
Appendix: Estimating the Technology of Children’s
Skill Formation

Francesco Agostinelli
W.P. Carey School of Business,

Arizona State University

Matthew Wiswall
W.P. Carey School of Business,

Arizona State University
University of Wisconsin-Madison

NBER

July 14, 2016

http://francesco-agostinelli.weebly.com/
https://sites.google.com/site/mattwiswall/


A Proofs

A.1 Proof of Lemma 1

Proof. First, we note that with Zt,m, Gt(θt, It), µt,m and λt,m known, we then identify
the distribution of the measurement error, given by Fεt,m(ε) = pr(εt,m ≤ ε). Define

Z̃t,m = ln θt + εt,m
λt,m

and its characteristic function ϕZ̃t,m(x) = E

[
e
ix
(
Zt,m−µt,m

λt,m

)]
.

Define ϕln θt(x) = E
[
eix ln θt

]
to be the characteristic function of ln θt. Given the

independence between εt,m and ln θt (Assumption 1), we can rewrite the characteristic
function for εt,m

λt,m
to be:

ϕ εt,m
λt,m

(x) =
ϕZ̃t,m(x)

ϕln θt,m(x)

Given the one-to-one mapping between characteristic functions and distributions,
we identify the marginal density of εt,m

λt,m
. Since λt,m is known, we also identify the

marginal density of εt,m, Fεt,m(ε).
Next, consider the following conditional expectation:

E(Zt+1,m| ln θt = a, ln It = `) = µt+1 + λt,mE(ln θt+1| ln θt = a, ln It = `)

+E(εt+1,m| ln θt = a, ln It = `)

where E(εt+1,m| ln θt = a, ln It = `) = 0 given Assumption 1 (εt+1,m independent of
ln θt and ln It).

Iterating expectations and substituting for ln θt = Zt,m−µt,m−εt,m
λt,m

, we have the

following:

E(Zt+1,m| ln θt = a, ln It = `) =

∫
E(Zt+1,m|

Zt,m − µt,m − ε
λt,m

= a, ln It = `, ε)dFεt,m(ε)

Again applying Assumption 1 (εt,m independent of Zt+1,m), we have

=

∫
E(Zt+1,m|

Zt,m − µt,m − ε
λt,m

= a, ln It = `)dFεt,m(ε)

Re-writing again, we have

=

∫
E(Zt+1,m|Zt,m = λt,ma+ µt,m + ε, ln It = `)dFεt,m(ε)



=

∫
E(Zt+1,m|Zt,m = b(ε), ln It = `)dFεt,m(ε)

Note that for each realization of εt,m = ε, we have Zt,m = b(ε), where b(ε) is
known given µt,m, λt,m, and a are known. We identify the conditional expectation
E(Zt+1,m|Zt,m = b(ε), ln It = `) from the observed distribution of Zt+1,m and Zt,m
measures. Because the distribution of measurement errors Fεt,m(ε) is identified, we
identify E(Zt+1,m| ln θt = a, ln It = `).

Example 1 Consider the case where εt,m ∼ N(0, σ2
t,m) ∀t. We identify σ2

t,m from
V (Zt,m) = λ2

t,mV (ln θt) + V (εt,m) since we have already identified V (ln θt) and λt,m.
The idea of the proof of Lemma 1 is that the value of the current latent skills (ln θt =
a) comes both from observable measure (Zt,m) and unobservable measurement error
(εt,m). Since we identify the distribution of the unobservable, we are able to integrate
out each possible realization of that unobservable random variable. Indeed, if ε takes
value 0, because we are fixing ln θt to be equal to a, this implies that Zt,m would equal:

Zt,m = λt,m · a+ µt,m = b(0)

where both λt,m and µt,m are known. Hence weight E(Zt+1,m|Zt,m = b(0), ln It =
`) with the likelihood of the event that ε takes the value of zero. Because εt,m ∼
N(0, σ2

t,m), we have that the marginal density of the measurement error is

fεt,m(ε) =
1

σt,m
√

2π
e
− ε2

2σ2
t,m

and ∫
E(Zt+1,m|Zt,m = b(ε), ln It = `) fεt,m(ε)d ε

Because εt,m is a continuous random variable, we integrate over all the values to find
E(Zt+1,m| ln θt = a, ln It = `). This approach would be similar in the case where
investment is also a latent variable. In this case, we would integrate over the support
of the measurement error terms of both variables.
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A.2 Proof of Theorem 1

Proof.
Given Gt(θt, It) and the measurement parameters for period t, µt,m and λt,m, are

known, we use Lemma 1 to identify E(ln θt+1| ln θt = a, ln It = `) from E(Zt+1,m| ln θt =
a, ln It = `) for any a ∈ R and ` ∈ R. We then use the following transformation:

E(Zt+1,m| ln θ = a1, ln It = `1)− E(Zt+1,m| ln θ = a2, ln It = `2)

E(Zt+1,m| ln θ = a3, ln It = `3)− E(Zt+1,m| ln θ = a2, ln It = `2)
=

ln ft(e
a1 , e`1)− ln ft(e

a2 , e`2)

ln ft(ea3 , e`3)− ln ft(ea2 , e`2)

Because the function ft satisfies the known location and scale definition, then
for the points (a2, `2) and (a3, `3) the function evaluated at those points, ft(e

a2 , e`2)
and ft(e

a3 , e`3), where ft(e
a2 , e`2) 6= ft(e

a3 , e`3), is known. Call these known points,
ft(e

a2 , e`2) = α2 and ft(e
a3 , e`3) = α3.

E(Zt+1,m| ln θt = a1, ln It = `1)− E(Zt+1,m| ln θt = a2, ln It = `2)

E(Zt+1,m| ln θt = a3, ln It = `3)− E(Zt+1,m| ln θt = a2, ln It = `2)
=

ln ft(e
a1 , e`1)− α2

α3 − α2

We identify the function ln ft(θt, It) over its support by varying a1 ∈ R and
`1 ∈ R. We cannot of course use this transformation to identify the function at the
point (a2, `2), but the function evaluated at this point ft(e

a2 , e`2) is already known
by Definition 1.

A.3 Derivation of Example with CES Technology (Example
2)

∆1 =
ln f0(a1, 0)− ln f0(1, 1)

ln f0(e1, e1)− ln f0(1, 1)

∆1 =
ln(γ0 a1)− 0

ln(e1)− 0

∆1 =
ln(γ0 a1)

1

e∆1 = γ0 a1

γ0 =
e∆1

a1
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Once we have γ0, we can use the same ratio as before taking a1 6= {0, 1}, a3 6= 0,
`1 = 1, a2 = a4 = `2 = `4=1 and taking the limit `3 → 0 we have:

∆2 =
ln f0(a1, 1)− ln f0(1, 1)

ln f0(a3, 0)− ln f0(1, 1)

∆2 =
ln f0(a1, 1)− 0

ln f0(a3, 0)− 0

∆2 =
ln f0(a1, 1)

ln f0(a3, 0)

∆2 =
ln(γ0 a

φ0

1 + 1− γ0)

ln(γ0 a3)

ln(γ0 a3)∆2 = ln(γ0 a
φ0

1 + 1− γ0)

(γ0 a3)∆2 = γ0 a
φ0

1 + 1− γ0

(a1)φ0 =
(γ0 a3)∆2 − 1 + γ0

γ0

φ0 ln(a1) = ln

(
(γ0 a3)∆2 − 1 + γ0

γ0

)

φ0 =
ln
(

(γ0 a3)∆2−1+γ0

γ0

)
ln(a1)

A.4 Technologies and Output Elasticities

One rationale for the choice of a technology specification with non-constant returns
to scale is the flexibility this specification offers with respect to the implied output
elasticity. We consider the output elasticity with respect to investment defined as

εI ≡
∂ ln θt+1

∂ ln It

This elasticity is key to quantifying the effects of policy interventions.
In the general CES case, with technology given by
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θt+1 =
[
γtθ

φt
t + (1− γt)Iφtt

]ψt
φt ,

the output elasticity is given by

εI =
ψt
φt

[
γθφtt + (1− γt)Iφtt

]ψt
φt
−1

φ(1− γt)Iφt−1
t · It[

γtθ
φt
t + (1− γt)Iφtt

]ψt
φt

=
ψt(1− γt)Iφtt

γtθ
φt
t + (1− γt)Iφtt

∈ [0,∞)

In the special case of constant returns to scale (CRS), ψt = 1, and εI ∈ (0, 1). CRS
implies this elasticity is bounded from above by 1. The general, non-constant returns
to scale, case allows a larger than unit elastic response.

Similarly, the general translog technology,

ln θt+1 = α1t ln θt + α2t ln It + α3t ln θt ln It

with elasticity

εI = α1t + α3t ln θt

also allows general higher than unit elastic elasticities.
The main insight we want to underline is that the CES technology with constant

return to scale restricts the output elasticity to be between 0 and 1: a one percent
change in investment leads to a less than one percent change in next period skills.
This prediction is independent of data, hence it can potentially be very restrictive in
the context of child development and skills formation.
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B Additional Tables and Figures

B.1 Additional Tables for Model 1 Corrected for Measure-
ment Error

6



Table B.1-1: Estimates for Income Process

Constant 0.377
( 0.013)

Log Family Income t-1 0.753
( 0.008)

Variance Innovation 0.579
( 0.008)

Notes: This table shows the estimates for the income process. The dependent variable
is log family income at time t. Log Family Income t − 1 is log family income two
years prior. Standard errors in parenthesis are computed using a cluster bootstrap.
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Figure B.1-1: Distribution of Elasticity of Next Period Skills with respect to Invest-
ment by Age

Notes: This figure shows the box plot for the elasticity of next period skills with
respect to investment by different ages in the estimated Model 1 controlling for mea-
surement error. The box plot is constructed as follow: the ”central box” represents
the central 50% of the data. Its lower and upper boundary lines are at the 25th and
75th quantile of the data. The central line indicates the median of the data while
the two extreme lines (the top and the bottom ones) represents the 5th and 95th

percentiles.
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Figure B.1-2: Distribution of Technology Return to Scale by Age

Notes: This figure shows the box plot for the technology return to scale by different
ages in the estimated Model 1 controlling for measurement error. The box plot is
constructed as follow: the ”central box” represents the central 50% of the data. Its
lower and upper boundary lines are at the 25th and 75th quantile of the data. The
central line indicates the median of the data while the two extreme lines (the top
and the bottom ones) represents the 5th and 95th percentiles.
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B.2 Descriptive Statistics
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Table B.2-1: Children’s Skills Measures

Measures Range Values Age Range Scoring Order

(The Peabody Individual Achievement Test):
Math 0-84 5-14 Positive
Recognition 0-84 5-14 Positive
Comprehensive 0-84 5-14 Positive

Notes: This table shows the features of children cognitive measures. The first column
indicate each type of children skills measure we use to estimate our model. The
second column shows the minimum and maximum value that each measure takes.
The third column shows the minimum and maximum children age at which each
measure is available. The last column indicates whether the measure is ordered
positively (the higher score tend to reveal higher skills) or negatively (the lower
score tend to reveal higher skills).
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Table B.2-2: Mothers Cognitive Skills Measures

Measures Range Values Scoring Order

Arithmetics 0-30 Positive
Word Knowledge 0-35 Positive
Paragraph Composition 0-15 Positive
Numeric Operations 0-50 Positive
Coding Speed 0-84 Positive
Math Knowledge 0-25 Positive

Notes: This table shows the features of mother cognitive measures. The first column
indicate each type of mother cognitive skills measure we use to estimate our model.
The second column shows the minimum and maximum value that each measure
takes. The last column indicates whether the measure is ordered positively (the
higher score tend to reveal higher skills) or negatively (the lower score tend to reveal
higher skills).
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Table B.2-3: Mothers Noncognitive Skills Measures

Type of variables Range Values Label Scoring Order

Mother Noncognitive Measures

(Rosenberg indexes):
I am a person of worth

1-4

1= Strongly agree

Negative
I have a number of good qualities 2= Agree
I am able to do things as well as most other people 3=Disagree
I take a positive attitude toward myself 4=Strongly disagree

I am inclined to feel that I am a failure

1-4 Positive
I felt I do not have much to be proud of 1= Strongly agree
I wish I could have more respect for myself 2= Agree
I certainly feel useless at times 3=Disagree
At times I think I am no good at all 4=Strongly disagree

(Rotter Indexes):

Rotter 1 ( Life is in control or not) 1-4

1= In Control and closer to my opinion

Negative2= In control but slightly closer to my opinion
3= Not in control but slightly closer to my opinion
4= Not in control and closer to my opinion

Rotter 2 (Plans work vs Matter of Luck) 1-4

1= Plans work and closer to my opinion

Negative
2= Plans work but slightly closer to my opinion
3= Matter of Luck but slightly closer to my opinion
4= Matter of Luck and closer to my opinion

Rotter 3 (Luck not a factor vs Flip a coin) 1-4

1= Luck not a factor and closer to my opinion

Negative
2=Luck not a factor but slightly closer to my opinion
3= Flip a coin but slightly closer to my opinion
4= Flip a coin and closer to my opinion

Rotter 4 (Luck big role vs Luck no role) 1-4

1= Luck big role and closer to my opinion

Positive
2=Luck big role but slightly closer to my opinion
3= Luck no role but slightly closer to my opinion
4= Luck no role and closer to my opinion

Notes: This table shows the features of mother noncognitive measures. The first
column indicate each type of mother cognitive skills measure we use to estimate
our model. The second column shows the minimum and maximum value that each
measure takes. The third column shows the type of answers associated with each
measure value. The last column indicates whether the measure is ordered positively
(the higher score tend to reveal higher skills) or negatively (the lower score tend to
reveal higher skills).
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Table B.2-4: Descriptive Statistics about Children’s Cognitive Skills Measures

Number
of

Measures Mean Std Min Max Values

Age 5-6

PIAT Math 11.858 4.278 0.000 37.000 32.000
PIAT Recognition 12.864 5.048 0.000 57.000 35.000
PIAT Comprehensive 12.770 4.930 0.000 49.000 35.000

Age 7-8

PIAT Math 23.016 8.681 0.000 74.000 58.000
PIAT Recognition 25.748 8.774 0.000 80.000 67.000
PIAT Comprehensive 24.099 8.142 0.000 69.000 60.000

Age 9-10

PIAT Math 38.720 10.832 0.000 84.000 71.000
PIAT Recognition 40.825 11.487 0.000 84.000 76.000
PIAT Comprehensive 37.540 10.231 0.000 78.000 64.000

Age 11-12

PIAT Math 48.184 10.543 0.000 84.000 78.000
PIAT Recognition 51.079 13.278 0.000 84.000 74.000
PIAT Comprehensive 45.732 11.272 0.000 84.000 72.000

Age 13-14

PIAT Math 53.767 11.387 0.000 84.000 78.000
PIAT Recognition 58.670 14.262 0.000 84.000 74.000
PIAT Comprehensive 51.015 12.229 0.000 84.000 74.000

Notes: This table shows main sample statistics of children cognitive skills measures
by children age.
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Table B.2-5: Descriptive Statistics of Mother Cognitive and Noncognitive Skills Mea-
sures

Mother Cognitive Skills
Number

of
Measures Mean Std Min Max Values

Mom‘s Arithmetic Reasoning Test Score 13.946 6.603 0.000 30.000 31.000

Mom‘s Word Knowledge Test Score 21.773 8.562 0.000 35.000 36.000

Mom‘s Paragraph Composition Test Score 9.620 3.778 0.000 15.000 16.000

Mom‘s Numerical Operations Test Score 31.044 11.831 0.000 50.000 51.000

Mom‘s Coding Speed Test Score 42.953 17.468 0.000 84.000 85.000

Mom‘s Mathematical Knowledge Test Score 10.853 5.867 0.000 25.000 26.000

Mother Non Cognitive Skills

Mom‘s Self-Esteem: ”I am a person of worth” 2.461 0.549 0.000 3.000 4.000

Mom‘s Self-Esteem: ” I have good qualities” 2.338 0.539 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I am a failure” 3.379 0.618 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I am as capable as others” 2.291 0.567 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I have nothing to be proud of” 3.360 0.669 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I have a positive attitude” 2.183 0.619 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I wish I had more self-respect” 2.796 0.817 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I feel useless at times” 2.650 0.770 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I sometimes think I am no good” 3.039 0.802 1.000 4.000 4.000

Mom‘s Rotter Score:”I have no control” 2.863 1.058 1.000 4.000 4.000

Mom‘s Rotter Score: ”I make no plans for the future” 2.386 1.192 1.000 4.000 4.000

Mom‘s Rotter Score: ”Luck is big factor in life” 3.205 0.856 1.000 4.000 4.000

Mom‘s Rotter Score: ”Luck plays big role in my life” 2.594 1.024 1.000 4.000 4.000

Notes: This table shows main sample statistics of mother cognitive skills measures.
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Figure B.2-1: Descriptive Statistics: Mean of PIATs over the Childhood

Notes: This figure shows the mean Piat Math, Recognition and Comprehensive test
scores by age. The x-axis shows children age. Child age of 5 is age 5-6, 7 is age 7-8,
and so on.
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B.3 Measurement Parameter Estimates
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Table B.3-1: Measurement Parameter Estimates for Children’s Cognitive Measures

Measures µ λ Signal Noise

Age 5-6

PIAT Math 11.858 1.000 0.270 0.730
PIAT Recognition 12.864 2.238 0.972 0.028
PIAT Comprehensive 12.770 2.159 0.948 0.052

Age 7-8

PIAT Math 11.858 1.000 0.757 0.243
PIAT Recognition 15.592 0.906 0.608 0.392
PIAT Comprehensive 15.014 0.802 0.554 0.446

Age 9-10

PIAT Math 11.858 1.000 0.779 0.221
PIAT Recognition 10.297 1.136 0.894 0.106
PIAT Comprehensive 12.273 0.936 0.765 0.235

Age 11-12

PIAT Math 11.858 1.000 0.803 0.197
PIAT Recognition 2.107 1.347 0.918 0.082
PIAT Comprehensive 6.129 1.089 0.833 0.167

Age 13-14

PIAT Math 11.858 1.000 0.927 0.073
PIAT Recognition 8.556 1.195 0.845 0.155
PIAT Comprehensive 9.041 1.002 0.806 0.194

Notes: This table shows the measurement error parameters and associated statistics
for children cognitive measures. The first two columns shows the measurement pa-
rameters (µ and λ) while the last two columns shows the signal and noise variance
decomposition for the children cognitive measures.

18



Table B.3-2: Measurement Parameter Estimates for Mother Cognitive and Noncog-
nitive Measures

Mother Cognitive Skills
Measures µ λ Signal Noise

Mom‘s Arithmetic Reasoning Test Score 13.946 1.000 0.692 0.308

Mom‘s Word Knowledge Test Score 21.773 1.345 0.745 0.255

Mom‘s Paragraph Composition Test Score 9.620 0.584 0.722 0.278

Mom‘s Numerical Operations Test Score 31.044 1.720 0.638 0.362

Mom‘s Coding Speed Test Score 42.953 2.308 0.527 0.473

Mom‘s Mathematical Knowledge Test Score 10.853 0.854 0.639 0.361

Mother Non Cognitive Skills

Mom‘s Self-Esteem: ”I am a person of worth” 2.461 1.000 0.152 0.848

Mom‘s Self-Esteem: ” I have good qualities” 2.338 1.263 0.252 0.748

Mom‘s Self-Esteem: ”I am a failure” 3.379 1.612 0.311 0.689

Mom‘s Self-Esteem: ”I am as capable as others” 2.291 1.127 0.181 0.819

Mom‘s Self-Esteem: ”I have nothing to be proud of” 3.360 1.746 0.312 0.688

Mom‘s Self-Esteem: ”I have a positive attitude” 2.183 1.474 0.260 0.740

Mom‘s Self-Esteem: ”I wish I had more self-respect” 2.796 2.080 0.297 0.703

Mom‘s Self-Esteem: ”I feel useless at times” 2.650 1.861 0.268 0.732

Mom‘s Self-Esteem: ”I sometimes think I am no good” 3.039 2.096 0.313 0.687

Mom‘s Rotter Score:”I have no control” 2.461 1.000 0.092 0.908

Mom‘s Rotter Score: ”I make no plans for the future” 2.338 1.263 0.140 0.860

Mom‘s Rotter Score: ”Luck is big factor in life” 3.379 1.612 0.118 0.882

Mom‘s Rotter Score: ”Luck plays big role in my life” 2.291 1.127 0.044 0.956

Notes: This table shows the measurement error parameters and associated statistics
for mother cognitive and noncognitive measures. The first two columns shows the
measurement parameters (µ and λ) while the last two columns shows the signal and
noise variance decomposition for the mother measures.
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B.4 Estimates and Results for Model 2 with Measurement
Error Corrected Estimator
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Table B.4-1: Estimates for Investment (Model 2)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.069 0.068 0.065
( 0.059) ( 0.021) ( 0.029) ( 0.030)

Log Mother Cognitive Skills 0.071 0.004 0.011 -0.005
( 0.022) ( 0.009) ( 0.014) ( 0.012)

Log Mother Noncognitive Skills 0.359 0.711 0.660 0.678
( 0.131) ( 0.059) ( 0.084) ( 0.084)

Log Family Income 0.341 0.217 0.261 0.262
( 0.076) ( 0.054) ( 0.072) ( 0.082)

Variance Shocks 1.186 0.969 0.831 1.028
( 0.232) ( 0.134) ( 0.211) ( 0.259)

Notes: This table shows the measurement error corrected estimates for the invest-
ment equation for Model 2. Each column shows the coefficients of the investment
equation at the given ages. The dependent variable is investment in period t which
is determined by the covariates at time t . For example, the first column shows
the coefficients at age 5-6 for parental investments and child’s skill and family in-
come at age 5-6 as well. Standard errors in parenthesis are computed using a cluster
bootstrap.
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Figure B.4-1: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23)

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age 5-6
on completed months of schooling by the percentile of initial (age 5-6) family income
for the estimated Model 2, controlling for measurement error. Each income category
is defined as the people contained between nth and the n − 1th of the percentiles of
the income distribution. For example, Income category 10 in the graph means the
people who belong between the 9th and 10th percentile of the income distribution. In
the estimated income distribution for our sample, income categories 10, 50, and 90
contain families with about $14,000, $45,000, and $145,000 of annual family income.
This figure also plots the average effect over the income distribution.
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B.5 Estimates and Results without Measurement Error Cor-
rection (Model 1 and Model 2)

23



Table B.5-1: Estimates for Investment (Model 1 and Model 2)

Model 1 Model 2(
Free Return to Scale Technology

and TFP Dynamics

) (
Restricted Return to Scale Technology

and No TFP Dynamics

)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.083 0.032 0.024 0.015 0.083 0.045 0.030 0.014
( 0.023) ( 0.009) ( 0.009) ( 0.007) ( 0.023) ( 0.012) ( 0.011) ( 0.007)

Log Mother Cognitive Skills 0.082 0.010 0.010 -0.002 0.082 0.010 0.010 -0.002
( 0.019) ( 0.011) ( 0.014) ( 0.011) ( 0.019) ( 0.011) ( 0.014) ( 0.011)

Log Mother Noncognitive Skills 0.248 0.454 0.442 0.553 0.248 0.448 0.440 0.553
( 0.093) ( 0.073) ( 0.098) ( 0.074) ( 0.093) ( 0.073) ( 0.098) ( 0.074)

Log Family Income 0.587 0.504 0.524 0.434 0.587 0.498 0.521 0.435
( 0.074) ( 0.070) ( 0.095) ( 0.077) ( 0.074) ( 0.069) ( 0.095) ( 0.078)

Variance Shocks 1.635 1.522 1.537 1.535 1.635 1.504 1.529 1.537
( 0.224) ( 0.172) ( 0.364) ( 0.327) ( 0.224) ( 0.168) ( 0.360) ( 0.329)

Notes: This table shows the estimates (not corrected for measurement error) for
the investment equation for both Model 1 and Model 2. Each column shows the
coefficients of the investment equation at the given ages. The dependent variable
is investment in period t which is determined by the covariates at time t . For
example, the first column shows the coefficients at age 5-6 for parental investments
and child’s skill and family income at age 5-6 as well. Standard errors in parenthesis
are computed using a cluster bootstrap.
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Table B.5-2: Estimates for Skill Technology (Model 1 and Model 2)

Model 1 Model 2(
Free Return to Scale Technology

and TFP Dynamics

) (
Restricted Return to Scale Technology

and No TFP Dynamics

)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.875 0.771 0.669 0.770 0.625 0.868 0.897 0.880
( 0.057) ( 0.022) ( 0.017) ( 0.018) ( 0.047) ( 0.039) ( 0.039) ( 0.052)

Log Investment 0.518 0.069 0.042 0.325 0.370 0.125 0.101 0.127
( 0.089) ( 0.066) ( 0.061) ( 0.099) ( 0.045) ( 0.038) ( 0.039) ( 0.052)

( Log Skills * 0.006 0.007 0.002 -0.006 0.005 0.008 0.002 -0.007
Log Investment ) ( 0.012) ( 0.003) ( 0.002) ( 0.002) ( 0.009) ( 0.004) ( 0.002) ( 0.003)

Return to scale 1.399 0.846 0.713 1.089 1.000 1.000 1.000 1.000
( 0.098) ( 0.072) ( 0.063) ( 0.096) (-) (-) (-) (-)

Variance shocks 7.490 7.673 6.716 7.382 5.354 6.155 7.211 9.092
( 0.127) ( 0.145) ( 0.192) ( 0.220) ( 0.386) ( 0.565) ( 0.769) ( 0.980)

Log TFP 12.789 18.491 18.477 14.011 0.000 0.000 0.000 0.000
( 0.215) ( 0.299) ( 0.444) ( 0.690) (-) (-) (-) (-)

Notes: This table shows the estimates (not corrected for measurement error) for the
technology of skills formation and the technology return to scale (i.e. the sum of the
share parameters for each input) for not measurement error corrected estimates of
both Model 1 and Model 2. Each column shows the coefficients of the technology of
skills formations at the given age. The dependent variable is log skills in the next
period t+1 while the covariates (inputs) are at time t. For example, the first column
shows the coefficients for the skills inputs at age 5-6 which lead to log skills at age
7-8. Standard errors in parenthesis are computed using a cluster bootstrap.
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Figure B.5-1: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23, Model 1 )

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age
5-6 on completed months of schooling by the percentile of initial (age 5-6) family
income for the estimated Model 1, not controlling for measurement error. Each
income category is defined as the people contained between nth and the n − 1th of
the percentiles of the income distribution. For example, Income category 10 in the
graph means the people who belong between the 9th and 10th percentile of the income
distribution. In the estimated income distribution for our sample, income categories
10, 50, and 90 contain families with about $14,000, $45,000, and $145,000 of annual
family income. This figure also plots the average effect over the income distribution.
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Figure B.5-2: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23, Model 2 )

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age
5-6 on completed months of schooling by the percentile of initial (age 5-6) family
income for the estimated Model 2, not controlling for measurement error. Each
income category is defined as the people contained between nth and the n − 1th of
the percentiles of the income distribution. For example, Income category 10 in the
graph means the people who belong between the 9th and 10th percentile of the income
distribution. In the estimated income distribution for our sample, income categories
10, 50, and 90 contain families with about $14,000, $45,000, and $145,000 of annual
family income. This figure also plots the average effect over the income distribution.
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B.6 Skills measures in CNLSY79

Measures for Cognitive Skills

• Peabody Picture Vocabulary Test

The Peabody Picture Vocabulary Test, revised edition (PPVT-R) ”measures
an individual’s receptive (hearing) vocabulary for Standard American English
and provides, at the same time, a quick estimate of verbal ability or scholastic
aptitude” (see Dunn and Dunn, 1981). The PPVT was designed for use with
individuals aged 2 to 40 years. The English language version of the PPVT-R
consists of 175 vocabulary items of generally increasing difficulty. The child
listens to a word uttered by the interviewer and then selects one of four pictures
that best describes the word’s meaning. The PPVT-R has been administered,
with some exceptions, to NLSY79 children between the ages of 3-18 years of
age until 1994, when children 15 and older moved into the Young Adult survey.
In the current survey round, the PPVT was administered to children aged 4-5
and 10-11 years of age, as well as to some children with no previous valid PPVT
score.

The first item, or starting point, is determined based on the child’s PPVT age.
Starting at an age-specific level of difficulty is intended to reduce the number
of items that are too easy or too difficult, in order to minimize boredom or
frustration. The suggested starting points for each age can be found in the
PPVT manual (see Dunn and Dunn, 1981).

Testing begins with the starting point and proceeds forward until the child
makes an incorrect response. If the child has made 8 or more correct responses
before the first error, a “basal” is established. The basal is defined as the last
item in the highest series of 8 consecutive correct answers. Once the basal is
established, testing proceeds forwards, until the child makes six errors in eight
consecutive items. If, however, the child gives an incorrect response before
8 consecutive correct answers have been made, testing proceeds backwards,
beginning at the item just before the starting point, until 8 consecutive correct
responses have been made. If a child does not make eight consecutive responses
even after administering all of the items, he or she is given a basal of one. If
a child has more than one series of 8 consecutive correct answers, the highest
basal is used to compute the raw score.

A “ceiling” is established when a child incorrectly identifies six of eight con-
secutive items. The ceiling is defined as the last item in the lowest series of
eight consecutive items with six incorrect responses. If more than one ceiling is
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identified, the lowest ceiling is used to compute the raw score. The assessment
is complete once both a basal and a ceiling have been established. The ceiling
is set to 175 if the child never makes six errors in eight consecutive items.

A child’s raw score is the number of correct answers below the ceiling. Note
that all answers below the highest basal are counted as correct, even if the child
answered some of these items incorrectly. The raw score can be calculated by
subtracting the number of errors between the highest basal and lowest ceiling
from the item number of the lowest ceiling.

• The Peabody Individual Achievement Test (PIAT): Math

The PIAT Mathematics assessment protocol used in the field is described in
the documentation for the Child Supplement (available on the Questionnaires
page). This subscale measures a child’s attainment in mathematics as taught
in mainstream education. It consists of 84 multiple-choice items of increasing
difficulty. It begins with such early skills as recognizing numerals and progresses
to measuring advanced concepts in geometry and trigonometry. The child looks
at each problem on an easel page and then chooses an answer by pointing to
or naming one of four answer options.

Administration of this assessment is relatively straightforward. Children enter
the assessment at an age-appropriate item (although this is not essential to
the scoring) and establish a ”basal” by attaining five consecutive correct re-
sponses. If no basal is achieved then a basal of ”1” is assigned (see PPVT).
A ”ceiling” is reached when five of seven items are answered incorrectly. The
non-normalized raw score is equivalent to the ceiling item minus the number
of incorrect responses between the basal and the ceiling scores.

• The Peabody Individual Achievement Test (PIAT): Reading Recog-
nition

The Peabody Individual Achievement Test (PIAT) Reading Recognition sub-
test, one of five in the PIAT series, measures word recognition and pronuncia-
tion ability, essential components of reading achievement. Children read a word
silently, then say it aloud. PIAT Reading Recognition contains 84 items, each
with four options, which increase in difficulty from preschool to high school
levels. Skills assessed include matching letters, naming names, and reading
single words aloud.

The only difference in the implementation procedures between the PIAT Math-
ematics and PIAT Reading Recognition assessments is that the entry point into
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the Reading Recognition assessment is based on the child’s score in the Math-
ematics assessment, although entering at the correct point is not essential to
the scoring.

The scoring decisions and procedures are identical to those described for the
PIAT Mathematics assessment.

• The Peabody Individual Achievement Test (PIAT): Reading Com-
prehension

The Peabody Individual Achievement Test (PIAT) Reading Comprehension
subtest measures a child’s ability to derive meaning from sentences that are
read silently. For each of 66 items of increasing difficulty, the child silently
reads a sentence once and then selects one of four pictures that best portrays
the meaning of the sentence.

Children who score less than 19 on Reading Recognition are assigned their
Reading Recognition score as their Reading Comprehension score. If they score
at least 19 on the Reading Recognition assessment, their Reading Recognition
score determines the entry point to Reading Comprehension. Entering at the
correct location is, however, not essential to the scoring.

Basals and ceilings on PIAT Reading Comprehension and an overall nonnormed
raw score are determined in a manner identical to the other PIAT procedures.
The only difference is that children for whom a basal could not be computed
(but who otherwise completed the comprehension assessment) are automati-
cally assigned a basal of 19. Administration instructions can be found in the
assessment section of the Child Supplement.
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C Alternative Measures

One of the characteristics of the data used to study child development is the rich
variety skill measures. The previous sections considered identification where the skill
measures are in a “raw” form: each measure is a linear function of the latent log
skill. This measurement system, while commonly assumed in the prior literature, is
in some respects a “best case.”

In this section, we consider alternative forms of measures and re-examine whether
we can identify the same types of production technologies using these alternative
measures. We consider four classes of measures which are frequently encountered
empirically: (i) age-standardized measures where the raw measures are transformed
ex post to have mean 0 and standard deviation 1 for the sample at hand; (ii) relative
measures where the measures reflect not the level of a child’s skill but the child’s
skill relative to the population mean; (iii) ordinal measures which provide a dis-
crete ranking of children’s skills; and iv) censored measures where the measures are
truncated with a “floor” (finite minimum value) and/or a “ceiling” (finite maximum
value). For each type of measure, we discuss which of our prior identification results
still hold, if any, and what auxiliary assumptions would be sufficient to restore our
identification results.

C.1 Age-Standardized Measures

Age-standardized measures are defined as the following transformation of raw mea-
sures Zt,m:

ZS
t,m =

Zt,m − E(Zt,m)

V (Zt,m)1/2
. (C-1)

By construction, these measures are mean 0 and standard deviation 1 for all child
ages.

Our main identification result using standardized measures (Theorem 1) continues
to hold if the technology of skill formation has known scale and location functions
(KLS, Definition 1). To show this, we can re-write the standardized measures as a
linear function of the latent variable:

ZS
t,m = µSt,m + λSt,m ln θt + εSt,m

where the measurement parameters and measurement error are

µSt,m = −λSt,m(V (ln θt)) · E(ln θt)
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λSt,m =
λt,m

V (Zt,m)1/2
=

λt,m
(λ2

t,mV (ln θt) + V (εt))1/2

εSt,m =
εt,m

V (Zt,m)1/2
=

εt,m
(λ2

t,mV (ln θt) + V (εt))1/2

These expressions show that the standardized measurement parameters are linear
functions of the underlying moments of the latent skill distribution.1 The reason for
the invariance of our identification result to the use of standardized or raw measures
is that any measurement parameters are “transformed away” as shown in Lemma 1.
More generally, identification of the KLS production technologies is invariant to any
increasing linear transformation of the original raw measures, say Z ′t,m = a + bZt,m
for a ∈ R and b ∈ R+.2

However, the use of age-standardized measures may not be cost free in the sense
that age-standardized measures, which are constructed to be age-stationary in their
first and second moments, contain no information about skill dynamics in these
moments. For example, standardizing age-invariant measures, as defined in the
previous section, so that the mean and variance of these measures is equal at all ages,
would essentially “throw away” information regarding the average skill development
of children across ages. This loss of information prevents the identification of the
broader classes of technology of skills formation discussed above, the unknown Total
Factor Productivity (TFP) functions (as in equation 14) or unknown scale functions
(as in equation 15).

To see this point, recall that the identification of TFP or scaling parameter are
based on additional information of the dynamics of measurement parameters. In
the case of raw measures, those parameters are fully free parameters. On the other
hand, when we use standardized measures, the new measurement parameters (µSt,m
and λSt,m) are no longer free parameters but functions of the moments of the la-
tent distribution. Hence, restricting the dynamics of the measurement parameters
in this case (imposing Assumption 2 and Assumption 3) is equivalent to restricting
the dynamics of the latent skills, and can restrict the possible classes of technolo-
gies. While age-standardizing measures may provide some descriptive value, in the

1It is important to recognize that the use of standardized measures does not necessarily imply
that any particular restriction on the underlying latent variables such as E(ln θt) = 0 or V (ln θt) = 1.
The standardizations are necessarily in terms of the observed measures, not the unobserved latent
variables.

2One caveat deserves mention. Recall that because the initial conditions are normalized to a
particular measure, using standardized rather than raw measures can affect the normalized location
and scale of the latent skills, and in general affect the values of the production parameters which
are identified up to the normalized initial period measure.
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context of identifying dynamic production technologies, there is simply no point to
transforming the measures in this way and throwing away potentially important
identifying information.

C.2 Relative Measures

Some of the proxies used to measure children outcomes come from surveys where
observers (often mothers, fathers, or other caregivers) provide assessments of the
child. It can be plausible then that these observers are actually evaluating the child
with respect to their perceptions of the average in the population. We call this type
of measure a relative measures. In this case, these measures can be written as:

ZR
t,m = µRt,m + λRt,m(ln θt − E(ln θt)) + εRt,m. (C-2)

where (ln θt−E(ln θt) is the latent variable being measured by ZR
t,m, which we model

as the deviation of the actual level of the child’s skill ln θt relative to the mean value in
the population E(ln θt). Relative measures are not ordinal ranking measures (which
we discuss below) but a continuous measure of skills relative to the population mean.
As with the age-standardized measures, the relative measures are an increasing linear
function of the underlying latent variable, and therefore the main identification result
in Theorem 1 continues to hold as the measurement parameters are “transformed
away.”

C.3 Ordinal Measures

We define ordinal measures the measures which are based on children rankings: this
child has higher skills than another child. Let’s assume that we observe in data
children’s skill rank. Let Zt = {1, 2, . . . , J} be the child’s human capital rank, with 1
highest level, and J lowest level. The observer (or us forming ranks from test scores)
forms rank according to this ordinal model:

ZO
t,m =



J if λOt,m ln θt + εOt,m < κJ,t,m
J − 1 if κJ,t,m < λOt,m ln θt + εOt,m < κJ−1,t,m
...
2 if κ3,t,m < λOt,m ln θt + εOt,m < κ2,t,m

1 if λOt,m ln θt + εOt,m > κ2,t,m

(C-3)

where the κ2, . . . , κJ , with κ2 > κ3, . . . , κJ , are measurement parameters which pro-
vide the mapping from latent skills ln θt and measurement error εOt,m to the observed
ordinal ranking values ZO

t,m. The probability a child is ranked first (j = 1) is then
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pr(ZO
t,m = 1) = pr(λOt,m ln θt + εOt,m > κ2,t,m)

= Fε(λ
O
t,m ln θt − κ2,t,m)

where Fε is the distribution function for the measurement error εOt,m.
With ordinal ranking measures the non-parametric identification result no longer

holds. There is no longer a one-to-one mapping between a child’s latent skills θt
and expected measures, as multiple values of θt are consistent with a child having a
certain rank. Without additional assumptions beyond Assumption 1 (independence
of measures), ordinal measures of skills do not allow non-parametric identification of
the continuous skill production function.

If the researcher were to assume a particular known distribution for the measure-
ment errors Fε, then under this assumption for an ordinal measure of t+ 1 skills we
would have:

F−1
ε (pr(ZO

t+1,m = 1| ln θt, ln It)) = λt+1,mft(It, θt)− κ2,t+1,m

where pr(ZO
t+1,m = 1| ln θt, ln It) is the probability the child receives rank 1 at age t+1

given inputs θt, It at age t. This expression shows that with a known distribution
for measurement errors, we can then apply Theorem 1 to identify a KLS technology
ft(It, θt) up to this assumed distribution.

C.4 Censored Measures

Censored measures are defined as

ZC
t,m =


Z if Zt,m ≥ Z
Zt,m if Z < Zt,m < Z
Z if Zt,m < Z

(C-4)

where Zt,m = µt,m + λt,m ln θt + εt,m is the “latent” measure, and Z (“ceiling”) and
Z (“floor”), with Z > Z, are the truncation points. Censoring occurs, for example,
when a test score used as the measure has a maximum score (answering all questions
correctly) and a minimum score (say answering none of the questions correctly). In
practice, researchers can ascertain whether censoring is an important issue empir-
ically by investigating what proportion of the sample actually has measured skills
at the floor or ceiling points of the measure. Because censored measures do not
have full support, the non-parametric identification result of Theorem 1 appears no
longer to hold. As with the ordinal measures, auxiliary assumptions could be used
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to achieve identification up these additional assumptions (for a complete analyze of
the problem, see Wang et al. 2009, Koedel and Betts, 2010)
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D Monte Carlo Exercise for Model 1 and Mea-

surement Error Correction

We implement a Monte Carlo exercise to examine the properties of our estimator.
The true data generating process is assumed to be the estimated (measurement
error corrected) Model 1 with some additional parametric assumptions about the
measurement error process. In order to simulate the dataset, we use the both the
estimated measurement parameters and the joint distribution of children skills and
investments. In addition, we assume that all the measurement noises are Normally
distributed.3 We generate a simulated longitudinal dataset of 10,000 children ranging
from age 5-6 to age 13-14. In particular, the Monte Carlo analysis is performed
estimating the model on 200 simulated data sets. In the following tables we show
the mean estimates over the 200 estimates of the coefficients.

We focus only on estimates of skills technology, investment process and children’s
skills measurement parameters. Tables D-1-D-3 show true and mean estimated pa-
rameters. Overall, the estimator is able to recover the true parameters with minimal
bias.

3We assume that the standard deviation of the error terms for all the skills measures are 0.5
(children and mothers) while we fix to 0.1 the standard deviation of the error terms for all the
investment measures.
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Table D-1: Monte Carlo Estimates for Investment Process

True Parameters Monte Carlo Estimates
Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.027 0.020 0.018 0.249 0.026 0.020 0.018

Log Mother Cognitive Skills 0.071 0.004 0.012 -0.005 0.077 0.002 0.008 -0.011

Log Mother Noncognitive Skills 0.359 0.742 0.694 0.712 0.322 0.748 0.700 0.700

Log Family Income 0.341 0.227 0.274 0.275 0.352 0.224 0.272 0.292

Variance Shocks 1.186 1.019 0.868 1.087 1.263 0.993 0.827 1.103

Notes: This table shows the both the true estimates (reported also in Table 3) and
the mean Monte Carlo estimates for the investment equation. Each column shows
the coefficients of the investment equation at the given ages. The dependent variable
is investment in period t which is determined by the covariates at time t . For
example, the first column shows the coefficients at age 5-6 for parental investments
and child’s skill and family income at age 5-6 as well.
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Table D-2: Monte Carlo Estimates for Skill Technology

True Parameters Monte Carlo Estimates
Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.966 1.086 0.897 1.065 1.955 1.091 0.897 1.071

Log Investment 0.799 0.695 0.713 0.252 0.759 0.700 0.839 0.502

( Log Skills * -0.105 -0.005 -0.003 0.003 -0.092 -0.005 -0.005 -0.002

Log Investment )

Return to scale 2.660 1.776 1.606 1.320 2.623 1.786 1.731 1.571

Variance shocks 5.612 4.519 3.585 4.019 5.613 4.520 3.586 4.018

Log TFP 13.067 14.747 11.881 2.927 13.060 14.689 11.801 2.594

Notes: This table shows the both the true estimates (reported also in Table 4) and
the mean Monte Carlo estimates for the technology of skills formation. Each column
shows the coefficients of the technology of skills formations at the given age. The
dependent variable is log skills in the next period t+1 while the covariates (inputs)
are at time t. For example, the first column shows the coefficients for the skills inputs
at age 5-6 which lead to log skills at age 7-8.
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Table D-3: Monte Carlo Estimates for Measurement Parameters

True Constant (µ) Monte Carlo Constant (µ) Estimates

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14 Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14

PIAT Math 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858

PIAT Recognition 12.864 15.592 10.297 2.107 8.556 12.864 15.592 10.298 2.110 8.555

PIAT Comprehensive 12.770 15.014 12.273 6.129 9.041 12.770 15.013 12.270 6.132 9.040

True Factor Loadings (λ) Monte Carlo Factor Loadings (λ) Estimates

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14 Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14

PIAT Math 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PIAT Recognition 2.238 0.906 1.136 1.347 1.195 2.238 0.905 1.136 1.347 1.196

PIAT Comprehensive 2.159 0.802 0.936 1.089 1.002 2.159 0.802 0.936 1.089 1.002

Notes: This table shows the both the true estimates (reported also in Table B.3-1)
and the mean Monte Carlo estimates for the measurement parameters of children
skills measures equation. Each column shows the parameters at the given ages for
each test score.

39


	Proofs
	Proof of Lemma 1
	Proof of Theorem 1
	Derivation of Example with CES Technology (Example 2) 
	Technologies and Output Elasticities
	Additional Tables and Figures
	Additional Tables for Model 1 Corrected for Measurement Error
	Descriptive Statistics
	Measurement Parameter Estimates
	Estimates and Results for Model 2 with Measurement Error Corrected Estimator
	Estimates and Results without Measurement Error Correction (Model 1 and Model 2)
	Skills measures in CNLSY79
	Alternative Measures
	Age-Standardized Measures
	Relative Measures
	Ordinal Measures
	Censored Measures
	Monte Carlo Exercise for Model 1 and Measurement Error Correction




