
A. Log P/D Ratios in the General Long Run Risk

Model

The methodology here closely follows that of Bansal and Yaron (2004) and Bansal, Yaron,

and Kiku (2007) as there are only two cases in the literature where solutions are available for

models with Epstein-Zin preferences. The first case, which we are interested in here, is when

the returns are loglinear in the state variables and the second is when ψ = 1.

Let c, Xi, 1 ≤ i ≤ n and Vj , 1 ≤ j ≤ m be the log consumption process, n processes that

determine it’s conditional growth rate and m processes that determine it’s conditional growth

rate volatility respectively. Let dl, l ≤ 1 ≤ L be the log dividend processes of L assets (in

general, the lower case variables correspond to the logarithm of the upper case variables). We

assume that these quantities follow the processes

ct+∆t =ct +

(
µ+

n∑
i=1

Xi,t

)
∆t+

√√√√ m∑
j=1

δ2
c,jVj,t (Wt+∆t −Wt)

−
m∑
k=1

ϕw,k
√
Vk,t (Zk,t+∆t − Zk,t)

(28)

Xi,t+∆t =Xi,t(1− αi∆t) + ϕi,x

√√√√ m∑
j=1

δ2
x,i,jVj,t (Yi,t+∆t − Yi,t), 1 ≤ i ≤ n (29)

Vi,t+∆t =Vi,t − κi(Vi,t − V̄i)∆t+ σi
√
Vi,t (Zi,t+∆t − Zi,t), 1 ≤ i ≤ m (30)

dl,t+∆t =dl,t +

(
µl +

n∑
i=1

φl,iXi,t

)
∆t+ πl,d

(
∆ct+∆t −

(
µ+

n∑
i=1

Xi,t

)
∆t

)

+
n∑
i=1

πi,l,x(Xi,t+∆t −Xi,t(1− αi∆t))

+
m∑
j=1

πj,l,wσj
√
Vj,t (Zj,t+∆t − Zj,t)

+

√√√√ m∑
k=1

δ2
l,d,kVk,t (Bt+∆t −Bt)

(31)
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where W , Yi, 1 ≤ i ≤ n, Zj , 1 ≤ j ≤ m and B are independent Brownian processes and∑m
i=1 δ

2
c,i =

∑m
j=1 δ

2
x,i,j =

∑m
k=1 δ

2
l,d,k = 1. We have written the equations in this form (with the

time step being ∆t rather than 1) to make the time scale dependence of the parameters explicit

so that the connection with the continuous time solution can be made in a straightforward

manner. We also define the consumption and dividend variables as rates since they are flow

variables. This means, for example, that consumption from time t to t+∆t is given by Ct+∆t∆t.

Since the consumer preferences are of the Epstein-Zin type

Ut = ((1− δ)(Ct∆t)
1−γ
θ + δEt[U

1−γ
t+∆t]

1
θ )

θ
1−γ (32)

where

θ =
1− γ

1− 1/ψ
(33)

the log stochastic discount factor in discrete time can be written as

mt+∆t = θ log δ − θ

ψ
∆ct+∆t + (θ − 1)rc,t+∆t (34)

where rc,t+∆t is the continuously compounded rate of return on the wealth W (which is the

asset that delivers a dividend of per capita consumption at every time period) from t to t+∆t.

Since we assume complete markets,

Et[exp(mt+∆t + rc,t+∆t)] = 1 (35)

must hold.

The loglinear approximation pioneered by Campbell and Shiller (1988) allows us to write

rc,t+∆t = ν0 + ν1(wt+∆t − ct+∆t)− (wt − ct) + ∆ct+∆t (36)
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where

ν0 = log(∆t+ exp(w − c))− ν1(w − c) ≈ exp(c− w)(1 + (c− w))∆t (37)

ν1 =
1

1 + exp(c− w)∆t
≈ 1− exp(c− w)∆t (38)

(the approximation holds when ∆t is small) where the bar stands for the mean value. We

further assume that the log wealth to consumption ratio can be written as

wt − ct = A0 +
n∑
i=1

A1,iXi,t +
m∑
j=1

A2,jVj,t (39)

and justify this below. (This approach is standard and followed by Bansal and Yaron (2004),

Bansal, Yaron, and Kiku (2007) and Zhou and Zhu (2009) as the only non-trivial models with

Epstein-Zin preferences which can be solved are those where the consumption to wealth ratio

is loglinear in the state variables as above or where ψ = 1, as in the model of Hansen, Heaton,

and Li (2008)).

Substituting (34), (36) and (39) into (35), using the fact that

logEt[expA(Wt+∆t −Wt)] =
A2∆t

2
(40)

for any A ∈ R and Wiener process W , and that (35) should hold for any possible attainable

combination of state variables (Xi, Vj), we obtain a set of equations which enable us to solve

for A0, A1,i, 1 ≤ i ≤ n and A2,j , 1 ≤ j ≤ m. The fact that such a set of equations with

non-vacuous solutions exist justifies the assumption (39).

The set of equations for A1,i are

(1− γ)∆t+ θA1,i(ν1(1− αi∆t)− 1) = 0 (41)

so that

A1,i =
(1− 1

ψ )∆t

1− ν1(1− αi∆t)
(42)
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which, in the limit ∆t → 0, becomes A1,i = 1−1/ψ
exp(c−w)+αi

. This is the same result as that

obtained by Zhou and Zhu (2009), where there is only one X variable, once we relate his

notation of g1 for exp(c− w) and allow for the negative sign which arises from his definition

of A1 in terms of the consumption to wealth ratio. Once we set ∆t = 1 and relabel ν1 as κ1

and αi as 1− ρ (again, there being only one X state variable) to match the notation of Bansal

and Yaron (2004), we find that our result also matches their’s.

The analogous set of equations which enables us to solve for A2,j , 1 ≤ j ≤ m is

(1− γ)2δ2
c,j∆t

2
+ θA2,j(ν1(1− κj∆t)− 1)

+
∆t

2

(θν1

n∑
i=1

A1,iϕx,iδx,i,j

)2

+ (θν1A2,jσj − (1− γ)ϕw,j)
2

 = 0

(43)

Since these equations are quadratic, there are two solutions for each A2,j . However, one of

them diverges when σj → 0. Hence, the other solution is the one which is relevant to the

model. The final equation, which allows us to solve for A0, is

θ

log δ + ν0 + (ν1 − 1)A0 + ν1

m∑
j=1

A2,jκj∆tV̄j

+ (1− γ)µ∆t = 0 (44)

Putting the values for A0, A1,i, 1 ≤ i ≤ n and A2,j , 1 ≤ j ≤ m into (39) and using (36) and

(34), we obtain the log stochastic discount factor

mt+∆t =∆t

Γ0 +

n∑
i=1

Γ1,iXi,t +

m∑
j=1

Γ2,jVj,t


− αc

√√√√ m∑
j=1

δ2
c,jVj,t(Wt+∆t −Wt)

−
n∑
i=1

αx,i

√√√√ m∑
j=1

δ2
x,jVj,t(Yi,t+∆t − Yi,t)

−
m∑
j=1

αv,j
√
Vj,t(Zj,t+∆t − Zj,t)

(45)
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where Γ1,i = 1/ψ, αc = γ and αx,i = γ−1/ψ
1−ν1(1−αi∆t) . The expression for αv,j is complicated and

does not directly concern us here.

Using the process for dividend growth (31), we can use a similar loglinear approximation

to write the return for asset l as

rl,t+∆t = ν0,l + ν1,l(pl,t+∆t − dl,t+∆t)− (pl,t − dl,t) + ∆dl,t+∆t (46)

where

ν0,l = log(∆t+ exp(dl − pl))− ν1,l(pl − dl)

≈ exp(dl − pl)(1 + dl − pl)∆t
(47)

ν1,l =
1

1 + exp(dl − pl)∆t
≈ 1− exp(dl − pl)∆t (48)

As before, we assume that log
(
Pt
Dt

)
can be written as

log

(
Pl,t
Dl,t

)
= pl,t − dl,t = A0,l +

n∑
i=1

A1,l,iXi,t +
m∑
j=1

A2,l,jVj,t (49)

We put (49) into (46) and use the fact that (35) must hold for any possible attainable combi-

nation of state variables (Xi, Vj) to obtain a set of equations which enables us to solve for A0,l,

A1,l,i, 1 ≤ i ≤ n and A2,l,j , 1 ≤ j ≤ m. The fact that such a set of equations with non-vacuous

solutions exist justifies the assumption (49).

The equations for A1,l,i, 1 ≤ i ≤ n, 1 ≤ l ≤ L are

(φl,i − 1/ψ)∆t−A1,l,i(1− ν1,l(1− αi∆t)) = 0 (50)

which give

A1,l,i =
(φl,i − 1/ψ)∆t

1− ν1,l(1− αi∆t)
(51)
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As with the solution for A1,i, 1 ≤ i ≤ n, this solution agrees with the continuous time one

(with n = 1,m = 2) of Zhou and Zhu (2009) and the discrete time one (with n = m = 1) of

Bansal and Yaron (2004) and (Bansal, Yaron, and Kiku 2007).

The equations for A2,l,j , 1 ≤ j ≤ m, 1 ≤ l ≤ L are quadratic in nature and fairly complex

(as for A2,j , the solutions which do not diverge as σj → 0 are chosen). Since their precise

structure does not concern us here, we do not include them for brevity. Similarly, we do not

include the equation for A0,l, 1 ≤ l ≤ L.35

It must be noted that, as the equations for A2,j , 1 ≤ j ≤ m and A2,l,j , 1 ≤ j ≤ m, 1 ≤ l ≤ L

are quadratic in nature, real solutions are not guaranteed. Our numerical experiments indicate

that this is not a serious concern as several sets of reasonable parameter values do not give

rise to this problem (this is also shown by Zhou and Zhu (2009)). If this is a concern, we

can replace the volatility processes by Ornstein-Uhlenbeck ones as done by Bansal and Yaron

(2004) and Bansal, Yaron, and Kiku (2007). However, such volatility processes suffer from

the problem of admitting negative values even in continuous time. This can be quite serious,

even for some common parameter values, as pointed out by Beeler and Campbell (2009). The

square root processes used here can also give rise to negative values in discrete time but the

probability of this occurring for reasonable parameter values is minuscule and our numerical

experiments confirm this. Since both ways of modeling volatility have issues but have received

wide attention in the literature and there is no known alternative for which analytical solutions

can be derived, we use results which hold for both of them.

35They are available upon request from the authors.
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B. Testing Long Run Risk Models : Monte Carlo

Evidence

A. The Model

For the purpose of analyzing the performance of the asset pricing tests, we use the long run risk

model of Bansal and Yaron (2004). In this model, the per capita consumption and dividend

growth rates ∆c and ∆d (for M assets indexed by l) and their common persistent component

x are assumed to follow the processes (see Bansal and Yaron (2004))

∆ct+1 = µ+ xt + σtηt+1 (52)

xt+1 = ρxt + ϕxσtet+1 (53)

∆dl,t+1 = µl,d + φlxt + ϕl,dσul,t+1, 1 ≤ l ≤M (54)

σ2
t+1 = σ2 + ν(σ2

t − σ2) + σwwt+1 (55)

where the shocks et+1, ηt+1 and wt+1 are taken to be independent standard normals for parsi-

mony. ul,t+1 is a vector of normally distributed shocks with covariance Vu which is independent

of e, η and w. In the simulations, Vu is set so as to fit the factor structure of returns. (Note

that we follow the convention that lowercase characters stand for the logarithm of quantities

denoted by the corresponding uppercase characters.)

Consumers in the model have Epstein-Zin preferences (as defined by Epstein and Zin

(1989))

Ut = ((1− δ)C
1−γ
θ

t + δEt[U
1−γ
t+1 ]

1
θ )

θ
1−γ (56)

with γ > 1/ψ. This implies that they prefer early resolution of uncertainty and that persistent

consumption and volatility shocks have a positive market price of risk. With these preferences,

asset returns satisfy

Et

[
δθ
(
Ct+1

Ct

)−θ/ψ
R
−(1−θ)
a,t+1 Ri,t+1

]
= 1 (57)
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where C is per capita consumption, Ra is the gross return on an asset that pays a dividend of

per capita consumption, Ri is the asset return, 0 < δ < 1 is the time discount factor, γ is the

relative risk aversion, ψ is the intertemporal elasticity of substitution (IES) and θ is defined to

be

θ =
1− γ
1− 1

ψ

(58)

The log P/D ratios of assets in this economy have a factor structure (within the loglinear

approximation) with the factors being xt and σ2
t . In other words, if zi,t is the log P/D ratio of

asset i, we have

zi,t = A0,i +A1,ixt +A2,iσ
2
t (59)

This is shown for this particular model by Bansal and Yaron (2004) and similar results for

related models are shown by Bansal, Yaron, and Kiku (2007), Drechsler and Yaron (2011),

Zhou and Zhu (2009), Ferson, Nallareddy, and Xie (2009) and in appendix A of this paper.

Since the dividend processes of the assets are specified in this model, the relation above gives

the time series of their prices for a given realization of the random variables. Hence, the prices

and other quantities of interest in this economy are readily simulated.

B. Monte Carlo Simulation of the Model

We use the global and asset specific parameters summarized in tables (XIX) and (XX) for the

simulations below. We first note that these parameters generate economic moments (calculated

from 500 simulations of the long run risk economy) which are roughly in line with the values

observed in post-1942 (to account for the structural break identified by Marakani (2009)) US

consumption and return data as shown in table (XXI). When realistic noise is added to the log

P/D ratios as described below, they are also compatible with the predictability of real time

consumption growth in the data as seen from the numbers in table (XXII). One moment which

does not match well is the standard deviation of the real risk free rate which is much smaller

in the simulations than in the data. This, however, as argued by Beeler and Campbell (2009),

points to a strength rather than a weakness of the long run risk model as most models struggle
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to make this quantity low enough. Further, as we argue in the next section, this quantity is

very noisily measured which means that the reported standard deviation would be significantly

larger than the actual one.36

Table XIX
Global parameters for the simulation

Global parameters for the simulation (the time unit is one year). µ represents
the unconditional mean of consumption growth, σ it’s conditional volatility, ρ the
first order autocorrelation of the long run risk state variable x, ϕx the conditional
volatility of x in relation to that of consumption growth, ν the first order auto-
correlation of volatility, σw the volatility of volatility, γ the relative risk aversion,
ψ the elasticity of intertemporal substitution and δ the time preference.

Parameter Value

µ 0.02
σ 0.012
ρ 0.85
ϕx 0.45
ν 0.99
σw 10−5

γ 25
ψ 1.5
δ 0.994

The scaled eigenvalues of the covariance matrix of the post-1942 continuously compounded

excess returns of the 25 Fama-French portfolios formed on the basis of size and book to market

ratio are tabulated in table (XXIII) together with the mean, 5th and 95th percentiles of the

corresponding values obtained in 500 simulations of the economy for the same time period (65

years).37 Since the first few eigenvalues, which are of principal interest, are very similar to

those in the data, the model replicates the observed factor structure of excess returns quite

well.

The model also replicates the observed factor structure of log P/D ratios fairly well. This

is best seen from the normalized eigenvalues for the covariance matrix of the log P/D ratios

36Measurement error (in either inflation or dividends) can also account for the somewhat low standard
deviation of real dividend growth of the portfolios in the simulations.

37The model was actually simulated for 165 years with the data for the first 100 years being discarded
so as to minimize the effect of the assumed initial values of the dynamic quantities.

A9



of the assets, both from the data as well as the simulations, which are tabulated in table

(XXIV). The model’s two factor structure is highly evident here as all the eigenvalues after the

second one are zero. To better reflect the data and investigate the possible consequences of the

inclusion of small, irrelevant factors into the long run risk model, we added white noise with a

variance of 20% of the simulated values to the log P/D ratios. The introduction of this noise

can also be thought of as representing measurement error in the prices or dividends brought

about due to liquidity issues or other market imperfections. The normalized eigenvalues after

adding this noise are summarized in table (XXV). From it, we see that the model is able to

replicate the key elements of this factor structure after adding the noise.38

We thus see that the long run risk model being simulated here is compatible not only

with many of the important observed moments of macroeconomic quantities but also with the

observed factor structure of excess returns and P/D ratios. Given this, it is interesting to

examine the performance of different asset pricing tests for long run risk models within the

context of these simulations. This will enable the study of the effect of finite sample size and

measurement noise on the efficacy of these tests and will point to the choice of test to be used

in this paper. Since we are particularly interested in examining the impact of measurement

noise on these tests, we first turn to the task of establishing a reasonable estimate for the size

of this noise for two important quantities in long run risk models, the consumption growth and

the real risk free rate.

38Note that it is not necessary to replicate the features of the small factors as these represent a very
small fraction of the variance and are not economically interesting.
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Table XX
Asset-specific parameters for the simulation.

Asset-specific parameters for the simulation. The assets are indexed by l. µl,d
represents the unconditional mean of the dividend growth for asset l, φl the de-
pendence of predictable dividend growth on the long run risk state variable x and
ϕl,d the idiosyncratic volatility of dividend growth.

Parameters for the asset dividend growths

l µl,d φl ϕl,d
1 −0.0286 1.7834 19.1677
2 0.0889 3.7689 21.7081
3 0.0160 3.2545 19.4655
4 0.0456 3.4405 23.5766
5 0.0471 2.6758 24.0000
6 0.0907 4.6342 16.6065
7 0.0778 5.8088 16.3543
8 0.0457 2.4918 8.5237
9 0.0928 9.5089 24.0000
10 −0.0145 5.5979 24.0000
11 −0.0012 4.8912 24.0000
12 0.0821 8.5459 22.0032
13 0.0556 10.9271 8.9635
14 0.0272 6.0810 21.8607
15 0.0926 5.1230 24.0000
16 0.0454 5.1540 6.0000
17 0.0327 3.0965 21.1709
18 0.0317 3.3548 16.4485
19 0.0147 3.5232 23.0091
20 0.0619 3.3028 6.6980
21 0.0167 2.5690 12.5081
22 0.0421 10.8271 6.0000
23 0.0901 3.7845 11.6097
24 0.0436 2.5953 24.0000
25 0.0788 3.7323 11.0877
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Table XXI
Model implied moments for important economic quantities compared

with the data

The model implied moments are obtained from 500 simulations.

Moment Data Simulation mean 5th percentile 95th percentile
E[∆ct] 0.0199 0.0200 0.0153 0.0246

Std[∆ct] 0.0136 0.0151 0.0105 0.0194
AC(1)[∆ct] 0.243 0.320 0.148 0.488
E[rf,t] 0.0059 0.0035 -0.0012 0.0079

Std[rf,t] 0.0343 0.0067 0.0045 0.0089
Min[rl,t − rf,t] 0.010 0.018 -0.012 0.049
Max[rl,t − rf,t] 0.133 0.209 0.131 0.292
MinE[∆dl,t] -0.023 -0.030 -0.062 0.002
MaxE[∆dl,t] 0.105 0.104 0.070 0.149
Min Std[∆dl,t] 0.087 0.085 0.075 0.095
Max Std[∆dl,t] 0.385 0.306 0.279 0.333

Table XXII
Predictability of consumption growth in the model and in the data.

For the data, we use real time consumption growth as the measure of consumption
growth. The results for the model are derived from 1000 simulations over 165 years
with the data for the first 100 years being dropped so as to limit the impact of
initial values on the numbers.

Data Simulation mean 5th percentile 95th percentile
17.4% 32.6% 10.6% 55.2%
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Table XXIII
Factor structure of excess returns in the model and in the data

Eigenvalues of the covariance matrix of the continuously compounded excess re-
turns of the 25 Fama-French portfolios as well as those obtained by simulating the
model.

Eigenvalues of the covariance matrix of excess returns

Data Simulation mean 5th percentile 95th percentile
1.00000 1.00000 1.00000 1.00000
0.06052 0.06171 0.04705 0.07889
0.04741 0.03926 0.02994 0.04970
0.01280 0.01135 0.00871 0.01403
0.00823 0.00807 0.00637 0.01010
0.00626 0.00667 0.00531 0.00824
0.00535 0.00573 0.00455 0.00711
0.00389 0.00497 0.00399 0.00613
0.00339 0.00433 0.00351 0.00541
0.00316 0.00375 0.00302 0.00460
0.00288 0.00331 0.00267 0.00403
0.00231 0.00294 0.00240 0.00359
0.00207 0.00263 0.00214 0.00324
0.00200 0.00236 0.00191 0.00289
0.00149 0.00213 0.00170 0.00265
0.00142 0.00191 0.00152 0.00234
0.00132 0.00171 0.00136 0.00212
0.00108 0.00151 0.00118 0.00186
0.00099 0.00132 0.00106 0.00164
0.00097 0.00112 0.00087 0.00139
0.00074 0.00076 0.00059 0.00095
0.00067 0.00058 0.00045 0.00075
0.00056 0.00040 0.00030 0.00050
0.00045 0.00030 0.00023 0.00038
0.00043 0.00023 0.00017 0.00029
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Table XXIV
Factor structure of log P/D ratios in the model and in the data.

Eigenvalues of the covariance matrix of the log P/D ratios of the 25 Fama-French
portfolios as well as those obtained by simulating the model.

Eigenvalues of the covariance matrix of log P/D ratios

Data Simulation mean 5th percentile 95th percentile
1.00000 1.00000 1.00000 1.00000
0.06041 0.03598 0.01272 0.07067
0.01669 0.00000 0.00000 0.00000
0.01169 0.00000 0.00000 0.00000
0.00627 0.00000 0.00000 0.00000
0.00522 0.00000 0.00000 0.00000
0.00494 0.00000 0.00000 0.00000
0.00318 0.00000 0.00000 0.00000
0.00245 0.00000 0.00000 0.00000
0.00238 0.00000 0.00000 0.00000
0.00215 0.00000 0.00000 0.00000
0.00168 0.00000 0.00000 0.00000
0.00137 0.00000 0.00000 0.00000
0.00101 0.00000 0.00000 0.00000
0.00094 0.00000 0.00000 0.00000
0.00085 0.00000 0.00000 0.00000
0.00072 0.00000 0.00000 0.00000
0.00063 0.00000 0.00000 0.00000
0.00052 0.00000 0.00000 0.00000
0.00049 0.00000 0.00000 0.00000
0.00046 0.00000 0.00000 0.00000
0.00040 0.00000 0.00000 0.00000
0.00028 0.00000 0.00000 0.00000
0.00022 0.00000 0.00000 0.00000
0.00018 0.00000 0.00000 0.00000
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Table XXV
Factor structure of log P/D ratios in the model with noise and in the

data.

Eigenvalues of the covariance matrix of the log P/D ratios of the 25 Fama-French
portfolios as well as those obtained by simulating the model and adding some
noise to the result.

Eigenvalues of the covariance matrix of noisy log P/D ratios

Data Simulation mean 5th percentile 95th percentile
1.00000 1.00000 1.00000 1.00000
0.06041 0.04536 0.02144 0.08128
0.01669 0.01451 0.01323 0.01577
0.01169 0.01337 0.01234 0.01442
0.00627 0.01251 0.01160 0.01352
0.00522 0.01179 0.01095 0.01269
0.00494 0.01114 0.01046 0.01183
0.00318 0.01057 0.00989 0.01132
0.00245 0.01003 0.00936 0.01071
0.00238 0.00952 0.00877 0.01022
0.00215 0.00904 0.00842 0.00972
0.00168 0.00859 0.00800 0.00918
0.00137 0.00813 0.00757 0.00872
0.00101 0.00771 0.00712 0.00837
0.00094 0.00730 0.00677 0.00786
0.00085 0.00692 0.00639 0.00751
0.00072 0.00652 0.00603 0.00706
0.00063 0.00615 0.00567 0.00664
0.00052 0.00579 0.00533 0.00627
0.00049 0.00541 0.00496 0.00588
0.00046 0.00506 0.00464 0.00554
0.00040 0.00470 0.00429 0.00514
0.00028 0.00433 0.00388 0.00477
0.00022 0.00394 0.00350 0.00437
0.00018 0.00345 0.00295 0.00390
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C. Measurement Error

We do so by analyzing the degree of correlation between different measures for the same

fundamental macroeconomic quantities. For consumption growth, we use the estimates of

consumption growth derived from the continuously revised NIPA tables as well as those from

the real time database maintained by the Federal Reserve Bank of St. Louis (described in detail

by Croushore and Stark (2001)). Regressing these estimates against each other leads to the

results in table (XXVI). The R2 of 67% or about 2
3 indicates that the variance of measurement

noise in consumption growth is about half of the variance of actual consumption growth. We

thus simulate measured consumption growth as actual consumption growth plus iid noise with

half it’s realized variance in that simulation.

Table XXVI
Measurment error in consumption growth

Regression of the conventional revised measure of consumption growth ∆c on the
corresponding real time measure ∆cRT .

Intercept ∆cRT R2

∆c 0.0060 (0.0019) 0.838 (0.092) 67.0%

Similarly, we regress three measures of the real risk free rate on each other to estimate the

amount of measurement noise in it. We use the three measures considered by Marakani (2009),

i.e. estimates constructed with the use of lagged, realized and expected inflation. From the

results tabulated in table (XXVII), we see that the R2 of each of the regressions is quite low

with the average being under 33%. This indicates that the measurement noise in the reported

real risk free rate has about twice the variance of the underlying quantity. Hence, for the

simulations, we model the measured real risk free rate as the actual risk free rate plus iid noise

with twice it’s realized variance.
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Table XXVII
Measurement error in the real risk free rate

Regression of three measures of the real risk free rate on each other. The three
measures are computed using the lagged, realized and expected inflation. The
regressions are restricted to the post-1946 period as expected inflation data is
only available for it.

Regression of rlagged
f,t against rrealized

f,t

Coefficient Estimate (Std. Err.)
Intercept 0.0046 (0.0028)
rrealized
f,t 0.454 (0.106)
R2 23.6%

Regression of rlagged
f,t against rexpected

f,t

Coefficient Estimate (Std. Err.)
Intercept -0.0023 (0.0030)

rexpected
f,t 0.890 (0.145)

R2 38.6%

Regression of rrealized
f,t against rexpected

f,t

Coefficient Estimate (Std. Err.)
Intercept -0.0007 (0.0035)

rexpected
f,t 0.859 (0.169)

R2 30.4%

D. Type I error of Asset Pricing Tests with Respect to the Long

Run Risk Model

We now analyze the performance of tests of four different asset pricing restrictions of the long

run risk model in order to determine which is the most reasonable one to use in the analysis
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in this paper. The first two asset pricing restrictions that we consider are related to the one

analyzed by Ferson, Nallareddy, and Xie (2009).39 Of these, the first is40

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t] ≈βx̃λx̃ + β

σ̃2λσ̃2 +

2∑
i=1

βε̃λε̃

+

2∑
j=1

βw̃λw̃

(60)

where the returns ri,t are continuously compounded, x̃ and σ̃2 are the estimated values of xt

and σ2
t (note from the subscript that these are lagged values), and ε̃ and w̃ are the estimated

values of the innovations of these processes. x and σ2 are estimated in the same manner as by

Bansal, Yaron, and Kiku (2007) and Ferson, Nallareddy, and Xie (2009), i.e. by the use of the

following regressions

∆ct+∆t = α0 + α1zm,t + α2rf,t + σtηt+∆t

√
∆t (61)

x̃t = α0 − µ+ α1zm,t + α2rf,t (62)

x̃t+∆t = ρx̃t + ε̃t+∆t

√
∆t (63)

σ2
t η

2
t+∆t∆t = β0 + β1zm,t + β2rf,t + ωt+∆t (64)

σ̃2
t∆t = β0 + β1zm,t + β2rf,t (65)

σ̃2
t+∆t = νσ̃2

t + w̃t+∆t

√
∆t (66)

where zm,t is the log market P/D ratio (taken to be the log P/D ratio of the first asset in

the simulations) and ∆t is one year. The second asset pricing restriction that we consider

comes from considering only the innovations to the stochastic discount factor as in Ferson,

Nallareddy, and Xie (2009). This simplifies (60) to

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t] ≈

2∑
i=1

βε̃λε̃ +
2∑
j=1

βw̃λw̃ (67)

39Ferson, Nallareddy, and Xie (2009) use GMM with the Euler moment restrictions in the SDF
framework. We use the beta representation which is approximate but quite accurate when dealing with
continuously compounded returns.

40Note that we don’t need a β∆c term as there is no contemporaneous correlation between the dividend
growth and consumption growth innovations
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The third and fourth asset pricing restrictions that we consider are analogous but use the

two largest estimated log P/D ratio factors instead of the log market P/D ratio and the real

risk free rate as they should also span x and σ2. The principal idea behind this approach is

that given the null, they should be more accurately estimated in the presence of measurement

error since they are estimated using multiple assets. The asset pricing restriction analogous to

(60) is then given by

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t] ≈

2∑
i=1

βFiλFi +
2∑
j=1

βIFjλIFj (68)

where Fi and IFi are the ith principal components of the log P/D ratios of the assets and

their estimated innovations respectively (the latter are estimated by fitting the former to an

AR(1) process). The asset pricing restriction analogous to (67), which only uses the estimated

innovations, is then

E[ri,t+∆t − rf,t] +
1

2
Var[ri,t+∆t − rf,t] ≈

2∑
j=1

βIFjλIFj (69)

We examine whether the hypothesis that the factors being considered are useless is rejected

by the cross sectional regression methodology. This is done using the Wald test for the risk

premia of the factors with their covariance matrix being estimated in the standard manner

(see for eg., Shanken (1992) and Shanken and Zhou (2007)). The rejection frequencies for

each of these tests in 1000 simulations are reported in table (XXVIII). The results show that

the test of the asset pricing restriction involving the log P/D ratio factors (which also include

noise calibrated to fit the observed factor structure of log P/D ratios) and/or their innovations

display much greater power than those involving the estimated long run risk processes and

their innovations. Hence, we use the former in our analysis in this paper.
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Table XXVIII
Power of the two type of tests tested in the simulation

Rejection frequencies for the hypothesis that the λs of the relevant factors are
zero.

Hypothesis
Non-rejection rate

p=0.10 p=0.05 p=0.01
λx̃, λσ̃2 , λε̃, λw̃ = 0 14.9% 26.4% 48.8%

λε̃, λw̃ = 0 12.3% 24.0% 50.4%
λF1 , λF2 , λIF1 , λIF2 = 0 0 0.2% 0.4%

λIF1 , λIF2 = 0 0.4% 0.6% 1.5%

E. Conclusion

In this appendix, we simulate a 25 asset long run risk economy with parameters chosen so as

to match key economic and financial moments with those in U.S. economic and financial data.

We analyze the type I error of different asset pricing tests within this economy and find, when

realistic measurement noise is introduced into it, that tests using estimates of the long run

risk components derived from projections of consumption growth onto the log market price

dividend ratio and real risk free rate display high type I error while those estimating the same

components using the principal components of the log price dividend ratios of the assets do

not do so. This implies that the latter type of tests have a more desirable profile. Hence, we

use such tests in this paper.
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C. Out of Sample Tests

Table XXIX
Out of sample test for the relation between the first two principal

components and consumption growth volatility

Results of regressing real annual market dividend growth against lagged F a,os1

and F a,os2 , the out of sample estimates of the first and second log P/D factors.
The standard errors are Newey-West corrected with the number of lags required
estimated using the procedure of Newey and West (1994).

Regression of 24 quarter consumption growth volatility on
F a,os

1 and F a,os
2

Intercept F a,os
1 F a,os

2 R2

v24
t 0.171∗∗∗ (0.016) −0.0050∗∗∗ (0.0007) 0.0022 (0.0026) 74.1%

To check the robustness of the results, we estimated the rotation matrices relating the

log price dividend ratios of the portfolios to their first two principal components only using

data from 1943 to 1975 and used them to construct out of sample factors from 1975 to 2008.

We found that these estimated out of sample factors also track consumption growth volatility

and predict market dividend and real time consumption growth in a manner similar to that

documented for the in sample factors.

The results of regressing 24 quarter consumption growth volatility on the estimated out

of sample factors, summarized in table (XXIX), show that the relation found in the paper is

robust. Specifically, consumption growth volatility is found to be very significantly negatively

related to the first out of sample factor F a,os1 and to be unrelated to the second out of sample

factor F a,os2 .

The predictability of real time consumption and market dividend growth using the out

of sample factors are summarized in table (XXX). As can be seen, only the second factor is

relevant in predicting real time consumption growth and market dividend growth. The result

for the three year market dividend growth seems marginal but that is because the number of

data points is much smaller and the R2 of the regression is still found to be quite high.
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Table XXX
Out of sample test for the relation between the first two principal

components and future market dividend and real time consumption
growth

Results of regressing real annual market dividend growth and real time consump-
tion growth (∆cRT ) against lagged F a,os1 and F a,os2 , the out of sample estimates
of the first and second log P/D factors. The standard errors are Newey-West cor-
rected with the number of lags required estimated using the procedure of Newey
and West (1994). The regressions using the log market price dividend ratio use
data from 1976 onwards in order to be consistent with the others.

Regression of market dividend growth on F a,os
1 and F a,os

2

and the log market price dividend ratio
F a,os

1 F a,os
2 log(P/D)m R2

1 yr. Market div. growth
-0.0066 (0.0055) 0.0491∗∗∗ (0.0183) 20.8%

0.012 (0.036) 0.8%

3 yr. Market div. growth
0.0026 (0.0263) 0.0593 (0.0453) 13.4%

0.066 (0.138) 5.7%

Regression of real time annual consumption growth on lagged
values of F a,os

1 and F a,os
2 .

F a,os
1 F a,os

2 R2

∆cRTt+1 4.1× 10−4(0.0010) 0.0063∗∗ (0.0031) 13.9%
∆cRTt+2 5.5× 10−4(6.8× 10−4) 0.0045∗∗ (0.0016) 5.8%
∆cRTt+1 + ∆cRTt+2 7.6× 10−4(1.5× 10−3) 0.0123∗∗ (0.0050) 18.9%
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D. Robust Test Statistics
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Factor risk premium region identified by the p−value plot of the FAR statistic. 

Regions are color coded as cyan for p>0.1, purple for 0.05<p<0.1 and red for p<0.05
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Figure 11
p-value plot of the test of the joint hypothesis of factor pricing together with
(λIF−V ol , λIFX ) = (λ̂IF−V ol , λ̂IFX ) using the FAR statistic proposed by Kleibergen
(2009). λIF−V ol and λIFX are respectively the factor risk premia for the negative
volatility and consumption/dividend growth factors.

Since the excess returns of the 25 Fama-French portfolios formed on the basis of size and

book to market ratio have a strong factor structure, it is important to use robust test statistics

to eliminate the problem of useless factors being identified as useful (a problem forcefully

brought out by Kleibergen (2009) and Kleibergen (2010)). Hence, we use the robust test

statistics suggested by Kleibergen (2009) to ensure that the factors here are not useless.

We find that these robust test statistics reject the joint hypothesis that λIF−V ol = λIFX = 0

(non-rejection of the hypothesis would indicate that the pricing factors are useless) and do not

reject either the hypothesis of factor pricing or that of λIF−V ol = λ̂IF−V ol , λIFX = λ̂IFX for

many values of (λ̂IF−V ol , λ̂IFX ) including those estimated using the cross sectional regressions

(rejection of this would indicate that the model is rejected by the data). Figure 11 contains

the plot of the p-values of the FAR test statistic for many different values of (λ̂IF−V ol , λ̂IFX ).

This statistic tests the joint hypothesis of factor pricing and of λIF−V ol = λ̂IF−V ol , λFX = λ̂IFX .
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Factor risk premium region identified by GLS−LM statistic.

 Regions are color coded as cyan for p>0.1, purple for 0.05<p<0.1 and red for p<0.05

λIF−Vol

λ
IF

X

Figure 12
p-value plot of the test of the hypothesis of factor pricing given (λIF−V ol , λIFX ) =

(λ̂IF−V ol , λ̂IFX ) using the JGLS and GLS-LM statistics proposed by Kleibergen
(2009). λIF−V ol and λIFX are respectively the factor risk premia for the negative
volatility and consumption/dividend growth factors.

It shows that the joint hypothesis is rejected at λ̂IF−V ol = λ̂IFX = 0 and also that it is not

rejected for many other values of λ̂IF−V ol and λ̂IFX including those in table VIII. Further, the

region identified by p > 0.1 excludes λIFX = 0 but not λIF−V ol = 0. This is consistent with

the findings using GMM which are analyzed in the next subsection.

The JGLS statistic which tests the hypothesis of factor pricing for a given value of λIF−V ol

and λIFX is plotted in figure 12. Since it tests a weaker hypothesis, it is not surprising that

it rejects fewer values of λIF−V ol and λIFX than the FAR statistic. When combined with
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the GLS-LM statistic, also plotted in figure 12, which tests the hypothesis that λIF−V ol =

λ̂IF−V ol , λFX = λ̂IFX given that factor pricing is correct, it gives very similar results to those

given by the FAR statistic.

Hence, we can conclude that the robust test statistics show that (21) cannot be rejected.

However, they, together with the findings made using GMM, do cast some doubt on the

significance of λIF−V ol .
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