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Appendix A: Further Summary Statistics

Table A1 gives the contribution of each data source to our final dataset. While Ward’s
has good coverage of vehicles after 1981, it has much lower coverage between 1971 and 1981,
particularly for light-trucks, an no coverage before 1971. Automobile Catalogue provides
data on many trims that are not found in Ward’s–particularly in the period before 1981.
The Automobile Catalogue data are of most value before 1978 and are especially useful in
the prediction of the counterfactual fuel economy.

Table A2 presents details on the full State Data System (SDS) accident data. For each
state in the datset, it should the years that are available with VINs. It provides the raw
counts of accidents and fatalities, as well as the final counts of accident and fatalities after
the dataset is restricted to data that is useable for the analysis. In other words, the vehicles
must include the VINs and the VINs must be decodable to give us the weight. Further we
restrict the sample to accidents that have only 1, 2, or 3 vehicles in the accident.

Table A3 presents further information on the SDS data and the cleaning of those data,
only this time by year of the accident. It shows that most data with VINS are eliminated
because they either are not for a car manufacturer, or the VIN cannot be decoded, which
will include pre-1980 where VINS were not standardized. We also eliminate many vehicles
that can be partially decoded but not with enough detail to allow for recovery of a vehicle
weight. For example, we may be able to decode the manufacturer and class but not the
model or trim.

Appendix B: Why Unconditional Quantiles?

B.1 Binning and Conditional Quantile Regression Approach

This appendix provides further intuition for the unconditional quantile regression ap-
proach by comparing it to two additional approaches: binning (kernel weighted OLS) and
conditional quantile regression. In the binning approach, we perform OLS regressions on
observations binned by weight. In other words, we divide up our data based on quantile of
weight and run an OLS regression on each 1% (or more) sample. In the conditional quantile
approach, we perform a traditional conditional quantile regression.

The fundamental intuition for using unconditional quantile regressions is that in order to
understand the affect on fatalities, we are interested in how the equilibrium unconditional
distribution over the entire fleet changes in response to CAFE standards. Using the binning
approach or conditional quantile approach would miss important features of how the fleet
adjusts.

We illustrate this intuition with a simple example with data generated from a Monte
Carlo analysis. First, we generate an initial untreated population of vehicles consisting of
two types: high and low. These vehicles are distributed over an outcome variable, such as
weight. The vehicle type could refer to any covariate we wish to control for, such as the
automaker or vehicle class. We then implement an illustrative treatment that affects only
one of the two types of vehicles. Suppose the high type (e.g., luxury vehicles) is unaffected,
but the low type (e.g., economy vehicles) shifts down 10 units in the outcome variable.
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Panel (a) of Figure A1 illustrates this example. Each dot is a vehicle. The bottom row
shows the untreated vehicles, with some overlap between the high and low types. The top
row shows the vehicles after the treatment. The red dots have all been shifted left (e.g., the
lighter vehicles were down-weighted). Note that within each vehicle type (i.e., conditional on
vehicle type), the treatment does not generate dispersion. But the unconditional distribution
does exhibit increased dispersion after the treatment.

The dotted blue lines show the unit difference between the treated and untreated popula-
tions for the 10th, 50th, and 90th unconditional quantiles of the distribution of the outcome
variable. The lighter-colored line indicates the quantile after the treatment, while the darker
line indicates the quantile before the treatment. Because the 10th quantile only contains the
low type, it has shifted down by 10 units. The median drops by 5 units because it is a mix
of the effect on the low and high types. The 90th quantile does not shift because it only
contains the high type, which is unaffected by the treatment.

Panel (b) of Figure A1 shows the estimated effect of the treatment on each quantile
of the outcome variable distribution using several approaches: binned OLS, conditional
quantile regression, and RIF unconditional quantile regression. The estimations in all three
approaches include the vehicle type as a control variable. Note that whenever there is a
positive slope in this graph, there is increased dispersion. This is because the treatment
reduces the outcome variable more where it is already low than where it is comparatively
higher.

The binned OLS (kernel-weighted OLS) estimates are plotted in blue and suggest that
treatment produces little change in the distribution except at the extreme lower quantiles.
The lack of an estimated effect for most of the distribution is because all data outside of
that bin are ignored. Within the bin, for most of the distribution, the treated and untreated
observations have the same mean, roughly the center of the bin. This implies an estimated
effect of zero.

A more interesting case are the estimates of the conditional quantile regression. Because
we have conditioned on vehicle type, the plotted coefficient is the effect of treatment averaged
across the high and low type. Thus we are averaging an effect of -10 for the low type and 0
for the high type resulting in a flat line at -5. The line connecting these coefficients has zero
slope suggesting no change in the dispersion of the distribution (except at the very ends).
In other words, conditional on type, there is no change to dispersion.1

In contrast, the RIF unconditional quantile regression presents results that describe the
behavior that we are trying to capture. We see the substantial effect at the lower quantiles
of the distribution of the outcome variable (e.g., a down-weighting) that one would expect
based on the construction of the example, as shown in Panel (a). The top quantiles of
the unconditional distribution are entirely unaffected by the treatment, and the the RIF-
regression coefficients show that the top quantiles remain unaffected. The middle quantiles
of the unconditional distribution are only partly affected by the treatment (there are both
high and low type vehicles and only the low type is affected) and accordingly, the middle is
shifted down by 5 units. The lowest quantiles are affected the most (there are only low type
vehicles), and we see the lowest ones shifted down by about 10 units.

1This can even result in a counterintuitive result if within each type there is compression but across type
there is dispersion.
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This example illustrates the value in using the unconditional quantile regression approach
for estimating the equilibrium change in the weight distribution for each fleet. Note that
the performance of all three approaches is relatively poor at the edges. For this reason, we
always omit the 3 highest and lowest quantiles in our results.

B.2 Panel Data Approach

Another potential alternative method to RIF-regression would be to build a panel dataset
based on the vehicle model. This would allow us to examine within-model weight changes.
Our concerns with this method are that it would involve excessive researcher discretion and
would greatly reduce the size of the dataset, considerably reducing the usefulness of the
analysis.

Determining when trims become separate models and what level of aggregation is needed
involves considerable researcher discretion. As an example, there are cases where a model is
a known successor to another (e.g., the Cadillac DTS is a known successor to the DeVille),
but it has a different model name and has been changed in some ways. Thus, it is unclear
if it should be counted as a continuation of the predecessor in the development of the panel.
Conversely it is difficult to know if a vehicle can be redesigned to the point that, despite
having the same name, it is a new model (e.g. Ford Taurus and Ford Taurus X). Even when
models can cleanly be identified, the introduction and termination of models can be affected
by the regulations we are studying, which would result in selection bias.

In Table A4 we present further summary statistics on the turnover in models. There is a
pronounced increase in vehicle turnover in the period from 1975-1995 with more than 100 new
models introduced and terminated in any 5-year window. While some of this behavior may
be due to incomplete coverage of the Ward’s database during this time period, inspection
suggests this is not entirely a data issue. For example, many American Motors Corporation
vehicles were discontinued in the late 70s and early 80s and many station wagons were also
discontinued.

It is very likely that at least some of this increased turn-over was related to CAFE. In
Table A5 we estimate a count model on the number of introductions and terminations on
our preferred measure of CAFE stringency. Although these models are sensitive to specifi-
cation, we view these results as suggestive evidence that an increase in stringency increases
the turnover of light weight vehicles. In Row 1 we find that high stringency increases the
introduction of new vehicle models and in Row 3 we find that high stringency increases the
termination of models. Controlling for a time trend renders the results statistically insignif-
icant. Regardless, but these regressions indicate to us that a panel of vehicle models would
suffer from selection issues, and thus would be a problematic approach to estimate the effect
of CAFE standards on weight.
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Appendix C: Further Discussion of Stringency Measure

C.1 Alternate First Stage Regressions

The choice of variables used in predicting counterfactual fuel economy in our preferred
stringency is somewhat arbitrary. Table A6 tests several other methods of predicting this
stringency and shows the effects on our estimated coefficients for the domestic car fleet.

Row 1 repeats our baseline prediction method as a point of comparison. In this method
fuel economy of vehicles is regressed on gasoline prices, GDP, and a trend separately by firm
and fleet. Row 2 includes two additional lags of gasoline prices and GDP finding very little
change in the estimated coefficients. Row 3 adds a squared trend to our baseline specification.
This increases the point estimates near the median, but continues to suggest downweighting
of low weight vehicles and dispersion in the domestic car fleet.

C.2 Credit Balance

C.2.1 Credit Balance as a Measure of Stringency

Another possible stringency measure is to use the CAFE credit balance. Automakers
are required to meet the sales weighted average for each model year. If they are above the
standard for a particular model year, they can earn “credits” that can be carried-forward. If
the automaker is below the standard and does not have sufficient credits, they must either
submit a plan for making up the difference within three years or pay a penalty. The major
benefit of using the credit balance as a stringency measure is that it provides firm-level
variation and it provides variation during the period of time after CAFE was stable. One
major drawback of the credits is that the changes to credits are often very small, thus
incentivizing very small changes in weight and producing large standard errors. Another
drawback is that they depend on firm expectations relative to outcomes in previous years as
well as expectations going forward, so the credit balance in a single year may reflect economic
conditions or firm forecasts over a long period of time, rather than act as a true measure of
stringency for that particular model year.

Ideally changes to the balance would be due to demand shocks that were exogenous to the
firms’ strategies, which may not be the case, particularly in the early days of the standard.2

But once CAFE and gasoline prices stabilized in the 1990s there was no incentive for firms
to carry large and changing balances and consequently they remained positive but close
to zero.3 Deviations from a constant balance should only have arisen from unanticipated
shocks to demand. Therefore we use the credit balance after CAFE stabilized as a measure
of stringency.

To construct the stringency based on credits over the previous three years, we normalize

2In the early days of CAFE when gasoline prices were high and firms were overshooting required targets,
they amassed fairly substantial credit balances. It seems unlikely that firms were directly reacting to these
amassed balances in the early days of CAFE. For this reason we remove the period before 1990 from these
regressions.

3If demand were perfectly predictable the optimal balance would be zero but firms likely choose to carry
a small positive balance due to uncertainty.
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by the volume in that year, and multiply by -1.4

C.2.2 Results of Credit Balance Estimation

The results of this estimation are given in Table A7. Generally we find that the standard
errors are too large to generate a statistically significant effect. This should not be surprising
because the limited variation that there is in credit balances is from smaller decisions made
by the automakers, many of which likely capture only small “tweaks” to vehicles, hence un-
derestimating the true effect from large adjustments in the standard. Our standard controls
are applied in row 1 where no coefficients are statistically significant. In row 2 we include
lagged weight to consider the possibility that much of the fleet is preserved year to year and
only a small portion is redesigned. In this case we find that some low quantiles indicated
down-weighting and that the slope is positively sloped, indicating dispersion, for light weight
vehicles. While these effects are fragile, they largely corroborate our findings using the other
two measures.

Appendix D: Price Regressions

In this paper, we focused our efforts on examining the effect of CAFE stringency on
vehicle weight, which differs from some of the recent literature that assumes that automakers
respond to CAFE by changing relative prices. To get a sense of whether automakers have
a substantial response in prices, we examine the vehicle manufacturer suggested retail price
(MSRP).

In Table A8 we run a kernel-weighted OLS of MSRP on our preferred measure of strin-
gency using a 10 quantile bandwidth with an Epanechnikov kernel. Rows 1 and 2 are run
on the sample of domestic cars. We find that when stringency increases we observe price
increases for the heaviest vehicles. This could possibly be due to a pricing strategy at-
tempting to push sales away from these larger more inefficient vehicles, or it could be new
technology being priced into the vehicle, which is consistent with our results showing that
the automaker compliance with CAFE standards was not through the weight of the heavier
vehicles. If drivers of these heavier vehicles are sensitive to attribute changes, firms may
install new costly technology that improves fuel economy while preserving vehicle weight.
We do not, however, observe these same dynamics for the domestic truck fleet given in rows 3
and 4. Generally these point estimates are statistically insignificant and small for all trucks.

Appendix E: Remaining Robustness Checks

Table A9 presents several key robustness checks for the domestic car fleet. Row 1 in-
troduces lagged fleet weight to control for the fact that many vehicles are not redesigned

4The division by volume makes the measure comparable between large and small firms and aids in
interpretation as 1 unit then represents the firm producing vehicles that are on average 1 MPG better than
the CAFE level. We multiply the balance by negative one to make the sign comparable with our other
measures of stringency. Thus when the balance variable is positive the standard is more binding and weight
would be expected to decrease resulting in a negative coefficient.
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in a given year. Row 2 includes model year fixed effects. While this regression still shows
down-weighting and dispersion for low weight vehicles there is some amount of up-weighting
in the middle of distribution. Because time variation is removed, this is a measure of CAFE
stringency differences at the inception of CAFE, based on which manufacturers were closest
or furthest from meeting the standard. Row 3 adds a quadratic trend to the regression. Row
4 uses the level of the CAFE standard as the measure of robustness. Row 5 also uses the
level of the standard, but in addition includes lagged fleet weight.

Table A10 repeats these specification for the domestic truck fleet. Table A11 presents
robustness checks for the Asian car fleet and Table A12 for the Asian truck fleet. Tables
A13 and A14 present results for the European car and truck fleet. We generally use own
stringency as these firms were not in compliance with CAFE and faced fines based on their
shortfall. Some of our main checks cannot be run for these fleets because of insufficient data,
or in the case of trucks because we do not have enough pre-CAFE data to generate own-fleet
stringency measure. We note that for the European car fleet, increased stringency generally
results in almost uniform downweighting. This is likely because all vehicles produced by
these firms, including small vehicles, appeal to the same luxury demographic.

Appendix F: Details of Accident Fatality Estimation

F.1 Econometric Specifications

We estimate the effect of vehicle weight on fatality risk using a linear probability model.
The exact specification is based on the number of light-duty vehicles involved. Only slightly
more than 7% of all fatal crashes involve multiple fatalities. Thus, following Anderson
and Auffhammer (2014) we model the probability that one or more fatalities occur in a
crash. Relaxing this assumption and modeling multiple fatality accidents would very slightly
increase the number of lives saved, but should not substantially change our results.

For 1-vehicle accidents, we model the probability of a fatal accident as

P (fi = 1) = β1wti + Ziγ + εi (F.1)

where wti is the weight, in 1,000s of lbs. In our preferred specification we control for vehicle
footprint (in square feet), class (using an indicator for whether the vehicle is either an SUV
or van and an indicator for the vehicle being a pickup truck), the model year, a time trend,
and county fixed effects. An alternative specification also includes controls for the estimated
speed at the time of crash and seat belt use, but including these controls dramatically
decrease the number of observations. We view this alternative specification as a useful
robustness check due to the possibility that driving safer vehicles induces riskier driving
behavior (Peltzman 1975).

For 2-vehicle accidents we model the probability of a fatal accident as

P (fi = 1) = β1|wt1,i − wt2,i|+ β2(wt1,i + wt2,i) + Ziγ + εi

where wtj,i is the weight, in 1,000s of lbs of vehicle j. The coefficient β1 captures the
effect of vehicle weight dispersion while β2 captures the effect of the total weight involved
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in the crash.5 Vector Zi contains similar controls to the 1-vehicle crashes: the minimum
and maximum vehicle footprint, minimum and maximum model year, indicators for each
potential pair of car, pickup truck, and SUV/van, a dummy for any individual in any vehicle
not wearing a seat belt, a variable for the sum of vehicle speeds, and a variable for the
difference in vehicle speeds.

For 3-vehicle accidents we model the probability of a fatal accident as

P (fi = 1) = β1sd(wt1,i, wt2,i, wt3,i) + β2(
∑
j

wtj,i) + Ziγ + εi

where sd is the standard deviation function. Controls in Zi include indicators for all 3-vehicle
permutations of vehicle class, and the minimum and maximum across vehicles for footprint,
model year, and speed. All standard errors are clustered on the county of crash.

F.1.1 Estimates of the Effect of Vehicle Weight on Fatalities

Table A15 presents the fatality regression results. Column IV is the preferred spec-
ification. Panel A presents the result for 1-vehicle crashes. The results indicate that a
1,000-pound decrease in vehicle weight will lower the probability of a fatality by 0.20%.6

This positive relationship between fatalities and vehicle weight for 1-vehicle crashes will turn
out to be important for our simulation.7 Because CAFE lowers the mean weight of domes-
tic vehicles in 1-vehicle crashes (about half of all crashes), this is a major force reducing
fatalities.

The results also suggest that a larger footprint, newer model years, and cars (rather than
trucks) all reduce fatalities. The addition of behavioral controls for speed and seat belt use
do not change the results for weight but do change the results for the SUV/van indicator,
likely due to a correlation between class and risky behavior.

Panels B and C present the results for 2- and 3-vehicle accidents. For both types of
accidents the coefficient on total vehicle weight is roughly similar to the coefficient estimated
for 1-vehicle crashes.8 Decreasing the total weight involved in a crash decreases the number
of fatalities. Increased dispersion, either measured by the absolute value of the difference
in weights for 2-vehicle crashes or the standard deviation of weight for 3-vehicle crashes,
increases fatalities. These two results together suggest that down-weighting low-weight vehi-

5Because all crashes involve two vehicles the effect of average vehicle weight can be determined by
dividing β2 by 2. We use this measure so that the effect of 1,000 lbs of down-weighting can be compared for
the dispersion and mean.

6In appendix tables A16 through A19 we extensively test the robustness of this result and find that
the coefficient is consistently positive and statistically significant. Specifically, we examine subsamples with
drivers between the ages of 25 and 65 to look at driver age-vehicle choice correlation, accidents without any
intoxicated drivers, only daytime crashes, urban crashes, crashes where all drivers are insured, rollovers, and
non-rollovers. We also examine the probability of a driver fatality and the sensitivity of the results to state
population weights. In all regressions the coefficient on vehicle weight is positive.

7Qualitatively similar results are shown by Anderson and Auffhammer (2014) and Jacobsen (2013) for
1-vehicle crashes. White (2004) does not control for vehicle weight but finds that light trucks are deadlier
in 1-vehicle crashes, also suggesting a similar result.

8In appendix tables A16 through A19 we test the robustness of this result and find that the coefficient
is consistently positive.
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cles will both lower the total weight, reducing fatalities, and increase dispersion, increasing
fatalities. The net effect on fatalities depends on the characteristics of the fleet and the effect
of CAFE on the full weight distribution.

We again find that a larger footprint is generally protective to occupants in the smaller
vehicle. Model year controls have negative coefficients suggesting that safety technology has
improved over time. In regressions controlling for speed and seatbelts, the time trend has a
negative coefficient, possibly due to the influence of policy, road design, and safety programs.

We perform extensive robustness checks on these estimation results. Tables A16 through
?? present these robustness checks. In all regressions the dependent variable is an indicator
for the presence of a fatality in any vehicle. We find these to be largely confirmatory of
our primary results, giving us further confidence in the primary findings that increasing
dispersion increases fatalities, while reducing the mean weight reduces fatalities.

Appendix G: Counterfactual Fatalities

Table A20 shows the RIF-regression coefficients that enter the simulation. We examine
three scenarios to explore the robustness of our results. In scenario 1 all coefficients are used.
In scenario 2 all insignificnat coefficients are set to zero. In scenario 3 all non-Domestic (rows
3 through 6) are set to zero.

Table A21 gives more information on the relationship between vehicle footprint and
vehicle weight. In all regressions the log of vehicle footprint in square feet is regressed on
vehicle weight. Robustness checks include controls for horsepower and fuel economy, firm
fixed effects, and model year fixed effects. We also use subsamples of the domestic firms and
changes in the time frame. We adopt 0.7 as the footprint-weight elasticity used for altering
footprint in our simulations based on these regressions.

Table A22 shows the coefficients of the regression that imputes the percent change in
fatalities to the national level. Because our sample is relatively skewed towards Eastern and
Midwestern states, some areas, such as the West, that have lower population density counties
and a larger share of Asian manufactured vehicles are underrepresented. In these regressions
the dependent variable is the county-level percent change in fatalities for the listed scenario
in a world without CAFE. Positive coefficients indicate CAFE saves lives more in counties
with that characteristic. We include county level fatalities (taken from FARS) as measure
of driving intensity and dangerous behavior in a county and county level population from
the U.S. Census. We also include state level values based on the NHTS 2009 survey of mean
vehicle weight, fraction of vehicles that are light-duty trucks, mean vehicle age, and the
fraction of the fleet in that state from Asian and Domestic manufacturers. For fatalities,
population, mean vehicle weight, and age we use the Inverse Hyperbolic Sine transformation
log(yi + (y2

i + 1)1/2). We use this transformation because population and fatalities are highly
skewed and we would ideally use the ln transformation but some rural counties have zero
fatalities. The benefit of this transformation is that it approaches the ln transformation for
larger values but is also defined for zero (Burbridge et al. 1998).
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Automobile Catalog Ward’s
Mean Std. Dev. Min Max N Mean Std. Dev. Min Max N

Pre 1971 3,678.0 (491.2) 1,312.0 6,173.0 20,007 0
Cars 3,678.1 (491.8) 1,312.0 6,173.0 19,803 0
Light Trucks 3,668.0 (433.8) 2,315.0 4,696.0 204 0

1971 - 1981 3,591.0 (700.7) 1,537.0 6,041.0 10,016 3,336.5 (874.5) 1,290.0 5,783.0 2,002
Cars 3,583.2 (703.3) 1,537.0 6,041.0 9,278 3,338.8 (872.0) 1,290.0 5,783.0 1,942
Light Trucks 3,690.2 (658.7) 2,425.0 5,170.0 738 3,262.0 (958.0) 1,984.0 5,165.0 60

Post 1981 3,365.7 (830.5) 1,488.0 7,725.0 17,222 3,889.2 (1149.1) 1,048.0 8,003.0 32,887
Cars 3,057.1 (581.2) 1,488.0 4,773.0 11,880 3,107.2 (640.2) 1,488.0 6,340.0 14,727
Light Trucks 4,052.1 (888.8) 2,339.0 7,725.0 5,342 4,523.3 (1077.4) 1,048.0 8,003.0 18,160

Notes: Prediction of counterfactual fuel economy includes a trend, trend-squared, gas price, and GDP. Quantiles coefficients
plotted by vehicle weight within quantile. All regressions include firm fixed effects and controls for average gas price and GDP
in 3 prior years, except for regressions 2 and 4 which only include gas price and GDP in the prior year.
a .

Table A1: Summary Statistics on Weight (in lbs.) by Data Source
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Panel A: Initial Data
Raw Countsb

State Years
Years with

VINSa
County of

Crash
Seatbelt and

Speed
Accidents Fatalities

Florida 95-08 95-08 Yes Yes 3,474,433 39,848
Georgia 95-08 98-08 Partial No 3,569,036 16,265
Illinois 95-09 95-09 Yes No 5,504,855 18,514
Kansas 94-08 94-08 Yes Partial 1,099,847 6,381
Michigan 95-09 04-09 Yes No 1,979,599 6,071
Missouri 95-08 95-08 Yes No 2,555,240 14,387
Nebraska 99-07 99, 01-07 Yes No 535,557 2,208
New Mexico 89-10 89-99, 01-10 Yes No 1,028,377 8,479
New York 00, 02-10 00, 02-10 Yes No 2,901,859 12,850
North Carolina 99-08 99-08 Yes Yes 2,718,668 14,738
Pennsylvania 89-01, 03-10 89-01, 03-10 Yes Yes 2,849,785 29,780
Virginia 89-09 05-06, 08-09 No Yes 410,054 2,180
Washington 89-10 02-10 Yes No 1,130,137 4,802
Total 29,757,447 176,503

Panel B: Vehicles Usable for Regressions
Accidents Fatalities

State With VINS
Vehicle Count

1, 2, or 3c
VINs Decode
with Weight

Fraction of
Accidents in

Final Set
In Final Set Fraction

Florida 3,384,336 3,079,875 1,731,365 0.42 14,738 0.37
Georgia 3,542,542 3,444,921 2,006,915 0.51 7,535 0.46
Illinois 5,058,120 4,879,232 2,372,437 0.35 7,037 0.38
Kansas 622,055 604,028 339,330 0.28 2,705 0.42
Michigan 1,868,712 1,816,707 1,559,079 0.72 3,179 0.52
Missouri 2,424,946 2,347,948 1,231,635 0.42 7,394 0.51
Nebraska 486,593 472,309 292,833 0.52 1,102 0.50
New Mexico 885,347 845,674 448,372 0.36 2,731 0.32
New York 2,687,175 2,471,994 2,268,631 0.66 5,665 0.44
North Carolina 2,685,769 2,543,650 2,006,645 0.68 7,556 0.51
Pennsylvania 2,841,573 2,689,781 1,835,255 0.60 15,925 0.53
Virginia 270,582 256,858 124,767 0.27 581 0.27
Washington 1,053,755 1,001,976 823,970 0.61 2,368 0.49

Total 27,811,505 26,454,953 17,041,234 0.57 78,516 0.44

Notes:
a Years with less than 10% VINs encoded considered missing.
b Sums fatalities in state years with VINs recorded in more than 10% of all accidents.
c Excludes motorcycles, mopeds, bicycles etc.

Table A2: State Data System Accident Data
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Crash
Year

Number
Vehicles
with VINS

Not valid
pattern
(includes
pre-1980)

Manufacturer
not valid or
not a car
producer

No obvious VIN error
but cannot be decoded
(includes pre-1980)

Decoded
but no
weight or
model year

Final Sam-
ple

Percent de-
coded

I II III IV V VI VII
1989 331,790 121,012 23,649 4,485 9,104 173,542 52%
1990 316,690 58,232 50,810 9,426 10,555 187,673 59%
1991 293,203 43,024 45,954 8,097 10,517 185,619 63%
1992 282,721 28,092 39,375 7,010 10,194 198,054 70%
1993 280,421 27,383 32,572 5,724 10,447 204,299 73%
1994 290,207 28,950 29,631 5,255 11,271 215,103 74%
1995 1,528,744 42,535 204,530 568,351 35,683 677,656 44%
1996 1,314,078 36,812 162,605 404,301 36,636 673,732 51%
1997 1,656,068 33,653 176,088 321,916 56,141 1,068,279 65%
1998 2,101,805 34,907 197,432 396,637 73,306 1,399,536 67%
1999 2,579,049 38,478 252,407 518,227 86,940 1,683,007 65%
2000 3,264,582 38,101 226,096 440,939 126,098 2,433,365 75%
2001 2,950,756 18,589 247,046 498,333 107,206 2,079,597 70%
2002 3,439,280 19,242 257,377 566,749 122,246 2,473,679 72%
2003 3,626,438 31,939 253,657 569,679 126,408 2,644,767 73%
2004 4,119,930 33,090 264,342 489,904 142,716 3,189,889 77%
2005 4,102,153 27,145 274,913 464,934 141,095 3,194,075 78%
2006 4,095,763 22,072 250,614 419,249 140,501 3,263,329 80%
2007 4,204,760 22,904 236,524 368,493 140,959 3,435,886 82%
2008 4,192,961 29,833 225,648 354,711 138,190 3,444,583 82%
2009 2,053,501 10,609 104,742 117,169 61,084 1,759,899 86%
2010 916,523 4,299 20,873 17,491 30,588 843,275 92%

Table A3: SDS Data and Deletions by Year of Crash

Number of Number of
Products Introduced Products Terminated

1970-1974 99 66
1975-1979 155 130
1980-1984 122 107
1985-1989 119 119
1990-1994 117 116
1995-1999 82 85
2000-2004 87 78

Notes: Counts any interruption as a new product. Includes
all automakers.

Table A4: Model Introductions and Terminations by Year
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Coefficients Model Years Disp. Coeff. Details
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cluded.

Product Termination Regressions

3

-5
0

5
10

1500 2500 3500 4500

1978-2005
∑3

i=−1 St−i

5
Negative Binomial regression by vehicle weight
quanitle using 30-quanitle bandwidth. Trends
omitted.

4

-5
0

5
10

1500 2500 3500 4500

1978-2005
∑3

i=−1 St−i

5
Negative Binomial regression by vehicle weight
quanitle using 30-quanitle bandwidth. Trends in-
cluded.

Notes: Prediction of counterfactual fuel economy includes a trend, trend-squared, gas price, and GDP. Quantiles coefficients
plotted by vehicle weight within quantile. All regressions include firm fixed effects and controls for average gas price, GDP in 3
prior years, and a quadratic trend.
c ?

Table A5: Introductions and Terminations, Domestic Cars

13



Coefficients Model Years Disp. Coeff. Details

Counterfactual Fuel Economy

1

-1
0

1

2000 3000 4000 5000

1978-2005
∑3

i=−1 St−i

5
Base Specification: Counterfactual fuel economy
predicted from a trend, GPt, and GDPt

2

-1
0

1

2000 3000 4000 5000

1978-2005
∑3

i=−1 St−i

5
Counterfactual fuel economy predicted from a
trend, GPt, GPt−1, GPt−2, GDPt, GDPt−1 and
GDPt−2

3

-1
0

1

2000 3000 4000 5000

1978-2005
∑3

i=−1 St−i

5
Counterfactual fuel economy predicted from a
trend, trend-squared, GPt, and GDPt

Notes: All regressions include firm fixed effects and controls for average gas price, GDP in 3 prior years, and a quadratic trend.

Table A6: Alternate 1st Stage Prediction, Domestic Cars
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M
od

el
Y
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r

F
.E

Three Year Credit Balance

1

-.0
2

-.0
1

0
.0

1
.0

2

2000 3000 4000 5000

1990-2000 Credit Balance l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No No

2

-.0
2

-.0
1

0
.0

1
.0

2

2000 3000 4000 5000

1990-2000 Credit Balance l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes No

Notes: Credit balance is summed over the previous three years, normalize by the volume in the last year, and multiply by -1 to
make interpretation similar to that of the prior stringency methods.

Table A7: Cumulative 3-year Credit Balance, Domestic Cars
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Cars

1

-1
0

1

2000 3000 4000 5000

1978-2005
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
)

2

-1
0

1

2000 3000 4000 5000

1978-2005 St−1 l(GPt−1) l(GDPt−1)

Trucks

3

-1
0

1

2000 3000 4000 5000

1978-2000
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
)

4

-1
0

1

2000 3000 4000 5000

1978-2005 St−1 l(GPt−1) l(GDPt−1)

Notes: Prediction of counterfactual fuel economy includes a trend, trend-squared, gas price, and GDP. Quantiles
coefficients plotted by vehicle weight within quantile. All regressions include firm fixed effects and controls for
average gas price, GDP in 3 prior years, and a quadratic trend.
c ?

Table A8: Prices, Domestic
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M
od

el
Y

ea
r

F
.E

Counterfactual Fuel Economy

1

-1
0

1

2000 3000 4000 5000

1978-2005
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes No

2

-1
0

1

2000 3000 4000 5000

1978-2005
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No Yes

3

-1
0

1

2000 3000 4000 5000

1978-2005
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) Yes No No

CAFE Standard

4

-1
0

1

2000 3000 4000 5000

1978-2005 l(CAFEt) l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No No

5

-1
0

1

2000 3000 4000 5000

1978-2005 l(CAFEt) l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes No

Notes: Prediction of counterfactual fuel economy includes a trend, trend-squared, gas price, and GDP. Quantiles coefficients
plotted by vehicle weight within quantile. All regressions include firm fixed effects and controls for average gas price, GDP in
3 prior years, and a quadratic trend.

Table A9: Specification Robustness, Domestic Cars
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Counterfactual Fuel Economy

1

-1
0

1

2000 3000 4000 5000

1978-2005
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No No

2

-1
0

1

2000 3000 4000 5000

1978-2005
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes No

3

-1
0

1

2000 3000 4000 5000

1978-2005
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) Yes No No

4

-1
0

1

2000 3000 4000 5000

1978-2005
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No Yes

CAFE Standard

5

-1
0

1

2000 3000 4000 5000

1978-2005 l(CAFEt) l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No No

6

-1
0

1

2000 3000 4000 5000

1978-2005 l(CAFEt) l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes No

Notes: Prediction of counterfactual fuel economy includes a trend, trend-squared, gas price, and GDP. Quantiles coefficients
plotted by vehicle weight within quantile. All regressions include firm fixed effects and controls for average gas price, GDP in
3 prior years, and a quadratic trend.

Table A10: Domestic Trucks
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Counterfactual Fuel Economy

1

-1
0

1

2000 3000 4000 5000

1978-2005 US
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No

2

-1
0

1

2000 3000 4000 5000

1978-2005 US
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes

3

-1
0

1

2000 3000 4000 5000

1978-2005 US
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) Yes No

CAFE Standard

4

-1
0

1

2000 3000 4000 5000

1978-2005 l(CAFEt) l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No

5

-1
0

1

2000 3000 4000 5000

1978-2005 l(CAFEt) l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes

Notes: Prediction of counterfactual fuel economy includes a trend, trend-squared, gas price, and GDP. Quantiles coefficients
plotted by vehicle weight within quantile. All regressions include firm fixed effects and controls for average gas price, GDP
in 3 prior years, and a quadratic trend.
c ?

Table A11: Asian Cars
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Counterfactual Fuel Economy

1

-1
0

1

2000 3000 4000 5000

1978-2005 US
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No

2

-1
0

1

2000 3000 4000 5000

1978-2005 US
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes

3 Insufficient Sales Data 1978-2005 US
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) Yes No

CAFE Standard

4

-1
0

1

2000 3000 4000 5000

1978-2005 l(CAFEt) l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No

5

-1
0

1

2000 3000 4000 5000

1978-2005 l(CAFEt) l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes

Notes: Prediction of counterfactual fuel economy includes a trend, trend-squared, gas price, and GDP. Quantiles coefficients
plotted by vehicle weight within quantile. All regressions include firm fixed effects and controls for average gas price, GDP
in 3 prior years, and a quadratic trend.

Table A12: Asian Trucks
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Counterfactual Fuel Economy

1

-1
0

1

2000 3000 4000 5000

1978-2005 Own
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No

2

-1
0

1

2000 3000 4000 5000

1978-2005 Own
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes

3

-1
0

1

2000 3000 4000 5000

1978-2005 Own
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) Yes No

CAFE Standard

4

-1
0

1

2000 3000 4000 5000

1978-2005 l(CAFEt) l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No

5

-1
0

1

2000 3000 4000 5000

1978-2005 l(CAFEt) l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes

Notes: Prediction of counterfactual fuel economy includes a trend, trend-squared, gas price, and GDP. Quantiles coefficients
plotted by vehicle weight within quantile. All regressions include firm fixed effects and controls for average gas price, GDP in 3
prior years, and a quadratic trend.

Table A13: European Cars
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Counterfactual Fuel Economy

1 No pre-CAFE data. 1978-2005 Own
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No

2 No pre-CAFE data. 1978-2005 Own
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes

3 No pre-CAFE data. 1978-2005 Own
∑3

i=−1 St−i

5
l(

∑3
i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) Yes No

CAFE Standard

4

-1
0

1

2000 3000 4000 5000

1978-2005 l(CAFEt) l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No No

5 -1
0

1

2000 3000 4000 5000

1978-2005 l(CAFEt) l(
∑3

i=1 GPt−i

3
) l(

∑3
i=1 GDPt−i

3
) No Yes

Notes: Prediction of counterfactual fuel economy includes a trend, trend-squared, gas price, and GDP. Quantiles coefficients
plotted by vehicle weight within quantile. All regressions include firm fixed effects and controls for average gas price, GDP in 3
prior years, and a quadratic trend.
c ?

Table A14: European Trucks
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Panel A: One Vehicle Crashes I II III IV V

Weight (1000 lbs) -0.00015*** 0.00126*** 0.00201*** 0.00200*** 0.00249***
(0.00006) (0.00012) (0.00012) (0.00012) (0.00030)

Pickup Truck 0.00196*** 0.00296*** 0.00259*** 0.00260*** 0.00199***
(0.00015) (0.00019) (0.00018) (0.00018) (0.00036)

Van or SUV 0.00086*** -0.00011 -0.00040*** -0.00039*** 0.00084**
(0.00014) (0.00013) (0.00013) (0.00013) (0.00033)

Footprint -0.00005*** -0.00005*** -0.00005*** -0.00004***
(0.00000) (0.00000) (0.00000) (0.00001)

Model Year -0.00024*** -0.00026*** -0.00006**
(0.00001) (0.00001) (0.00002)

Trend 0.00006** -0.00036***
(0.00002) (0.00005)

County fixed effects Y Y Y Y Y
Controls for Speed and Seatbelts N N N N Y
N 7,345,248 7,345,248 7,345,202 7,345,202 1,639,271

Panel B: Two Vehicle Crashes I II III IV V

Abs(Weight Difference) (in 1000s) 0.00068*** 0.00057*** 0.00056*** 0.00056*** 0.00059***
(0.00005) (0.00005) (0.00005) (0.00005) (0.00011)

Sum of Vehicle Weights 0.00003 -0.00002 0.00021*** 0.00021*** 0.00038***
(0.00003) (0.00004) (0.00004) (0.00004) (0.00011)
(0.00010) (0.00011) (0.00011) (0.00011) (0.00026)

Footprint of Smallest Vehicle -0.00000** -0.00001*** -0.00001*** -0.00001*
(0.00000) (0.00000) (0.00000) (0.00000)

Footprint of Largest Vehicle 0.00001*** 0.00000** 0.00000** 0.00000
(0.00000) (0.00000) (0.00000) (0.00000)

Oldest Model Year -0.00005*** -0.00005*** 0.00002
(0.00001) (0.00001) (0.00001)

Youngest Model Year -0.00005*** -0.00005*** -0.00001
(0.00001) (0.00001) (0.00001)

Trend 0.00001 -0.00015***
(0.00001) (0.00003)

County fixed effects Y Y Y Y Y
Class Dummiesa Y Y Y Y Y
Controls for Speed and Seat belts N N N N Y
N 8,956,966 8,956,966 8,956,966 8,956,966 2,125,543

Panel C: Three Vehicle Crashes I II III IV V

Std. Dev. of Weights 0.00191*** 0.00133*** 0.00128*** 0.00128*** 0.00192**
(0.00029) (0.00034) (0.00034) (0.00034) (0.00078)

Sum of Weights 0.00025*** 0.00023** 0.00049*** 0.00049*** 0.00058**
(0.00009) (0.00012) (0.00013) (0.00012) (0.00028)

Footprint of Smallest Vehicle -0.00002** -0.00002** -0.00002** -0.00001
(0.00001) (0.00001) (0.00001) (0.00002)

Footprint of Largest Vehicle 0.00001*** 0.00001** 0.00001** -0.00001
(0.00000) (0.00000) (0.00000) (0.00001)

Oldest Model Year -0.00012*** -0.00012*** -0.00008
(0.00002) (0.00002) (0.00005)

Youngest Model Year -0.00003 -0.00003 0.00002
(0.00003) (0.00003) (0.00009)

Trend -0.00001 -0.00022**
(0.00004) (0.00009)

County fixed effects Y Y Y Y Y
Class Dummiesa Y Y Y Y Y
Controls for Speed and Seatbelts N N N N Y
N 739,020 739,020 739,020 739,020 190,249

Notes: Standard errors in parentheses clustered at the county level with * indicating significance at 5%, ** at 1%, and *** at
>1%.
a Dummies for all combinations of Car, Van/SUV, and Pickup Truck. Two car or three car accidents omitted.

Table A15: Accident Regressions
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Panel A: One Vehicle Crashes
Central

I II III IV V VI
Weight -0.00015*** 0.00126*** 0.00201*** 0.00200*** 0.00199*** 0.00248***

(0.00006) (0.00012) (0.00012) (0.00012) (0.00012) (0.00030)
Footprint -0.00005*** -0.00005*** -0.00005*** -0.00005*** -0.00004***

(0.00000) (0.00000) (0.00000) (0.00000) (0.00001)
Height 0.00000 0.00001

(0.00001) (0.00001)
Constant 0.00676*** 0.00869*** 0.47936*** 0.40429*** 0.40537*** 0.83086***

(0.00017) (0.00021) (0.02257) (0.04445) (0.04445) (0.07864)
R-squared 0.00 0.00 0.01 0.01 0.01 0.06
N 7345248 7345248 7345202 7345202 7345202 1639271

Panel B: Two Vehicle Crashes
I II III IV V VI

Abs(weight1-weight2) 0.00068*** 0.00057*** 0.00056*** 0.00056*** 0.00053*** 0.00057***
(0.00005) (0.00005) (0.00005) (0.00005) (0.00005) (0.00011)

Sum of vehicle weights 0.00003 -0.00002 0.00021*** 0.00021*** 0.00018*** 0.00037***
(0.00003) (0.00004) (0.00004) (0.00004) (0.00004) (0.00011)

Footprint Smallest Veh. -0.00000** -0.00001*** -0.00001*** -0.00000*** -0.00001*
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Footprint Largest Veh. 0.00001*** 0.00000** 0.00000** 0.00000* 0.00000
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Height Smallest -0.00001*** 0.00000
(0.00000) (0.00001)

Height Largest 0.00002*** 0.00001
(0.00001) (0.00002)

Constant 0.00193*** 0.00194*** 0.20746*** 0.19839*** 0.19605*** 0.27203***
(0.00017) (0.00019) (0.01442) (0.01965) (0.01972) (0.05770)

R-squared 0.00 0.00 0.00 0.00 0.00 0.02
N 8956966 8956966 8956966 8956966 8956966 2125543

Panel C: Three Vehicle Crashes
Three Vehicle Crashes I II III IV V VI
Standard Dev of Weight 0.00191*** 0.00133*** 0.00128*** 0.00128*** 0.00109*** 0.00187**

(0.00029) (0.00034) (0.00034) (0.00034) (0.00036) (0.00080)
Sum of Weight 0.00025*** 0.00023** 0.00049*** 0.00049*** 0.00044*** 0.00058**

(0.00009) (0.00012) (0.00013) (0.00012) (0.00013) (0.00028)
Footprint Smallest Veh. -0.00002** -0.00002** -0.00002** -0.00002** -0.00001

(0.00001) (0.00001) (0.00001) (0.00001) (0.00002)
Footprint Largest Veh. 0.00001*** 0.00001** 0.00001** 0.00001* -0.00001

(0.00000) (0.00000) (0.00000) (0.00000) (0.00001)
Minimum Vehicle Height 0.00000 0.00001

(0.00001) (0.00002)
Maximum Vehicle Height 0.00005* 0.00001

(0.00003) (0.00005)
Constant 0.00064 0.00116 0.30268*** 0.30680*** 0.31190*** 0.55377***

(0.00079) (0.00093) (0.04755) (0.05534) (0.05534) (0.11636)
R-squared 0.01 0.01 0.01 0.01 0.01 0.03
N 739020 739020 739020 739020 739020 190249
Dependent Variable Any Fatalities Any Fatalities Any Fatalities Any Fatalities Any Fatalities Any Fatalities
Sample Restriction - - - - - -
County Fixed Effects Y Y Y Y Y Y
Class pair fixed effects Y Y Y Y Y Y
Model year of vehicles N N Y Y Y Y
Trend N N N Y Y Y
Speed and Seatbelt use N N N N N Y
Driver Ages N N N N N N
Driver Gender N N N N N N
Sample Weights None None None None None None

Notes: Linear probability model estimates of a vehicle fatality on the listed regressands. Standard errors, clustered on county, are given
in parentheses with * indicating significance at 5%, ** at 1%, and *** at >1%.

Table A16: Probability of Fatality, Robustness 1
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Panel A: One Vehicle Crashes
Central

I II III IV V VI
Weight 0.00166*** 0.00216*** 0.00106*** 0.00846*** 0.00117*** 0.00283***

(0.00011) (0.00017) (0.00012) (0.00098) (0.00014) (0.00018)
Footprint -0.00004*** -0.00006*** -0.00003*** -0.00018*** -0.00003*** -0.00007***

(0.00000) (0.00000) (0.00000) (0.00002) (0.00000) (0.00000)
Height -0.00000 0.00001 0.00001 0.00005 0.00001 -0.00001

(0.00001) (0.00001) (0.00001) (0.00004) (0.00001) (0.00001)
Constant 0.17219*** 0.42403*** 0.01042 0.02628 0.31283*** 0.51471***

(0.02643) (0.05348) (0.03647) (0.33046) (0.05008) (0.04918)
R-squared 0.00 0.01 0.00 0.01 0.01 0.01
N 7106363 2636913 4044005 319297 3442459 3442001

Panel B: Two Vehicle Crashes
I II III IV V VI

Abs(weight1-weight2) 0.00048*** 0.00063*** 0.00034*** 0.00252*** 0.00044*** 0.00082***
(0.00004) (0.00007) (0.00005) (0.00061) (0.00005) (0.00012)

Sum of vehicle weights 0.00010*** 0.00003 0.00010** 0.00044 0.00009** 0.00044***
(0.00004) (0.00007) (0.00004) (0.00058) (0.00004) (0.00013)

Footprint Smallest Veh. -0.00000** -0.00001*** -0.00000 -0.00005** 0.00000 -0.00002***
(0.00000) (0.00000) (0.00000) (0.00002) (0.00000) (0.00001)

Footprint Largest Veh. 0.00000 0.00001*** 0.00000*** 0.00001 0.00000*** -0.00000
(0.00000) (0.00000) (0.00000) (0.00002) (0.00000) (0.00000)

Height Smallest -0.00001** -0.00001 -0.00001** 0.00003 -0.00001** -0.00002*
(0.00000) (0.00001) (0.00000) (0.00004) (0.00000) (0.00001)

Height Largest 0.00002*** 0.00001 0.00001 0.00022*** 0.00002*** 0.00004**
(0.00001) (0.00001) (0.00001) (0.00008) (0.00001) (0.00002)

Constant 0.11511*** 0.14899*** 0.15234*** 0.65907*** 0.17829*** 0.28384***
(0.01474) (0.02536) (0.02439) (0.24473) (0.01881) (0.04021)

R-squared 0.00 0.00 0.00 0.02 0.00 0.01
N 8823912 2940398 5497097 209615 6614164 2037637

Panel C: Three Vehicle Crashes
I II III IV V VI

Standard Dev of Weight 0.00078*** 0.00118** 0.00126*** 0.00689 0.00083** 0.00170*
(0.00029) (0.00057) (0.00042) (0.00464) (0.00036) (0.00089)

Sum of Weight 0.00029** 0.00029 0.00038** 0.00056 0.00040*** 0.00056
(0.00011) (0.00023) (0.00015) (0.00163) (0.00013) (0.00035)

Footprint Smallest Veh. -0.00001** -0.00002 -0.00001 0.00000 -0.00001 -0.00003
(0.00001) (0.00002) (0.00001) (0.00011) (0.00001) (0.00002)

Footprint Largest Veh. 0.00000 0.00000 0.00000 0.00007 0.00001* 0.00001
(0.00000) (0.00001) (0.00001) (0.00006) (0.00001) (0.00001)

Minimum Vehicle Height -0.00000 -0.00001 -0.00000 0.00017 -0.00000 0.00003
(0.00001) (0.00002) (0.00001) (0.00013) (0.00001) (0.00003)

Maximum Vehicle Height 0.00005** 0.00000 0.00002 -0.00003 0.00005* 0.00005
(0.00002) (0.00005) (0.00003) (0.00035) (0.00003) (0.00007)

Constant 0.17383*** 0.31190*** 0.21380** 0.28407*** 0.31578 0.23932***
(0.04304) (0.05534) (0.08806) (0.07386) (0.69783) (0.05550)

R-squared 0.01 0.01 0.03 0.01 0.07 0.01
N 729960 739020 192067 406742 20779 558171
Dependent Variable Driver Fatal-

ity
Any Fatalities Any Fatalities Any Fatalities Any Fatalities Any Fatalities

Sample Restriction - All drivers 25
to 65

No intox’ed
drivers

At least 1 in-
tox’ed driver

Daytime
Crash

Night or dusk

County Fixed Effects Y Y Y Y Y Y
Class pair fixed effects Y Y Y Y Y Y
Model year of vehicles Y Y Y Y Y Y
Trend Y Y Y Y Y Y
Speed and Seatbelt use N N N N N N
Driver Ages N N N N N N
Driver Gender N N N N N N
Sample Weights None None None None None None

Notes: Linear probability model estimates of a vehicle fatality on the listed regressands. Standard errors, clustered on county, are given
in parentheses with * indicating significance at 5%, ** at 1%, and *** at >1%.
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Panel A: One Vehicle Crashes
Central

I II III IV V VI
Weight 0.00269*** 0.00124*** 0.00263*** 0.00232*** 0.00190*** 0.00165***

(0.00023) (0.00022) (0.00024) (0.00014) (0.00014) (0.00012)
Footprint -0.00007*** -0.00003*** -0.00005*** -0.00006*** -0.00006*** -0.00005***

(0.00001) (0.00001) (0.00001) (0.00000) (0.00000) (0.00000)
Height 0.00000 0.00000 -0.00001 0.00000 -0.00000 -0.00000

(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001)
Constant 0.53028*** 0.26372*** 0.42974*** 0.44642*** 0.37947*** 0.34715***

(0.07042) (0.09389) (0.06476) (0.05297) (0.05345) (0.04584)
R-squared 0.01 0.00 0.00 0.01 0.01 0.01
N 2120946 1924517 2363459 5778799 5672921 6977006

Panel B: Two Vehicle Crashes
I II III IV V VI

Abs(weight1-weight2) 0.00170*** 0.00025*** 0.00069*** 0.00057*** 0.00060*** 0.00056***
(0.00022) (0.00005) (0.00009) (0.00006) (0.00006) (0.00005)

Sum of vehicle weights 0.00046** 0.00017*** 0.00028*** 0.00012** 0.00002 0.00009**
(0.00019) (0.00005) (0.00008) (0.00005) (0.00005) (0.00004)

Footprint Smallest Veh. -0.00001 -0.00000 -0.00001* -0.00001*** -0.00000*** -0.00000
(0.00001) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Footprint Largest Veh. 0.00001 -0.00000 0.00000 0.00000 0.00000 0.00000*
(0.00001) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Height Smallest -0.00002 -0.00000 -0.00001* -0.00001*** -0.00001*** -0.00001**
(0.00001) (0.00000) (0.00001) (0.00000) (0.00000) (0.00000)

Height Largest 0.00003 0.00001 0.00002* 0.00003*** 0.00002*** 0.00001**
(0.00003) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001)

Constant 0.48662*** 0.04930** 0.18183*** 0.20006*** 0.16814*** 0.16043***
(0.08561) (0.02299) (0.03087) (0.02065) (0.02000) (0.01922)

R-squared 0.01 0.00 0.00 0.00 0.00 0.00
N 1181874 3372888 3328064 7957667 7957667 8820678

Panel C: Three Vehicle Crashes
Three Vehicle Crashes I II III IV V VI
Standard Dev of Weight 0.00036 0.00066 0.00057 0.00132*** 0.00142*** 0.00118***

(0.00041) (0.00144) (0.00058) (0.00037) (0.00037) (0.00036)
Sum of Weight 0.00033** 0.00129** 0.00072*** 0.00031** 0.00020 0.00035***

(0.00014) (0.00054) (0.00022) (0.00013) (0.00013) (0.00012)
Footprint Smallest Veh. -0.00001 -0.00007** -0.00003** -0.00002** -0.00002* -0.00001*

(0.00001) (0.00003) (0.00001) (0.00001) (0.00001) (0.00001)
Footprint Largest Veh. -0.00000 0.00003* 0.00001 0.00001 0.00001 0.00001

(0.00001) (0.00002) (0.00001) (0.00001) (0.00001) (0.00000)
Minimum Vehicle Height 0.00001 0.00003 0.00000 -0.00000 -0.00000 0.00000

(0.00001) (0.00004) (0.00002) (0.00001) (0.00001) (0.00001)
Maximum Vehicle Height 0.00006* 0.00002 0.00008** 0.00005* 0.00003 0.00004

(0.00003) (0.00011) (0.00004) (0.00003) (0.00003) (0.00003)
Constant 0.88437*** 0.88437*** 0.33364*** 0.28686*** 0.25475*** 0.26617***

(0.21938) (0.21938) (0.07465) (0.06048) (0.06085) (0.05527)
R-squared 0.03 0.03 0.01 0.01 0.01 0.01
N 105821 105821 304591 648665 648665 739020
Dependent Variable Any Fatalities Any Fatalities Any Fatalities Any Fatalities Any Fatalities Any Fatalities
Sample Restriction Rural Crash Urban Crash All drivers in-

sured
- - -

County Fixed Effects Y Y Y Y Y Y
Class pair fixed effects Y Y Y Y Y Y
Model year of vehicles Y Y Y Y Y Y
Trend Y Y Y Y Y Y
Speed and Seatbelt use N N N N N N
Driver Ages N N N Y Y N
Driver Gender N N N N Y Y
Sample Weights None None None None None None

Notes: Linear probability model estimates of a vehicle fatality on the listed regressands. Standard errors, clustered on county, are given
in parentheses with * indicating significance at 5%, ** at 1%, and *** at >1%.
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Panel A: One Vehicle Crashes
Central

I II III IV V
Weight 0.00236*** 0.00189*** 0.00204*** 0.00746*** 0.00180***

(0.00029) (0.00014) (0.00014) (0.00077) (0.00015)
Footprint -0.00004*** -0.00005*** -0.00005*** -0.00004** -0.00004***

(0.00001) (0.00000) (0.00000) (0.00002) (0.00000)
Height 0.00001 0.00002** 0.00000 -0.00005 -0.00001

(0.00001) (0.00001) (0.00001) (0.00004) (0.00001)
Constant 0.81619*** 0.38708*** 0.42077*** 0.68131*** 0.54847***

(0.07737) (0.07254) (0.04447) (0.16974) (0.04219)
R-squared 0.06 0.01 0.01 0.01 0.00
N 1637448 7345202 7345202 348927 3429657

Panel B: Two Vehicle Crashes
I II III

Abs(weight1-weight2) 0.00063*** 0.00060*** 0.00055***
(0.00012) (0.00006) (0.00006)

Sum of vehicle weights 0.00028*** 0.00018*** 0.00020***
(0.00011) (0.00006) (0.00005)

Footprint Smallest Veh. -0.00001 -0.00000 -0.00001***
(0.00000) (0.00000) (0.00000)

Footprint Largest Veh. 0.00000 0.00000 0.00000*
(0.00000) (0.00000) (0.00000)

Height Smallest -0.00000 -0.00000 -0.00001
(0.00001) (0.00001) (0.00001)

Height Largest 0.00002 0.00003*** 0.00002***
(0.00002) (0.00001) (0.00001)

Constant 0.33516*** 0.17214*** 0.22062***
(0.06458) (0.02228) (0.02266)

R-squared 0.02 0.00 0.00
N 2119959 8956966 8956966

Panel C: Three Vehicle Crashes
Three Vehicle Crashes I II III
Standard Dev of Weight 0.00192** 0.00106** 0.00098**

(0.00080) (0.00045) (0.00039)
Sum of Weight 0.00052* 0.00029* 0.00040***

(0.00028) (0.00015) (0.00013)
Footprint Smallest Veh. -0.00001 -0.00000 -0.00001

(0.00002) (0.00001) (0.00001)
Footprint Largest Veh. -0.00001 0.00001* 0.00001*

(0.00001) (0.00001) (0.00001)
Minimum Vehicle Height 0.00001 0.00000 -0.00000

(0.00002) (0.00002) (0.00002)
Maximum Vehicle Height 0.00000 0.00004 0.00004

(0.00005) (0.00003) (0.00003)
Constant 0.53876*** 0.20086*** 0.30793***

(0.11571) (0.07413) (0.05499)
R-squared 0.03 0.03 0.01
N 190249 739020 739020
Dependent Variable Any Fatalities Any Fatalities Any Fatalities Any Fatalities Any Fatalities
Sample Restriction - - - Roll Overs Non-Roll

Overs
County Fixed Effects Y Y Y Y Y
Class pair fixed effects Y Y Y Y Y
Model year of vehicles Y Y Y Y Y
Trend Y Y Y Y Y
Speed and Seatbelt use Y N N N N
Driver Ages N N N N N
Driver Gender Y N N N N
Sample Weights None Equal State

Weights
State Pop.
Weights

None None

Notes: Linear probability model estimates of a vehicle fatality on the listed regressands. Standard errors, clustered on county, are given
in parentheses with * indicating significance at 5%, ** at 1%, and *** at >1%.
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Notes: Prediction of counterfactual fuel economy includes a trend, trend-squared, gas price, and GDP. Quantiles coefficients plotted by
vehicle weight within quantile. All regressions include firm fixed effects and controls for average gas price, GDP in 3 prior years, and a
quadratic trend.

Table A20: RIF Regressions Used in Counterfactual Simulations
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I II III IV V
log(weight) 0.656*** 0.727*** 0.876*** 0.825*** 0.668***

(0.031) (0.079) (0.082) (0.100) (0.068)
log(horsepower) -0.072** -0.099 -0.062* -0.080***

(0.027) (0.039) (0.031) (0.026)
log(M.P.G.) 0.034 0.090 0.111 -0.000

(0.062) (0.119) (0.075) (0.058)
Constant -0.364 -0.781 -1.856 -1.800* -0.165

(0.236) (0.805) (1.180) (1.016) (0.704)
Automaker FE N Y Y Y Y
Model Year FE N Y Y Y Y
US only N Y N N N
Years 1978-2005 1978-2005 1978-2005 1995-2005 1978-1995
R-squared 0.59 0.66 0.60 0.61 0.67
N 21227 20672 11727 10917 10627

Notes: Depedent Variable Log(Footprint). Standard errors, clustered on automaker, are given in parentheses
with * indicating significance at 5%, ** at 1%, and *** at >1%.

Table A21: Footprint Versus Vehicle Weight
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Change All Firms Change Domestic Firms Only
1-veh 2-veh 3-veh 1-veh 2-veh 3-veh

I II III IV V VI

ln(pop) 0.105 0.190*** 0.063*** -0.002 0.113* 0.047***
(0.198) (0.054) (0.007) (0.208) (0.045) (0.006)

ln(fatalities) -0.145 -0.167* -0.050*** -0.008 -0.103 -0.040***
(0.245) (0.067) (0.009) (0.257) (0.056) (0.007)

ln(wt) -0.923 -0.688*** -0.175*** -0.778 -0.454*** -0.130***
(0.551) (0.150) (0.020) (0.577) (0.125) (0.016)

ln(age) 0.311 0.911*** 0.287*** -0.559 0.565** 0.210***
(0.957) (0.261) (0.035) (1.002) (0.217) (0.028)

LD Truck 0.210 -0.070 -0.033*** 0.535** -0.039 -0.023***
(0.165) (0.045) (0.006) (0.173) (0.037) (0.005)

US -0.701 -0.778*** -0.220*** 0.035 -0.503** -0.160***
(0.789) (0.215) (0.028) (0.826) (0.179) (0.023)

Asian 0.000 0.000 0.000 0.000 0.000 0.000
(.) (.) (.) (.) (.) (.)

ln(fatalities) x Asian 0.239 0.194** 0.055*** 0.086 0.121 0.044***
(0.273) (0.074) (0.010) (0.286) (0.062) (0.008)

ln(fatalities) x US 0.110 0.162* 0.050*** -0.034 0.098 0.040***
(0.246) (0.067) (0.009) (0.258) (0.056) (0.007)

ln(pop) x Asian -0.172 -0.217*** -0.070*** -0.045 -0.132** -0.052***
(0.220) (0.060) (0.008) (0.231) (0.050) (0.006)

ln(pop) x US -0.079 -0.184*** -0.063*** 0.030 -0.109* -0.047***
(0.199) (0.054) (0.007) (0.209) (0.045) (0.006)

Constant 7.258* 4.347*** 1.022*** 7.107* 2.926*** 0.764***
(3.238) (0.883) (0.117) (3.392) (0.735) (0.094)

R-squared 0.33 0.38 0.62 0.41 0.30 0.62
N 357 357 357 357 357 357

Notes: Standard errors are given in parentheses with * indicating significance at 5%, ** at 1%, and *** at >1%.

Table A22: SDS State to National Imputation
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Figure A1: Example of Technique
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