: First approximation of the deadweight loss:

The deadweight loss at q0 is given by

DWL = f(q∗)− C(q∗)− [f(q0)− C(q0)].

A second-order Taylor expansion of f(q∗)− C(q∗) around q0 yields that

DWL = [∇f(q0)−∇C(q0)] · (q∗ − q0)

+
1

2
· (q∗ − q0)

′ ·
[
D2f(q0)−D2C(q0)

]
· (q∗ − q0) + ε3,
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where ε3 is o(‖q∗ − q0‖2). We can substitute

(q∗ − q0)
′ [D2f(q0)−D2C(q0)

]
= − [∇f(q0)− p0]− ε1

using equation (B10). This yields

DWL =
1

2
· [∇f(q0)− p0] · (q∗ − q0) + ε4,

where ε4 = −ε1 · (q∗ − q0) + ε3 is o(‖q∗ − q0‖2). This establishes the �rst approximation
formula, as Lemma B.3 lets us replace D2C(q0) with DPS(q0).

Part 3: Second approximation of the deadweight loss:

To establish the second approximation formula we substitute q∗ − q0 from equation (B11)
into the �rst approximation to get

DWL = −1

2
· [∇f(q0)− p0] ·

[
D2f(q0)−D2C(q0)

]−1 · [∇f(q0)− p0]
′

+
1

2
· [∇f(q0)− p0] · ε2 + ε4, (B12)

where ε4 is o(‖q∗ − q0‖2) and ‖ε2‖ is o(‖q∗ − q0‖). Since equation (B10) shows that
‖∇f(q0)− p0‖ is O (‖q∗ − q0‖), and the product of a o(‖q∗−q0‖) term and a O (‖q∗ − q0‖)
term is o

(
‖q∗ − q0‖2

)
, we conclude that ε5 = 1

2
· [∇f(q0)− p0] · ε2 + ε4 is o

(
‖q∗ − q0‖2

)
.

Lemma B.3 lets us replace D2C(q0) with DPS(q0).

Proposition A.2. Let (p∗, (qh∗)h=1,...,H) maximize social welfare subject to all hospitals choos-
ing supply optimally given p (breaking ties by looking at social cost) and subject to not
promising more transplants than are produced. Mathematically, the tuple (p∗, (qh∗)h=1,...,H),
in RI × RIH

+ maximizes

f(q)−
H∑

h=1

SCh
(
qh
)

subject to constraints (B5), (B6), and (B7). By Lemma B.1 , the assumption that the maxi-
mum is strictly positive, and the assumption that C is smooth and convex, the maximization
problem is equivalent to �nding q∗ in RI

++ that maximizes

f(q)− SC(q)

subject to
P S(q) · q = f(q).

By the Lagrange multiplier theorem, there exists a multiplier λSW such that, at the optimum,

∇f(q)−∇SC(q) + λSW (∇f(q)− P S(q)− q′DPS(q)) = 0.
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If we use the fact that ∇C(q) = P S(q), this becomes

0 = ∇f(q)− P S(q) + (∇C(q)−∇SC(q)) + λSW (∇f(q)− P S(q)− q′DPS(q)),

P S(q)−∇f(q) =
1

1 + λSW
(∇C(q)−∇SC(q))− λSW

1 + λSW
q′DPS(q),

The right-hand side of the last expression is the adjustment term A. To obtain the formula
for the Lagrange multiplier we multiply on the right by q∗ and use the fact that∇f(q∗)·q∗ =
p∗ · q∗ = f(q∗):

λSW =
(∇C(q)−∇SC(q)) q

q′DPS(q)q
.

The second and third parts of the proposition follow from the formula for the Lagrange
multiplier.

Proposition A.3. The platform chooses q in RI
+ to maximize

f(q)

subject to
f(q) = PRS(q) · q.

Because the solution is interior, there exists a Lagrange multiplier λ such that

∇f(q) + λ(∇f(q)− PRS(q)− q′DPRS(q)) = 0.

Substituting that the optimal rewards p = PRS(q), we obtain

p = ∇f(q) +
1

λ
∇f(q)− q′DPRS(q).

To calculate the Lagrange multiplier, we right multiply by q and use p ·q = ∇f(q) ·q = f(q)
to obtain

λ =
f(q)

q′DPRS(q)q
.

These two formulas imply part 1 of the proposition statement. The observation in part 2
follows directly from the formula in part 1.

C Data Appendix

This study used �ve main anonymized data sets: a database of all kidney exchange trans-
plants done in the US from January 1, 2008 through December 4, 2014 (the OPTN transplant
data), databases of all kidney exchange transplants organized by each of the three largest
multi-hospital platforms in the US (the NKR, APD, and UNOS transplant data), and a
database of all patient and donor registrations to the largest of those platforms (the NKR
registration data).
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C.1 Transplant data

In order to document the kidney exchange market, we merged the OPTN transplant data
with the transplant data from NKR, APD, and UNOS. In what follows, we will describe
these data and the merge procedure we used.

Obtaining the datasets: The OPTN provided us with a dataset on all transplants con-
ducted in the US, known as the Standard Transplant Analysis and Research (STAR) dataset.
The STAR dataset by itself lacks two key pieces of information: the transplant hospitals
where the kidney was put into the patient and removed from the donor (which we use to
determine whether a transplant is internal or external) and the unacceptable antigens for the
patient (which we need to measure sensitization). These supplemental pieces of information
are also available from the OPTN on request. Merging is done by using OPTN identi�ers.
The OPTN database contains records on 4377 kidney exchange transplants.

We obtained each of the platform datasets directly from the platform. The platform datasets
contain records on 1400 kidney exchange transplants in total: 1193 from NKR, 100 from
APD, and 107 from UNOS.

Dataset merge algorithm: In order to identify which transplants in the comprehensive
OPTN database were organized by each of the three platforms, we matched records in the
platform �les to records in the OPTN �le. However, because all datasets are anonymized,
the merge must be done on the biological characteristics of each transplant's recipient and
donor and logistical information on the transplant itself.

To do this, we use a match quality criterion. We start by matching all pairs of records that are
uniquely the highest quality match (above a threshold) in the other dataset. However, things
are less clear when a record has multiple highest quality matches. In these situations, we take
the conservative approach of considering none of the matches genuine with one exception.
Namely, we are willing to rule out a match because it involves a record that is part of an
even better, unambiguous match.

To illustrate how this exception a�ects our matching procedure, consider a situation in which
there are two records in the platform data, rp and r

′
p, that are the highest quality matches for

record ro in the OPTN data. Further, rp and r
′
p are of equally high quality for ro. Without

further information, a conservative match approach would avoid deciding whether ro should
be matched with rp or r′p. However, if there were another OPTN record r′o such that the
match r′p� r

′
o is unambiguous, then we determine that r′p� ro is not a match and instead match

rp� ro. The remainder of this section formalizes this intuitive discussion.

Let the set of records in the platform data be Rp and the set in the OPTN data be Ro.
A match between some platform record rp ∈ Rp and some OPTN record ro ∈ Ro can
be represented by the ordered pair (rp, ro) ∈ Rp × Ro. Some matches can be immediately
rejected as unacceptable; we denote the universe of acceptable matches, U ⊆ Rp ×Ro. For
our speci�c dataset and application, we deem a match unacceptable if the transplant dates
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are more than 31 days apart, if the recorded ages of the donor or the recipient are more than
10 years apart, or if either the receipient or the donor fails to match on both blood type or
sex.2

We say that two matches collide if they share either an OPTN or a platform record. The
disjunction is exclusive, that is, a match does not collide with itself. Then, a merge of
platform records to OPTN records is a subset of the universe, M ⊆ U , that contains no
two matches that collide. Intuitively, any OPTN record should be matched to at most one
platform record, and vice-versa. Note that this de�nition allows for there to be no ordered
pair in M that contains a given record from either database, which codi�es the idea that the
record remains unmatched.

The quality of a given match is represented by the match rank function, ρ : U 7→
{1, . . . , n}. The speci�c ranked criterion used for our application is de�ned as follows.

• Rank 1: The set of all acceptable matches where the donor and recipient each match
exactly on blood type, sex, the hospital where the transplant was conducted, and all
six major HLA alleles (two each on the HLA-A, HLA-B, and HLA-DR loci).

• Rank n ∈ {2, 3, 4, 5}: The set of all acceptable matches where the donor and recipient
each match on at least 7− n out of the six major HLA alleles.

We will treat the desirability of these ranks lexicographically, that is, we do not avoid a rank
1 match to enable any number of rank 2 matches, etc. In constructing a merge, we will often
be faced with the choice of including one or the other of two colliding matches. We say that
the match m′ weakly supercedes the match m if m collides with m′ and ρ (m′) ≤ ρ (m).
Similarly, m′ strictly supercedes the match m if that rank inequality is strict.

We include a match in the merge if and only if any weakly superceding match is itself strictly
superceded by a match in the merge. Formally, a mergeM ⊆ U is rank stable when m ∈M
if and only if, for any m′ ∈ U that weakly supercedes m, there exists an m′′ ∈M that strictly
supercedes m′.3,4

2The theoretical properties of the merge algorithm described below do not depend on the speci�c criteria
used to determine which matches are acceptable.

3In our de�nition, the requirement that M be a merge is redundant:

Claim C.1. Assume that a match m ∈ U is in some set M ⊆ U if and only if, for any m′ ∈ U that weakly
supercedes m, there exists an m′′ ∈M that strictly supercedes m′. Then, M must be a merge.

Proof. By way of contradiction, assume there are collisions in M . Let m′ be the highest ranked match in M
that collides with another match m ∈M . Clearly, m′ is not strictly superceded by another match in M , but
it does weakly supercede m, a contradiction.

4A few examples clarify how this criterion formalizes the intuition provided earlier in this section. First,
consider a universe that contains only two matches of rank one; further, let those matches collide. More
concretely, {m ∈ U | ρ (m) = 1} =

{
(rp, ro) ,

(
r′p, ro

)}
.One could randomly choose either (rp, ro) or

(
r′p, ro

)
to be in the merge; however, the choice would be incorrect half the time. A more conservative approach
would keep both matches out of the merge by insisting that a match be in the merge if and only if it isn't
weakly superceded by some other match.
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Proposition C.1 in Section C.3 below shows that there can be only one merge that satis�es
rank stability. Moreover, Algorithm 1 �nds this unique merge, a result proved in Proposi-
tion C.2. This simple greedy algorithm puts all matches of rank 1 that aren't weakly su-
perceded in the merge, removes from the universe all matches that collide with the matches
in the merge, and then repeats the process for all matches of rank 2, etc.

Input: U and ρ(·)

Initialize M ← ∅ and X0 ← U ;

for i← 1 to n do
Mi ← ∅;
Yi ← {m ∈ Xi−1 | ρ(m) ≤ i};
foreach m ∈ Yi do

if m doesn't collide with some other element of Yi then
Mi ←Mi + {m};

end

end

Xi ← Xi−1;
foreach m ∈ Xi−1 do

if m collides with some element of Mi then

Xi ← Xi \ {m};
end

end

Xi ← Xi \Mi;
M ←M +Mi;

end

Output: M

Algorithm 1: After each iteration i of the main loop, Mi contains all rank-i matches in the
unique rank stable merge, and Xi contains all elements of the universe U that don't collide
with a match in any Mj for j ∈ {1, . . . i}.

Quality of the merge We now describe the output of the merge to show that the algorithm
performs well in practice. The percentage of platform records matched to an OPTN record

This approach, however, is inadequate. Consider a universe that has a unique rank-one match and exactly
two rank-two matches. Further, assume that the rank-one match collides with only one of the rank-two
matches and that the rank-two matches collide with each other. More concretely, {m ∈ U | ρ (m) = 1} ={(
r′p, r

′
o

)}
, {m ∈ U | ρ (m) = 2} =

{
(rp, ro) ,

(
r′p, ro

)}
. Intuitively,

(
r′p, r

′
o

)
should be in the merge, and in-

deed, it isn't weakly superceded. From this, we should logically conclude that
(
r′p, ro

)
isn't genuine, and

hence include (rp, ro) in the merge. However, since (rp, ro) and
(
r′p, ro

)
weakly supercede each other, neither

could be in the merge under the previous paragraph's solution concept. What that concept misses is that
while

(
r′p, ro

)
weakly supercedes (rp, ro), it is itself strictly superceded by

(
r′p, r

′
o

)
, which should de�nitely be

in the merge.
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Table C1: Agreement Between Matched Records in the Transplant Merge

Platform

NKR 97.8% 97.4% 95.0% 95.1% 97.2% 97.6% 90.8%

APD 92.8% 95.9% 93.8% 96.9% 95.9% 96.9% 87.6%

UNOS 87.1% 99.0% 96.0% 99.0% 99.0% 99.0% 83.2%

Overall 96.6% 97.4% 95.0% 95.5% 97.3% 97.6% 90.0%

Age within 
5 years

Transplant 
date within 

1 day

5 or more 
HLA alleles 

match

Blood type 
and sex 
match

Transplant 
hospital 
matches

At most one 
criterion is 

violated

No criterion 
is violated

was 94% overall (94% for NKR, 97% for APD, and 94% for UNOS). Moreover, the matches
seem to be high quality: Table C1 reports the percentage of matches that meet various
criteria. At least one criteria violated for only about 9% of the matches at the NKR.

In order to assess whether measurement error may be signi�cant, we restricted attention to
a stricter match criterion. Speci�cally, we use the same procedure but exclude any match
where i) either donor or recipient fail to match within 5 years on age, ii) the transplant date
fails to match within one day, or iii) the transplant hospital fails to match. This leaves us
with an OPTN match for 90% of NKR records. Of those matches, 94.3% fail to violate any of
conditions in Table B1. The results in Section 3 of the paper are nearly identical, suggesting
that potential error in the matching procedure does not drive our results. These results are
available upon request.

To further con�rm the quality of the match procedure, we use the fact that the UNOS and
OPTN databases share common identi�ers, since UNOS is a contractor for the OPTN. This
allows us to see the true merge for the UNOS data (but not for the APD or NKR data,
since those datasets are anonymized to di�erent identi�ers). Comparing true matches to
the matches selected by our algorithm, we �nd that only one UNOS record was incorrectly
matched. That is, our algorithm chose the correct match in the OPTN dataset for 99% of the
UNOS records it matched. Even in this case, where the exact matches can be veri�ed, at least
one criterion is violated for about 17% of the cases. The similarity of this statistic to those for
the NKR transplants provides con�dence in the fact that record-keeping di�erences, rather
than errors is the likely cause. Overall, these results give con�dence in our merge algorithm.

C.2 Registration data

In this subsection, we describe how the list of registrations to the NKR was assembled. The
NKR provided us with snapshot �les of the patient and donor pool between April 1, 2012 and
December 4, 2014. These �les are typically daily snapshots except for some missing periods,
each of which is up to a month in length. Each snapshot corresponds to a di�erent date
and includes basic medical records for each patient and donor in the pool, their listing dates,
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the related patient for each donor (if any), and whether a patient is unpaired. From these
snapshots we recover patient and donors departures, which may be due to being transplanted
or other undocumented reasons. A small number of patients and donors depart without a
transplant during the period of a missing snapshot; for these, we use bounds on the departure
time using the two closest available snapshots, before and after the real departure date. These
snapshots also include each patient's set of donors that may not be matched (i.e. are blocked)
despite being virtually compatible. Some of these blocked donors are due to patient preference
(not to match with these donors) and others are due to match failures.

C.3 Proofs concerning Algorithm 1 and stable merges

Proposition C.1. Given any two rank stable merges M and M ′, it must be that M =M ′.

Proof. We will prove the proposition by induction on rank.

Base case: We show that M and M ′ contain the same set of rank-one matches. By way of
contradiction, assume there exists a rank-one match m that is inM but not inM ′. For
m not to be in M ′, it must be weakly superceded by some other match m′ that is not
strictly superceded inM ′. Then, for m to be inM , there must be some match m′′ ∈M
that strictly supercedesm′. But, it is impossible to strictly supercede a rank-one match,
a contradiction.

Induction step: We show that if M and M ′ contain the same set of rank-k or better
matches, then they must also contain the same set of rank-(k + 1) matches. By way
of contradiction, assume there exists a rank-(k + 1) match m that is in M but not in
M ′. For m not to be in M ′, it must be weakly superceded by some other match m′

that is not strictly superceded in M ′. But then for m to be in M , there must be some
match m′′ ∈ M that strictly supercedes m′. Since m′′ must be of strictly higher rank
than m, by assumption, m′′ ∈ M ′ as well. But then, m′′ strictly supercedes m′ in M ′,
a contradiction.

Proposition C.2. Algorithm 1 produces the unique rank stable merge.

Proof. Since we already established uniqueness in Proposition C.1, it su�ces to establish that
after the algorithm runs, Mi equals the set of rank-i matches that are found in the unique
rank stable merge M . We will show this by induction on rank.

Base case: We must prove that after the algorithm runs, M1 equals the set of rank-one
matches that are found in M . There are two ways to contradict this statement: either
there is a rank-one match in M that the algorithm doesn't place in M1, or there is a
match in M1 that isn't one of the rank-one matches in M .
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Let's �rst consider the former. By way of contradiction assume m ∈ M \ M1 and
ρ (m) = 1. Clearly, the algorithm must place m in Y1. For it to also not place m
into M1, there must be some other match m′ ∈ Y1 with which m collides. But then
m′ would weakly supercede m. And since m′ is a rank one match, it can't be strictly
superceded. Hence m /∈M , a contradiction.

Now, let's consider the latter. By way of contradiction, assume some m ∈ M1 \M .
Looking at the algorithm, it is clear that ρ (m) = 1. Then, for m to not be in M , it
must be that m is weakly superceded by some m′. But since m′ and m must collide,
looking to the algorithm, it is clear that m can't be in M1, a contradiction.

Induction step: We must prove that after the algorithm runs, if Mj equals the set of rank-
j matches that are found in M , for all j ∈ {1, . . . , k}, then Mk+1 equals the set of
rank-(k + 1) matches that are found in M . As before, there are two ways to contradict
this statement: either there is a rank-(k + 1) match in the unique merge M that the
algorithm doesn't place in Mk+1, or there is a match in Mk+1 that isn't one of the
rank-(k + 1) matches in M .

Let's �rst consider the former. By way of contradiction assume m ∈ M \Mk+1 and
ρ (m) = k + 1. If m collides with any match in M of strictly higher rank, by the
induction hypothesis, this match must strictly supercede m, which contradicts that
m ∈ M . Hence, the algorithm must place m in Yk+1. For it to also not place m into
Mk+1, there must be some other match m′ ∈ Yk+1 with which m collides. But then m′

would weakly supercede m, which means that for m to be in M , there must be some
other matchm′′ ∈M that strictly supercedesm′. However, by the induction hypothesis,
m′′ would have been added to the match in a previous round of the algorithm, which
means that Xk+1 can't contain any match that collides with m′′. Hence, Yk+1 cannot
contain m′, a contradiction.

Now, let's consider the latter. By way of contradiction, assume some m ∈ Mk+1 \M .
Now, if m /∈ M , there must exist some m′ that weakly supercedes m without itself
being strictly superceded by any match in M . But, for m ∈Mk+1 to hold, any weakly
superceding m′ must not be in Yk+1. One way for this to happen is for m′ ∈ M` for
some ` ≤ k. But then, by the induction hypothesis, ρ (m′) = `, which means that
m /∈ Xj for any j ≥ `. This contradicts the assumption that m ∈Mk+1.

The other way to keep m′ from being in Yk+1 is that in some round ` ≤ k, m′ is in X`−1
and collides with some m′′ ∈M`. By the induction hypothesis, ρ (m′′) = `. Looking to
the algorithm, for m′′ to be added to the merge while m′ is removed, we need ρ(m′) > `.
But then, m′′ ∈M strictly supercedes m′, a contradiction.

D Simulation Details

We now provide details on the procedure used in Section 5.1.
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D.1 Matching O�ers

D.1.1 The matching algorithm and examples

We describe solve the linear programming problem subject to cycle length and chain con-
straints. Because it is computationally burdensome to compute all cycles in a pool with
many patients and donors, we �rst solve the relaxed problem by ignoring the constraint that
cycles cannot involve more than three transplants. Speci�cally, we solve:

max
xjk∈{0,1}

∑
j∈P∪U

∑
k∈P∪A

cjk wjk xjk

s.t. xjk −
∑̀
xk` = 0 for all k∈P∑

j

xjk ≤ 1∑
k

xjk ≤ 1

 for all k

where A is the set of altruistic donors, P is the set of pairs, U is the set of unpaired recipients,
xjk = 1 denotes a proposed transplant from the donor in k ∈ P∪A to the patient in j ∈ P∪U ,
wjk is the weight described in Section D.1.2 below, and cjk = 1 if a transplant from k to j
is allowed and 0 otherwise. The �rst constraint ensures that a donor who is part of a pair is
only asked to donate an organ if the intended recipient has been proposed a transplant. The
second and third constraints ensure that no donor or recipient is involved in more than one
transplant.

If the solution to the problem does not involve any long cycles, i.e. there do not exist
j1, . . . , jn ∈ P such that x∗jk+1jk

= 1 for k ∈ {1, . . . , K − 1}, x∗j1jK = 1, and K ≥ 4, then it
must be that x∗ is optimal, given the no long-cycle constraints, and is our desired solution. In
87.3% of simulation days the solution to this relaxed problem yields a feasible match without
any further cycle restrictions.

If the solution to this problem contains at least one long cycle, then we proceed as follows.
We begin by following the algorithm in ?. The algorithm includes a constraint that explicitly
prohibits all long cycles in x∗, i.e. for each sequence j1, . . . , jK ∈ P such that for k ∈
{1, . . . , K − 1}, x∗jk+1jk

= 1, x∗j1jK = 1, and K ≥ 4, we include a constraint in the problem

above to ensure that x∗j1jK
∏K−1

k=1 x
∗
jk+1jk

= 0. If the solution to the modi�ed problem also
contains long cycles, we modify the problem again to prohibit those cycles. We iterate this
procedure up to ten times. This procedure yields a feasible solution in about 50% of the
remaining cases (about 6.4% of all cases) with an average of approximately 3.9 iterations.

If the algorithm above does not yield a feasible solution even after 10 repetitions, we proceed
to the next phase in which we use ?'s algorithm to compute cycles and explicitly add con-
straints that prohibit long cycles. This algorithm searches the compatibility graph induced
by c to calculate cycles. We enumerate and add a constraint to our program to prohibit any
long cycles we have found. The number of cycles is usually small, but sometimes is very
large. Therefore, we search for cycles with a time-out of one second. We �nd a solution to
the problem with these additional constraints and terminate our algorithm if the solution is
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feasible. This procedure is repeated once more, if necessary. At the end of this phase, we are
able to �nd an optimal solution to the full problem in about 99.9% of the simulation days.

For the remaining 0.1% of days in the simulation, our matching algorithm still ends up with
long cycles. Whenever this is the case, we attempt to �nd a solution with the following,
alternative algorithm:

max
y`∈{0,1}

∑̀
∈C
w` y`

s.t. w` =
|`|−1∑
i∈`

wi,i+1 + w|`|,1 if ` is a cycle,

w` =
|`|∑
i∈`
wi,i+1 if ` is a chain,

` ∩ `′ = ∅ if y` y`′ = 1,
ci,i+1 = 1, c|`|,1 = 1,∀i ∈ ` if ` is a cycle,
ci,i+1 = 1,∀i ∈ ` if ` is a chain.

where C is the set of feasible chains and cycles, y` = 1 denotes implementing chain or cycle `,
w` is the sum of the weights for each transplant in the chain or cycle indexed by `, and cjk = 1
if a transplant from k to j is allowed and 0 otherwise. Denote the number of pairs/altruistic
donors/unpaired recipients in a chain or cycle ` by |`|. The �rst set of constraints de�nes the
total weight w` for each chain or cycle; the second set ensures no donor or recipient is involved
in more than one transplant; the third set ensures that all simultaneously proposed chains
and cycles do not overlap. Because it is computationally burdensome to compute all chains
in a pool with many patients and donors, we solve the problem chains with up to length of
5. We abandon the match on that �simulation day� if we still cannot �nd a solution, and all
patients and donors are returned to the kidney exchange pool to wait for the next day for
the transplant o�er. Even in these rare cases, we can �nd an optimal match within 1.0 days
on average.

Figure D3 illustrates a few kidney exchange pools. The left panel shows compatibility as
captured by c, feasible transplants, and the optimal match. Blue dots denote patient-donor
pairs, and magenta dots denote altruistic donors. We ignore unpaired patients in this il-
lustration for simplicity. A blue arrow depicts a feasible transplant with the origin of the
arrow denoting the donor. Red and green arrows depict cycles and chains, respectively, in
the optimal match. Given feasible transplants on left, our match algorithm o�ers the one on
the right. The �gure shows there may be several feasible transplants, and in these cases, the
optimal match may be relatively easy to determine. Figure D4, on the other hand, illustrates
a relatively hard-to-match problem where the optimal match is relatively more di�cult to
determine.

D.1.2 Weights

We attempt to closely match the weights, wij, on a NKR transplant between patient i and
donor j. These weights are designed to favor patients who are highly sensitized, in other
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Figure D3: Optimal matches for two simple pools

Figure D4: Optimal matches for two more complicated pools

words, who are harder to transplant. To de�ne weights, w, NKR �rst de�nes a matching
power for each submission. Each patient has a Patient Match Power (PMP), a number
between 0 and 1, that is a fraction of compatible donors in the NKR pool for that patient.
A low PMP for patient i implies that few donors are compatible with patient i. Similarly,
the Donor Match Power (DMP) is de�ned as the fraction of patients in the NKR pool with
whom that donor is compatible. Because these quantities and the pool used by the NKR
to compute these match powers are not directly observed in our dataset, we calculate them
using our sample.

Given these characteristics, NKR calculates a scaled measure of how likely a feasible trans-
plant can occur between i and j, WNKRij. Speci�cally,

WNKRij = PMP ×DMP × 10, 200.

A low WNKRij correlates with a transplant between i and j being unlikely. It is important
to note that the magnitude of WNKRij is not related to the success of a transplant if it
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WNKRij interval wij

WNKRij > 70 1
25 < WNKRij ≤ 70 1.01
5 < WNKRij ≤ 25 1.2
WNKRij ≤ 5 1.5

Table D2: Weights used by the NKR

turns out to be feasible. These weights therefore accord higher priority to hard-to-match
patients and donors. Using WNKRij, NKR assigns the weights wij as follows:

Because these weights are less than 2, they typically maximize the total number of trans-
plants. However, these weights may sometimes result in two transplants, each with weight
1.5, instead of three transplants with weight 1 each.

D.2 Arrival and Departure

D.2.1 Arrival process

We assume the daily number of submissions in the NKR is given by a Poisson distribution
with parameter λ, where λ represents the mean daily arrival rate for NKR. We estimate that
parameter to be λ = 1.975. In each period, our simulations draw a number, say nt, from this
distribution. Then we draw nt submissions with replacement from the entire pool that ever
registered in the NKR during the April 2012 to June 2014 sample period.

Figure D5 shows the �t of the arrival per day distributions of NKR and Poisson. Notice that
NKR's distribution has more 0 arrivals per days than the poisson distribution. This mass
point is explained by weekends, which appear to have a much lower arrival rate.5 Figure
D6 shows the arrival per day distribution of NKR for weekdays and our estimated poisson
distribution, which shows a better �t.

D.2.2 Departure process

To model departures, we estimate an interval censored hazard model to calculate the rate
at which patients and/or donors depart the NKR without a transplant. Speci�cally, let tai ,
t∗i , and tdi be the (latent) arrival, transplant, and departure dates for an unpaired patient,
donor, or patient-donor pair i. Our dataset records t0i and t

∗
i if i was transplanted. Further,

if i is transplanted, then we know that tdi > t∗i . If i is not transplanted, then in most cases we
observe tai , but in some cases, we only know that tai belongs to an interval

[
ta−i , ta+i

]
(typically

5Only 40 arrivals in weekends over the course of 140 weeks.
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Figure D5: Distribution of NKR and Poisson Number of Submissions Per Day

within a week). If i departed without a transplant, we observe tdi either exactly or up to a
small interval. If i remains in the NKR at the end of our sample, then we know that tdi > T.
Using these observations, we can construct bounds on the duration τi that each unit i remains
in the NKR without a transplant.

With these observations, we estimate the exponential hazards model. The model is charac-
terized by a survival function

Si (τ) = exp (−λi t) ,

where we use the parametric form
λi = α + zi β.

The likelihood of the model for the interval censored survival data is straightforward to derive,
and estimation via intcens in STATA is straightforward.

Table D3 presents the estimates. Note that the hypothesis tests in a hazard model are
reported relative to 1, which implies no e�ect. As can be seen, patients with blood types that
are easier to match or who are paired with easier-to-match donors have a higher departure
rate. This �nding is consistent with patients and patient-donor pairs departing in response
to transplantation opportunities elsewhere, either through direct donation, deceased donor
transplants, or live-donor exchanges outside the NKR.
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Table D3: Departure Hazard Rate Estimates

(1) (2) (3)
Patient-Donor Pairs Unpaired Patients Altruistic Donors

Patient Matching Power 1.824*** 16.35***
(0.244) (2.446)

Donor Matching Power 0.0699 0.000167
(0.137) (0.00126)

Patient Age 0.994* 1.002
(0.00349) (0.00383)

Donor Age 1.008* 1.011
(0.00442) (0.0140)

AB Blood-type Patient 2.465*** 1.557*
(0.698) (0.390)

A Blood-type Patient 1.184 1.294
(0.160) (0.265)

B Blood-type Patient 1.077 0.635*
(0.172) (0.158)

AB Blood-type Donor 0.584** 1.249
(0.150) (1.357)

A Blood-type Donor 0.667*** 1.562
(0.0832) (0.654)

B Blood-type Donor 0.608*** 0.764
(0.0957) (0.520)

Constant 0.00578*** 0.000892*** 0.0656
(0.00565) (0.000203) (0.234)

Observations 1,264 498 164

Note: Interval censored exponential hazard model. Patient (Donor) Match Power is the
fraction of donors (patient) in the NKR pool over the course of a sample a given patient
(donor) is compatible with. Sample restricted to patients and donors that registered after
April 2012.
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Figure D6: Distribution of NKR and Poisson Number of Submissions Per Day for Weekdays

D.3 Compatibility and acceptance

To calculate whether donor j is compatible with patient i, we use the blood types of the
patient and donor, the tissue type of the donor, and the list of unacceptable antigens listed
by the patient. There are three additional ways in which a transplant between a patient and
a donor can be prohibited.

First, upon registration, each patient can declare criteria for excluding donors based on a
variety of characteristics. These include thresholds for the maximum donor age and minimum
donor weight that are acceptable. These criteria are recorded in our dataset.

Second, upon arrival a patient can list as unacceptable any number of speci�c donors who
were in the NKR pool at the time. This rejection can be done for any reason, including known
pathologies. Patients can also exclude donors later, but according to our understanding, the
practice is most common during registration. Our dataset includes the anonymized identi�ers
for these excluded donors.

Third, when a transplant is proposed, a patient may refuse the speci�c donor. A �rst phase of
refusals is at the patient's discretion (with advise from his/her surgeon). If a patient chooses
to proceed after the �rst phase, a �nal tissue-type compatibility test is conducted. We refer
to this as the second phase.

In our simulations, we initialize cij = 1 if j is compatible with i and if j is not excluded by i.
Otherwise, we set cij = 0. If j is o�ered to i during the simulation and a transplant is ruled
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out during either the �rst or second phases in the third type of exclusion, then we set cij = 0
for future �simulation days.�

D.4 Burn-in and calculating standard errors

We may start our simulations from any initial state because the e�ect of the chosen initial
state fades over time. A convenient choice is to pick an initial pool with no unpaired patients,
altruistic donors, or patient-donor pairs. Although the initial pool does not a�ect long-run
averages with enough simulations, it is advisable to discard or burn-in a portion of the
initial chain in order to improve the estimates' precision. We simulate a chain with 100,000
to 400,000 days after a burn-in of 2,000 days. We used longer chains for larger scales as
convergence is faster for small market sizes. We checked to ensure that the potential scale
reduction factor for the number of transplants per day that is close to 1. Numbers close to
shis value suggest that the chain has converged. Marginal products are computed using �nite
di�erences in arrival rates.

Our simulations produce a series y1, . . . , yT of the transplants that occur on each day after an
initial burn period. We estimate f(q) as the sample mean of the yt and calculate the standard
errors of this estimate using the non-overlapping batch means estimator by following Chapter
12 in ?. The method divides the time series of yt into batches, calculates the sample mean
in each of those batches, and uses the variability in sample means to estimate the standard
error of f(q). We use the commonly recommended batch size of approximately

√
T . The

procedure is a simple and popular method that accounts for autocorrelation of the yt.

D.5 Calibration

Our simulation procedure is tailored to match the procedures and practices used by the NKR.
In most cases, the data or institutional knowledge directly tell us the parameters; e.g., the
weights wij are chosen to match NKR's practices. However, there are a few aspects of the
real-world procedures and outcomes in the NKR on which we don't directly have information.
We model and parametrize these aspects in our simulation model and calibrate them to match
the realized number of matches in the NKR.

There are two main sets of parameters we need to calibrate. First, we do not have direct data
on the frictions of translating proposed transplants into surgeries. As mentioned in Section
D.3, the various acceptance phases may result in some transplants not being consummated.
Each phase introduces a time-lag between transplants being proposed and �nalized as well as
the chance of a match being aborted. Roughly speaking, these frictions reduce the number
of transplants facilitated by the NKR.

We parametrize these phases and calibrate the parameters to best �t the observed number
of transplants by patient type. To do so, we simulate outcomes predicted by our model
for various lengths (number of days) and various failure probabilities for both phases. The
�rst phase parameters can be interpreted as controlling the frictions in the system because
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proposed matches are refused, whereas the second phase parameters govern the frictions due
to biological compatibility tests.

Second, as mentioned earlier, when chains are aborted because of a refusal, NKR usually
tries to use the donor, called the bridge donor, of the last transplanted patient for a new
chain. However, the exchange prefers not to wait too long to start a chain with this donor.
If a new chain cannot be found, the donor is o�ered to a patient without a related donor.
Unfortunately, we do not know of a consistent policy rule followed by the NKR. We therefore
also experimented with the number of days the NKR tries to match a bridge donor.

In summary, we calibrated �ve parameters: (i) the number of days a bridge donor can initiate
a new chain, (ii) the number of days for consent and the probability of consent for the two
phases of match acceptance, and (iii) the number of days taken for testing and the probability
of failing the tissue type biological test.

These parameters parsimoniously set the nature of frictions and policies in the NKR. However,
the limited heterogeneity, especially over time, is clearly a simpli�cation. Most likely, NKR
policies and their ability to translate proposed matches into transplants evolves over time
and includes some ad hoc modi�cations to their basic procedure.

For our calibrations, we conduct our simulations by setting an initial market with the patients
and donors who were present in the NKR on 1 April, 2012. This is the date from which we
have clear registration data. Then, for each parameter set, we run 100 simulations until
December 2014, the last date of the available data.

We calibrated our parameters to match two sets of moments. The �rst set is the transplan-
tation probabilities, and days in the exchange for transplanted patients and donors. Each of
these three moments are split by whether we are considering an unpaired patient, a patient-
donor pair, or an altruistic donor. Therefore, there are are six such moments in total. The
observed quantities and the simulated quantities at the calibrated parameters are summa-
rized in Table D4, with even �ner partitions. The second set are annual statistics on the
number of patients and donors waiting for a transplant in the NKR. Each of these three
statistics is calculated by type (patient-donor pair, altruistic donor or unpaired patient) and
by year (2012, 2013, 2014). There are a total of nine such moments. The trends in the data
and the simulations from our preferred parameters are detailed in Figures D8 - D10, with
the overall trends depicted in Figure D7. The dashed lines depict data, darker lines are the
mean of 100 simulations, and dashed lines are 95% con�dence interval from the simulations.
Although the averages are not as well matched in Figures D10 and D9, the observed quan-
tities are within the 95% con�dence intervals for the model. The �nal set of moments are
the fraction of transplants in two-way cycles, three-way cycles and the average chain length.
These statistics are summarized in Table D6.

These three sets of moments capture the transplants produced by the NKR by type, the
types of exchanges arranged and the probability that agents are matched. These are key
quantities used in our theoretical and empirical exercises as they correspond to average
products and current incentives. For example, transplant probabilities directly translate to
average products. Other moments combine to yield information on marginal productions. For
example, chain length captures the average number of transplants produced by each altruistic
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donor and fraction of transplants in two-way and three-way cycles indicate the alternative
avenues through which patients and donors in the chains could be transplanted. Chain length
also provides important information on frictions and bridge donor wait time policy. Finally,
wait time statistics are useful for appropriately replicating the �ow rates in our simulations,
which aligns well with the preferred interpretation of the quantities in our theoretical model.
As shown in the tables and �gures referenced above, our highly parsimonious model does
well in matching a large number of moments.

To arrive at these calibrated parameters and assess their �t relative to others, we worked with
a statistical loss function. At each test parameter, the di�erence between the moments ob-
served in the data and calculated from the simulation were stacked. Formally, we calculated
the vector m̂−mS (θ), where m̂ denotes the statistics observed in the dataset and mS (θ) de-
notes the simulated quantities. We then constructed a loss function [m̂−mS (θ)]

′W [m̂−mS (θ)]
using a weight matrix W to summarize a measure of �t. The weight matrix was set to
the inverse covariance of the moments estimated using 10,000 bootstrap samples from the
NKR dataset. To construct this matrix, we sampled unpaired patients, altruistic donors and
patient-donor pairs from the NKR dataset. Transplant probabilities and days in the exchange
by transplanted status were computed for each sample using the observed outcome for each
draw. The observed dates of arrival and departure for the bootstrap sample were used to
compute the second set of moments on stocks and transplants by year. Similarly, fraction
of transplants in two-way and three-way cycles were computed based on whether or not the
patient is transplanted and the observed mode of transplant in the realized data. Average
chain lengths for the bootstrap sample were constructed using the realized chain length in
the data and weighting each observation by 1/li where li is the observed chain length for
agent i in the data. This ensures that all chains are equally weighted, as done in the original
computation.6

While this loss function now makes it possible in principle to �nd the value of the parameters
θ that minimizes it, yielding a simulated minimum distance estimator, it is computationally
infeasible to do so because it takes more than a week on our cluster to compute mS (θ) for
each θ. Instead, we �rst experimented with short simulations with few iterations to zoom
in on a set of parameters. We then conducted complete simulations for �ve variants. The
parameters with the best �t were 14 days of waiting and 75% success rate for each of the two
phases, and 30 days of wait before ending the chain with a potential bridge donor.

In addition to the preferred parameters, we computed complete simulations for six other
parameters that vary the frictions in the market:

1. Lower Friction: Increases the success rate from the baseline of 75% to 80% in each of
the two phases.

6Strictly speaking, this bootstrap procedure imposes independence assumptions that may not be feasible
in the true data generating process. For example, the bootstrap sample may contain a set of transplants that
may not be possible to arrange based on the draws of all patients and donors. A parametric bootstrap that
uses a weight matrix as a function of the parameter θ also �nds that the objective function is minimized at
our preferred parameters. We view our bootstrap calculation primarily as an approximation to account for
moments that may be highly correlated and adjust for the scale of various moments.
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2. Higher Friction: Reduces the success rate from 75% to 70%.

3. Shorter Wait Time: Uses the baseline success rates, but sets the delay in each phase
to 7 days.

4. Longer Wait Time: Uses the baseline success rates, but sets the delay in each phase to
21 days.

5. Shorter Bridge Donor Wait Time: Uses the baseline friction parameters, but increases
the bridge donor wait time to 7 days.

6. Longer Bridge Donor Wait Time: Uses the baseline friction parameters, but reduces
the bridge donor wait time to 60 days.

Tables D5 and D6 show the �rst and third set of moments produced by these alternative
models, with patient-donor pair classi�cations aggregated in the interest of space. The �t of
the alternative models is noticably worse on match probabilities and wait times for most of
the types, indicating that our preferred parameters do signi�cantly better than the others.
Figure D13 shows the second set of moments. Our preferred parameters are slightly worse
than some others on this dimension, but does better than others. Table D7 aggregates all
three sets of moments into the loss function described above. It shows that the value of the
objective function is the lowest at our preferred parameters. A change in the bridge donor
waiting policy does not substantially a�ect the overall loss function. A shorter bridge donor
waiting time results in an average chain length that is too low. A longer waiting time does
better on chain length, but does poorly relative to our preferred parameters on the overall
transplant probabilities in Table D5.
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Figure D7: Calibration for All Submissions
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Figure D8: Calibration for Pairs
Note: Observed Quantities and Simulations are shown with solid and dashed lines respectively. Solid grey
lines represent 95% con�dence intervals.
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Figure D9: Calibration for Altruistic Donors

0 100 200 300 400 500 600 700 800 900 1000

Calendar/Simulation Days

0

50

100

150

200

250

300

350

400

450

N
u
m

b
e
r 

o
f 
U

n
p
a
ir
e
d
 P

a
ti
e
n
ts

Transplants (Flow)

Untransplanted Departures

Stock

Figure D10: Calibration for Unpaired Patients
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Figure D11: Chain Length Distribution
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Table D6: Statistics on Chains and Cycles for Alternative Parameters

Share of Transplants

2-way cycles 3-way cycles Chains

Observed Quantities 0.09 0.04 0.86 4.85

Preferred Parameters 0.07 0.10 0.82 4.77

Lower Friction 0.07 0.10 0.83 4.99

Higher Friction 0.07 0.11 0.82 4.52

Shorter Wait Time 0.06 0.08 0.86 5.46

Longer Wait Time 0.07 0.10 0.82 4.57

Shorter Bridge Donor Wait Time 0.08 0.14 0.78 4.48

Longer Bridge Donor Wait Time 0.06 0.07 0.86 5.18

Mean Chain 
Length
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Table D7: Objective Function for Alternative Parameters

Preferred Parameters 372.5

Lower Friction 530.6

Higher Friction 450.2

Shorter Wait Time 773.5

Longer Wait Time 436.0

Shorter Bridge Donor Wait Time 522.2

Longer Bridge Donor Wait Time 456.4

Objective 
Function
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E Robustness analyses

This section assesses the robustness of our results to calibrated parameters and the weights
used by the NKR (Table D2). The calibrated parameters speci�cally refer to frictions in
consummating proposed transplants due to longer waiting times but higher approval rates
produce similar moments as lower waiting times and lower acceptance rates. Chain lengths,
however, are increasing in acceptance rates and are best matched by our baseline parameters.
We compare our baseline results with two substantially di�erent parameters and a speci�ca-
tion with equal weights. The �rst, labelled �Higher Wait-time and Lower Frictions,� has two
weeks and three weeks for each of the two approval periods (approval and biological testing)
but increases the acceptance rates in each phase from 75% to 80%. The second, labelled
�Lower Wait-time and Higher Friction,� uses three days and three weeks for each phase, re-
spectively, but decreases the acceptance rates in each phase from 75% to 70%. Finally, the
estimates labelled �Equal Weights� use the baseline parameters, but set all the weights in
Table D2 to one.

The qualitative and quantitative �ndings are robust to these alternative parameters. Figure
E14 plots average products, as in Figure 5. These alternative parameters yield average
product functions that closely follow the baseline. Table E9 shows the ine�ciency estimates
as in Table 3. The estimated ine�ciency is within 5-10% of the baseline. Figure E15 shows
marginal product versus matching probability of registrations aggregated by category, as in
6. These results are also qualitatively similar. Table E10 shows marginal product, matching
probability, and point system summary statistics, as in Table D8. Again, the points system
under the alternative parameters are similar in magnitude. Similarly, the estimates are not
sensitive to the weights as they are used only to break ties.
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Table E9: Robustness: Total E�ciency Loss

Efficiency Loss

 Additional Kidney Exchange Transplants

Base

Panel A: All Hospitals

All Hospitals 164 505.1 521.6 471.3

Panel B: By hospital size (number of PKEs per year)

Top Quartile 42 254.2 263.8 237.1

2nd Quartile 48 142.2 149.0 133.9

3rd Quartile 40 81.9 81.2 75.2

Bottom Quartile 34 26.8 27.6 25.1

Panel C: By Platform Membership

NKR 68 256.4 265.7 240.3

Only UNOS and APD 45 119.8 123.5 110.7

None 51 128.8 132.5 120.3

Panel D: By NKR Participation Rate (Fraction of PKEs facilitated through the NKR)

Top Quartile 17 17.7 17.8 16.4

2nd Quartile 17 49.2 51.0 46.4

3rd Quartile 17 89.0 92.3 83.2

Bottom Quartile 17 100.4 104.5 94.3

Number of 
Hospitals

Higher Waittime 
Lower Friction

Lower Waittime 
Higher Friction

Notes: Constructed as in Table 3.
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Figure E14: Robustness: Production Function versus Scale
Notes: Constructed as in �gure 5.
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Notes: Constructed as in Figure 6.
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Figure E16: Selection versus Participation Rate
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