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In this appendix, I provide details on the data and computational methods used in “Capital

Taxation During the U.S. Great Depression” (Staff Report 451). I also conduct sensitivity

analyses of the main results.

1. U.S. Data

The main source for the data used in this study is the U.S. Department of Commerce,

Bureau of Economic Analysis (BEA), which publishes the U.S. national accounts and

fixed asset tables in the Survey of Current Business (available online at www.bea.gov),

SCB hereafter. NIPA tables referenced below are the main tables of the National Income

and Product Accounts. FA tables referenced below are the main tables of the Fixed Assets.

Annual supplements of the SCB are the main source of market values for U.S. corporations.

For information on taxes not available through the SCB, I use the U.S. Treasury’s Statistics

of Income. Auxiliary references are discussed where relevant.

1.1. National Accounts and Fixed Assets

Gross domestic product (GDP), components of GDP, and capital stocks are all divided by

population midyear (NIPA Table 2.1), which is plotted in Figure 1.

Several adjustments are made to GDP to make it consistent with theory. Specifically,

adjusted GDP is GDP (NIPA Table 1.1.5) less sales taxes (NIPA Table 3.5) plus imputed

capital rents (equal to 4.1 percent of the stock of consumer durables in FA Table 1.1 plus

fixed government capital in FA Table 1.1) plus depreciation of consumer durables (FA

Table 1.3). To convert to real dollars, the adjusted GDP series is then divided by the GDP

deflator (NIPA Table 1.1.9). In Figure 2, I plot this adjusted series after dividing it by

the population in Figure 1 and 1.019t−1929, t = 1929, . . . , 1939. The latter is an estimate
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of the growth factor for labor-augmenting technical change. To convert the series into an

index, I then divide the series by the 1929 value and multiply by 100.

Next, consider the main components of GDP. Consumption is defined to be personal

consumption expenditures (NIPA Table 1.1.5) less PCE durables (NIPA Table 1.1.5) plus

imputed capital rents (equal to 4.1 percent of the stock of consumer durables in FA Table

1.1 plus fixed government capital in FA Table 1.1) plus depreciation of consumer durables

(FA Table 1.3) less a prorated portion of sales taxes on nondurables and services (NIPA

Table 3.5). To convert to real dollars, the consumption series—along with all components

of income and product—is divided by the GDP deflator. Finally, I divide the consumption

series by the population times 1.019t−1929 times the 1929 level of adjusted GDP and then

multiply by 100. The result is shown in Figure 3. Note that the 1929 value shown in the

figure is the share of nondurables plus services (adjusted for taxes and capital services)

in output of that year. This share, which is equal to 68 percent, is used later when

parameterizing the models.

Investment is defined to be gross private domestic investment (NIPA Table 1.1.5) plus

net exports (NIPA Table 1.1.5) plus government investment (NIPA Table 3.1) plus PCE

durables (NIPA Table 1.1.5) less a prorated portion of sales taxes on durables (NIPA Table

3.5). To deflate and detrend the series, I use the same procedure as with consumption.

Detrended real investment is plotted in Figure 4.

Government spending is defined to be government consumption (NIPA Table 3.1). To

deflate and detrend this series, I again use the same procedure as with consumption.

Figure 5 plots the actual detrended series along with a smooth trend. All exogenous

inputs are first filtered using the Hodrick and Prescott (1997) filter (with smoothing pa-

rameter equal to 1) before being fed into the models described later. I do this because
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these values are the basis of expectations of future spending and tax rates. In the case of

the extended model, the computation is easier if expected future paths are smooth.

For the extended model, GDP and investment are subdivided into components for

business and nonbusiness. Business GDP is the sum of corporate profits (NIPA Table 1.10)

plus nonfarm proprietors’ income (NIPA Table 1.12) plus compensation, net interest, and

consumption of fixed capital of corporate business (NIPA Table 1.14) plus compensation

and net interest of of sole proprietorships and partnerships (available prior to 2002 in NIPA

Table 1.15) plus nonfarm proprietors’ consumption of fixed capital (NIPA Table 7.5) plus

taxes on imports and production (NIPA Table 1.10) less taxes on imports and production

of the housing sector (NIPA Table 7.4.5) and farm sector (NIPA Table 7.3.5) and less sales

taxes (NIPA Table 3.5). Nonbusiness GDP is GDP as defined above less business GDP.

Business investment is the sum of fixed investment of corporations plus nonfarm pro-

prietors (FA Table 6.7) plus a change in inventories (NIPA Table 1.1.5) less a change in

farm inventories (NIPA Table 7.3.5). Nonbusiness investment is investment as defined

above less business investment.

The nonbusiness subcomponents of GDP and investment—after the series have been

deflated and detrended—are plotted in Figures 6 and 7. In addition, I plot the smoothed

series after applying the Hodrick and Prescott (1997) filter.

1.2. Hours Per Capita

Hours used in the study are total manhours from Kendrick (1961). The fraction of

time at work is total manhours divided by time available for work, which is assumed to be

5,000 hours per year times the number of persons over 16. The population over 16 is from
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the U.S. Department of Commerce (1975, Series A39). In Figure 8, I plot per capita hours

as a fraction of time at work. In 1929, 29 percent of available time was devoted to work.

For the extended model, I need business and nonbusiness hours. For nonbusiness

hours, I use Kendrick’s (1961) manhours for farm plus government. Nonbusiness hours per

capita are plotted in Figure 9 along with the filtered series, which is used as an input for

the numerical simulations. Business hours are then found residually by taking total hours

less nonbusiness hours.

1.3. Market Value

The total value of all U.S. corporations is not available for this period, but an estimate

for the index plotted in Figure 10 is constructed using the New York Stock Exchange market

capitalization.

1.4. Tax Rates

I turn next to estimates for tax rates.

In Figures 11 and 12, I plot the tax rates on capital and labor from Joines (1981).

I include filtered series, which are used as inputs in the computer simulations. (Later, I

show that the results for the basic growth model are robust to whether I use filtered inputs

or unfiltered inputs.)

For the extended model, I use Joines’ tax rate on labor but not capital. For capital, I

instead decompose capital taxation into parts. In other words, for the tax rate on business

profits, I do not use Joines’ comprehensive capital tax measure but instead use the rate on

corporate income taxes.
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In Figure 13, I plot the statutory corporate income tax rate from the U.S. Treasury’s

Statistics of Income. This is the rate that firms paying taxes on profits faced.

In Figure 14, I plot the effective tax rate on dividends of McGrattan and Prescott

(2003). They calculate this rate as tax paid on an additional dollar of dividend income

using data from the U.S. Treasury’s Statistics of Income.

Figure 15 shows the effective tax rate on property (NIPA Table 3.5). To construct

taxes paid on property for the business sector, I sum taxes on imports and production plus

business current transfer payments and subtract off these taxes and transfers for the farm

(NIPA Table 7.3.5) and housing sectors (NIPA Table 7.4.5). To construct the tax rate, I

then divide taxes paid by business fixed capital (FA Table 6.1) plus land and inventories

from Goldsmith (1962).

Finally, the effective tax rate on consumption is found by dividing sales taxes (NIPA

Table 3.5) by consumption (as defined above). The rate is plotted in Figure 16.

2. Basic Growth Model

The one-sector neoclassical growth model analyzed by Cole and Ohanian (1999) serves as

the baseline for the conventional view described in the main text.

2.1. Household Problem

I’ll start with the household’s problem. The household chooses consumption c, investment

x, and hours of work h to solve the following maximization problem:

max
{ct,xt,ht}

E
∞
∑

t=0

βt
[

log (ct) + ψ
(

(1 − ht)
φ
− 1

)

/φ
]

Nt

subject to ct + xt = rtkt + wtht + κt
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− τhtwtht − τpt{(rt − δ − τkt) kt}

kt+1 = [(1 − δ) kt + xt] / (1 + η)

xt ≥ 0 in all states

with processes for factor prices (rt, wt), taxes (τht, τpt), and transfers (κt) given. Quantities

are in per capita terms. Nt is the number of family members. Growth in Nt is η.

I next derive the necessary first-order conditions that I use in the computer code. The

Lagrangian for the optimization problem is

L = E
∑

t

[β (1 + η)]
t

{

log (ĉt) + ψ
(

(1 − ht)
φ
− 1

)

/φ+
ζ

3
min (x̂t, 0)

3

+ µt

{

(rt − τkt) k̂t + (1 − τht) ŵtht + κ̂t

− ĉt − x̂t

− τpt{(rt − δ − τkt) k̂t}

+ λt

{

(1 − δ) k̂t + x̂t − (1 + η) (1 + γ) k̂t+1

}

}

,

where ζ is a penalty parameter used to deal with the constraint xt ≥ 0. Variables that

grow over time with increasing technology are detrended, e.g., ĉt = ct/(1 + γ)t.

Taking derivatives with respect to all decision variables yields the following first-order

conditions:

1/ĉt = µt (2.1)

ψ (1 − ht)
φ−1

= µt (1 − τht) ŵt (2.2)

ζmin (x̂t, 0)
2

+ λt = µt (2.3)

(1 + η) (1 + γ)λt = β̃Et

[

λt+1 (1 − δ)

+ µt+1

{

rt+1 − τpt+1 (rt+1 − δ)
}

]

. (2.4)
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If I simplify these equations, I have

ψĉt (1 − ht)
φ−1

= (1 − τht) ŵt (2.5)

1

ĉt
− ζmin (x̂t, 0)

2

= β̂E

[

1

ĉt+1

{

1 + (1 − τpt+1) (rt+1 − δ)
}

− (1 − δ) ζmin (x̂t+1, 0)
2

∣

∣

∣

∣

kt, st

]

, (2.6)

where β̂ = β/(1 + γ).

2.2. Factor Prices

Factor prices are derived from the first-order conditions of

max
{Kt,Lt}

Kθ
t (ZtLt)

1−θ
− rtKt − wtHt,

which implies

rt = θ
(

k̂t

)θ−1

(ztht)
1−θ

ŵt = (1 − θ)
(

k̂t

)θ

z1−θ
t h−θ

t

when variables are normalized.

2.3. Government Budget Constraint

The government’s budget constraint, written in per capita and detrended terms, is given

by

ĝt + κ̂t = τhtŵtht + τpt (rt − δ − τkt) k̂t.
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2.4. Resource Constraint

The original resource constraint of the economy is given by

Nt (ct + xt + gt) = (Ntkt)
θ
(ZtNtht)

1−θ
,

where gt is per capita spending of the government. Once I divide by population and

account for growth in technology, I have a normalized resource constraint given by

ĉt + x̂t + ĝt = ŷt = k̂θ
t (ztht)

1−θ
.

2.5. Exogenous Processes

I next specify exogenous processes for {ĝ, τh, τp, z}. Let s index the state, where s is

determined by an nth-order Markov chain. Then at time t if the state is s, gt = g(s),

τht = τh(s), etc. The process for s is intended to capture different states of the world.

Note that the state vector for the economy is k̂, s.

2.6. Computation

The first step is to find α, which is used to represent the consumption function,

ĉ
(

k̂, s
)

=
nnodes
∑

j=1

αs
jΦj

(

k̂
)

,

where the functions Φj(k̂) are known basis functions. For the finite element method, the

Φj(k̂)’s are low-order polynomials that are nonzero on small subdomains and the vector α

satisfies

R
(

k̂, s;α
)

= 1 − ζĉmin (x̂, 0)
2

+ β̂ (1 − δ) ζĉ
∑

s′

πs,s′ min (x̂′, 0)
2

− β̂
∑

s′

πs,s′

(

ĉ

ĉ′

)

{

1 + (1 − τp (s′))

(

θ
(

k̂′
)θ−1

(z (s′)h′)
1−θ

− δ

)

}

.
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To speed up the computation, I will need the derivatives of R with respect to coeffi-

cients on current consumption and the coefficients on next period consumption. I’ll start

with current consumption:

∂R
(

k̂, s;α
)

∂αs
j

= −ζ[min (x̂, 0)
2

+ 2ĉmin (x̂, 0)
dx̂

dĉ
− β̂ (1 − δ)

∑

s′

πs,s′ min (x̂′, 0)
2
]
dĉ

dαs
j

+ 2ζβ̂ (1 − δ) ĉ
∑

s′

πs,s′ min (x̂′, 0)
dx̂′

dαs
j

− β̂
∑

s′

πs,s′

{

1 + (1 − τp (s′))

(

θ
(

k̂′
)θ−1

(z (s′)h′)
1−θ

− δ

)

}

(

ĉ

ĉ′

)

·

[

1

ĉ

dĉ

dαs
j

−
1

ĉ′
dĉ′

dαs
j

]

− β̂
∑

s′

πs,s′

(

ĉ

ĉ′

)

(1 − τp (s′)) θ (θ − 1)
(

k̂′
)θ−1

(z (s′)h′)
1−θ

·

[

1

k̂′
dk̂′

dαs
j

−
1

h′
dh′

dαs
j

]}

and, then, next period consumption:

∂R
(

k̂, s;α
)

∂αs′

j

= 2ζβ̂ (1 − δ) ĉ
∑

s′

πs,s′ min (x̂′, 0)
dx̂′

dαs′

j

− β̂
∑

s′

πs,s′

{

1 + (1 − τp (s′))

(

θ
(

k̂′
)θ−1

(z (s′) h′)
1−θ

− δ

)

}

(

ĉ

ĉ′

)

·

[

−
1

ĉ′
dĉ′

dαs′

j

]

− β̂
∑

s′

πs,s′

(

ĉ

ĉ′

)

(1 − τp (s′)) θ (θ − 1)
(

k̂′
)θ−1

(z (s′) h′)
1−θ

·

[

−
1

h′
dh′

dαs′

j

]

.

To compute these expressions, I need formulas for the derivatives in these equations.
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I’ll start with the next period capital, which has the derivative

dk̂′ = dx̂/[(1 + η) (1 + γ)]

= [(1 − θ) ŷ/hdh− dĉ]/[(1 + η) (1 + γ)].

Next, I’ll derive dh, which involves differentiating the intratemporal first-order condition

(2.5):

0 = d[(1 − h)
φ−1

hθ ĉ]

= (1 − h)
φ−1

hθ ĉ

{[

−
φ− 1

1 − h
+
θ

h

]

dh+
1

ĉ
dĉ

}

.

This result shows that dh can be written as a function of dc. Next consider dh′, which is

slightly different since it depends on dk′ as well:

0 = d[(1 − h′)
φ−1

(h′)
θ
ĉ′

(

k̂′
)−θ

]

= (1 − h′)
φ−1

(h′)
θ
ĉ′

(

k̂′
)−θ

{[

−
φ− 1

1 − h′
+
θ

h′

]

dh′ +
1

ĉ′
dĉ′ −

θ

k̂′
dk̂′

}

.

Finally I need

dĉ′

dαs
j

=





∑

l

αs
l

∂Nl

(

k̂′
)

∂k̂′





dk̂′

dαs
j

dĉ′

dαs′

j

= Nj

(

k̂′
)

,

and all other derivatives are explicit or implicit functions of these.

2.7. Sensitivity Analysis

For the basic growth model, I now show that using the smoothed time series for government

spending in Figure and the smoothed tax series in Figures 11 and 12 does not affect the

results (shown in Figures 1-4 in the main text). In Figures 17–20, I compare predictions of

10



the model (along with U.S. data) with both filtered and unfiltered spending and tax rate

inputs. The results are nearly indistinguishable.

3. Extended Growth Model

Here, I consider an extension of the stochastic growth model that has both tangible and

intangible capital. As in the home production model, this extension requires me to compute

two-dimensional decision functions.

3.1. Household Problem

I’ll start with the household’s problem. The problem is to choose consumption ct, hours

ht, and investments xTt, xIt to maximize

max E

∞
∑

t=0

βt[log (ct) + ψ
(

(1 − ht)
φ
− 1

)

/φ]Nt

subject to

ct + xTt + qtxIt ≤ rTtkTt + rItkIt + wtht + κt

− τctct − τhtwtht + τbt (1 − χ) qtxIt

− τxtxTt − τktkTt

− τpt

[

rTtkTt + rItkIt − δT kTt − χqtxIt − τktkTt

]

− τut

[

(1 + η) kTt+1 − kTt

]

− τdt

[

rTtkTt + rItkIt − xTt − χqtxIt − τktkTt − τxtxTt

− τpt

(

rTtkTt + rItkIt − δT kTt

− χqtxIt − τktkTt

)

− τut ((1 + η) kTt+1 − kTt)
]

, (3.1)
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taking as given the initial capital stocks, factor prices (rTt, rIt, wt), other incomes (κ), and

exogenous shocks. Hours are the sum of business hours hbt = h1
bt + h2

bt and nonbusiness

hours hnt.

Constraints that must be satisfied in addition to the budget constraint are the capital

accumulation equations:

kTt+1 = [(1 − δT ) kTt + xTt]/ (1 + η)

kIt+1 = [(1 − δI) kIt + xIt]/ (1 + η)

and nonnegativity constraints on investment: xTt ≥ 0 and xIt ≥ 0.

Note that I am assuming that households own the capital stocks and pay all taxes

directly. Separating the problems of households and firms will not affect the equations to

which I apply the numerical algorithm.

Also, I will assume, as in McGrattan and Prescott (2010), that nonbusiness income,

investment, and hours are given exogenously. Here, they will be indexed by the state s.

Before deriving first-order conditions for the problem, I first modify the objective of

the household to incorporate penalty functions for the nonnegativity constraints:

Emax
∞
∑

t=0

∑

st

[β (1 + η)]
t
{

log (ĉt) + ψ
(

(1 − ht)
φ
− 1

)

/φ

+ ζ/3
(

min (x̂Tt, 0)
3

+ min (x̂It, 0)
3
)
}

.

If ζ = 0, this is the utility defined above.
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The Lagrangian for the optimization problem is

L = E
∑

t

[β (1 + η)]
t

{

log (ĉt) + ψ
(

(1 − ht)
φ
− 1

)

/φ

+
ζ

3

[

min (x̂Tt, 0)
3

+ min (x̂It, 0)
3
]

+ µt

{

(rTt − τkt) k̂Tt + rItk̂It + (1 − τht) ŵtht + κ̂t

− τpt

{

(rTt − δT − τkt) k̂Tt + rItk̂It − χqtx̂It

}

− τut

{

(1 + η) (1 + γ) k̂Tt+1 − k̂Tt

}

− τdt

{

(rTt − τkt) k̂Tt + rItk̂It − χqtx̂It − (1 + τxt) x̂Tt

− τpt{(rTt − δT − τkt) k̂Tt + rItk̂It − χqtx̂It}

− τut{(1 + η) (1 + γ) k̂Tt+1 − k̂Tt}
}

− (1 + τct) ĉt − (1 + τxt) x̂Tt − (1 − (1 − χ) τbt) qtx̂It

+ λTt

{

(1 − δT ) k̂Tt + x̂Tt − (1 + η) (1 + γ) k̂Tt+1

}

+ λIt

{

(1 − δI) k̂It + x̂It − (1 + η) (1 + γ) k̂It+1

}

}

.

Consider the first-order conditions with respect to consumption, labor, and next period

capital stocks. They are as follows:

1/ĉt = (1 + τct)µt

ψ (1 − ht)
φ−1

= µt (1 − τht) ŵt

ζmin (x̂Tt, 0)
2

+ λTt = µt (1 + τxt) (1 − τdt)

ζmin (x̂It, 0)
2

+ λIt = µtqt[(1 − χ) (1 − τht) + χ (1 − τpt) (1 − τdt)]

(1 + η) (1 + γ) (λTt + µtτut (1 − τdt)) = β̃Et

[

λTt+1 (1 − δT )

+ µt+1 (1 − τdt+1)
{

rTt+1 − τkt+1 − τpt+1 (rTt+1 − δT − τkt+1) + τut+1

}

]

(1 + η) (1 + γ)λIt = β̃Et

[

λIt+1 (1 − δI)
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+ µt+1 (1 − τpt+1) (1 − τdt+1) rIt+1

]

.

Rewriting the dynamic first-order conditions, I get

(1 + τxt + τut) (1 − τdt)

(1 + τct) ĉt
− ζmin (x̂Tt, 0)

2

= β̂E
[ (1 − τdt+1)

(1 + τct+1) ĉt+1
{(1 − τpt+1) (rTt+1 − τkt+1)

+ (1 − δT ) (1 + τxt+1) + δT τpt+1 + τut+1}

− ζ (1 − δT ) min (x̂Tt+1, 0)
2
]

qt [(1 − χ) (1 − τht) + χ (1 − τpt) (1 − τdt)]

(1 + τct) ĉt
− ζmin (x̂It, 0)

2

= β̂E
[ 1

(1 + τct+1) ĉt+1
{(1 − τdt+1) (1 − τpt+1) rIt+1

+ (1 − δI) qt+1[(1 − χ) (1 − τht+1)

+ χ (1 − τpt+1) (1 − τdt+1)]}

− ζ (1 − δI) min (x̂It+1, 0)
2
]

.

3.2. Factor Prices

Assume that the technologies are

ŷbt =
(

k̂1
Tt

)θ1
(

k̂It

)α1 (

z1
t h

1
t

)1−θ1−α1

x̂It =
(

k̂2
Tt

)θ2
(

k̂It

)α2 (

z2
t h

2
t

)1−θ2−α2

,

where the total tangible capital (in business) is k̂Tt = k̂1
Tt + k̂2

Tt and total hours is ht =

h1
t + h2

t + hnt.
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The factor prices are

rTt = θ1ŷbt/k̂
1
Tt = θ2qtx̂It/k̂

2
Tt

rIt = (α1ŷbt + α2qtxIt) /k̂It

ŵt = (1 − θ1 − α1) ŷbt/h
1
t = (1 − θ2 − α2) qtx̂It/h

2
t .

3.3. Government Budget Constraint

The government’s budget constraint, written in per capita and detrended terms, is given

by

ĝt + κ̃t = τctĉt + τhtŵtht + τbt (1 − χ) qtxIt + τxtx̂Tt + τktk̂Tt

+ τpt{(rTt − δT − τkt) k̂Tt + rItk̂It − χqtx̂It}

+ τut{x̂Tt − δT k̂Tt}

+ τdt{(rTt − τkt) k̂Tt − (1 + τxt) x̂Tt + rItk̂It − χqtx̂It

− τpt[(rTt − δT − τkt) k̂Tt + rItk̂It − χqtx̂It]},

where κ̃ = κ̂+ ŵhn + x̂n − ŷn.

3.4. Resource Constraint

GDP in this economy is (after normalizing)

ŷbt + ŷnt = ĉt + x̂Tt + x̂nt + ĝt.

Total output is ŷbt + ŷnt + qtx̂It.
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3.5. Exogenous Processes

The exogenous variables for this model are {ĝ, τc, τh, τx, τk, τp, τd, z
1, z2, hn, x̂n, ŷn}. The

state is indexed by s. Therefore, the full state vector for the economy is [k̂T , k̂I , s].

3.6. Computation

I am going to compute two decision functions which are represented as sums of known

basis functions Φj(k̂T , k̂I):

ĉ
(

k̂T , k̂I , s
)

=
nnodes
∑

j=1

αs
cjΦj

(

k̂T , k̂I

)

(3.2)

x̂T

(

k̂T , k̂I , s
)

=
nnodes
∑

j=1

αs
xjΦj

(

k̂T , k̂I

)

. (3.3)

The static first-order conditions can be used to determine the current period variables,

given guesses for the decision variables c and xT and the state variables k̂T , k̂I , and all

exogenous variables. Start by guessing a value for h1 given c, k̂T , and k̂I . Then I have (in

order):

ŷb = ĉ+ x̂T + ĝ + (x̂n − ŷn)

ŵ = (1 − θ1 − α1) ŷb/h
1

h = 1 − [(1 − τh) ŵ/ (ψ (1 + τc) ĉ)]
1/(φ−1)

h2 = h− h1 − hn

ξ = (1 − θ2 − α2)h
1/

[

(1 − θ1 − α1) h
2
]

k̂1
T = θ1ξ/ (θ2 + θ1ξ) k̂T ,

where ξ = ŷb/(qx̂I). If the guess for h1 is correct, then the following should hold exactly:

ŷb = Â1
(

k̂1
T

)θ1
(

k̂I

)α1 (

h1
)1−θ1−α1

.

16



If it does not, then I update the guess for h1 and continue until convergence.

With values for k̂T
1 , ŵ, and h2, I can back out

k̂2
T = k̂T − k̂1

T

qx̂I = ŵh2/ (1 − θ2 − α2)

x̂I = Â2
(

k̂2
T

)θ2
(

k̂I

)α2 (

h2
)1−θ2−α2

q = (qx̂I) /x̂I .

Then, capital stocks can be updated given current period investments xT and xI .

The unknowns coefficients in (3.2) and (3.3), which I can stack into the vector ~α, are

set so that the residuals of the two dynamic Euler equations are approximately zero. These

residuals can be written as follows:

R1

(

~k, s; ~α
)

= (1 + τx (s) + τu (s)) (1 − τd (s)) / (1 + τc (s))

− ζĉmin (x̂T , 0)
2

+ β̂ζĉ (1 − δT )
∑

s′

πs,s′ min (x̂′T , 0)
2

− β̂
∑

s′

πs,s′

{ (1 − τd (s′))

(1 + τc (s′))

ĉ

ĉ′
[

(1 − τp (s′)) (r′T − τk (s′))

+ (1 − δT ) (1 + τx (s′)) + δT τp (s′) + τu (s′)
]}

R2

(

~k, s; ~α
)

= q[(1 − χ) (1 − τb (s)) + χ (1 − τd (s)) (1 − τp (s))]/ (1 + τc (s))

− ζĉmin (x̂I , 0)
2

+ β̂ζĉ (1 − δI)
∑

s′

πs,s′ min (x̂′I , 0)
2

− β̂
∑

s′

πs,s′

{ 1

(1 + τc (s′))

ĉ

ĉ′
[

(1 − τd (s′)) (1 − τp (s′)) r′I

+ (1 − δI) q
′[(1 − χ) (1 − τb (s′))

+ χ (1 − τd (s′)) (1 − τp (s′))
]}

,

17



where β̂ = β(1 + γ)−σ and ~k = (k̂T , k̂I). If I apply a standard finite element method, I

find ~α to ensure that weighted sums of residuals R1 and R2 are equal to zero.

When computing ~α, I take derivatives of the residuals with respect to these unknown

coefficients; this speeds up the numerical algorithm considerably, especially if the number

of unknowns is large.

I’ll start by totally differentiating the static first-order conditions in order to write

the derivative of h1, h2, yb, w, and k1
T in terms of the derivatives of decision functions and

states:

dŷb = dĉ+ dx̂T

dŵ = ŵ[dŷb/ŷb − dh1/h1]

dh = (1 − h) / (1 − φ) [dŵ/ŵ − dĉ/ĉ]

dh2 = dh− dh1

dξ = ξ
[

dh1/h1 − dh2/h2
]

dk̂1
T = k̂1

T

[

dk̂T/k̂T +
(

1 − k̂1
T/k̂T

)

dξ/ξ
]

dŷb = ŷb

[

θ1dk̂
1
T/k̂

1
T + α1dk̂I/k̂I + (1 − θ1 − α1) dh

1/h1
]

.

This can be summarized as

Adh1 = Bdĉ+ Cdx̂T +Ddk̂T + Edk̂I ,

where the coefficients are

A = (1 − θ1 − α1) ŷb/h
1 + θ1ŷb

(

1 − k̂1
T/k̂T

)

(

h2 + h1 + (1 − h) / (1 − φ)
)

/
(

h1h2
)

B = 1 + θ1

(

1 − k̂1
T /k̂T

)

(1 − h) (1 − ŷb/ĉ) /
(

h2 − φh2
)

C = 1 + θ1

(

1 − k̂1
T /k̂T

)

(1 − h) /
(

h2 − φh2
)

18



D = −θ1ŷb/k̂T

E = −α1ŷb/k̂I .

3.7. Sensitivity Analysis

Here, I show that the results in the main text are not affected by parameters governing the

size and time series of intangible capital. In Figures 21 through 27, I compare the main

equilibrium paths for three different parameterizations of the extended model.1

The benchmark parameterization assumes that half of intangible investments are ex-

pensed by shareholders and that the depreciation rate on intangible capital is zero. The

alternative parameterizations have a higher fraction of expensing done by shareholders and

equal depreciation rates for intangible and tangible investment.

As Figures 21 through 27 make clear, these alternatives generate similar model pre-

dictions. The main finding that capital taxation had a significant impact on economic

activity in the 1930s is not overturned by these alternative numerical experiments.

1 In each case, parameters of the model are recalibrated so that the model generates 1929 levels of
consumption, tangible investment, tangible capital, GDP, NIPA compensation, and hours comparable
to the United States.
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Figure 3. Detrended Real Consumption
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Figure 4. Detrended Real Investment
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Figure 5. Detrended Government Spending
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Figure 6. Detrended Nonbusiness Output
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Figure 7. Detrended Nonbusiness Investment
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Figure 17. Detrended Real Investment in the United States

and Predictions of the Basic Growth Model, 1929–1939
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Figure 18. Hours Per Capita in the United States

and Predictions of the Basic Growth Model, 1929–1939
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Figure 19. Detrended Real GDP in the United States

and Predictions of the Basic Growth Model, 1929–1939
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Figure 20. Detrended Real Consumption in the United States

and Predictions of the Basic Growth Model, 1929–1939

30



In
de

x,
19

29
=1

00

1929 1931 1933 1935 1937 1939
20

30

40

50

60

70

80

90

100

χ = 0.50, δI = 0

χ = 0.75, δI = 0

χ = 0.50, δI = δT

U.S. Data

Figure 21. Detrended Real Investment in the United States

and Predictions of the Extended Model, 1929–1939
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Figure 22. Hours Per Capita in the United States

and Predictions of the Extended Model, 1929–1939
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Figure 23. Detrended Real GDP in the United States

and Predictions of the Extended Model, 1929–1939
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Figure 24. Detrended Real Consumption in the United States

and Predictions of the Extended Model, 1929–1939
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Figure 25. Detrended Tangible Investment in the United States

and Predictions of the Extended Model, 1929–1939
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Figure 26. Detrended Intangible Investment,

Predictions of the Extended Model, 1929–1939
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Figure 27. Detrended Real Market Value in the United States

and Predictions of the Extended Model, 1929–1939
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