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B Variable Cost of E¤ort

This section extends the core model to allow a deterministically varying marginal cost of e¤ort.

In practice, this occurs if either the cost function or maximum e¤ort level changes over time.

For example, for a start-up �rm, the CEO can undertake many actions to improve �rm value

(augmenting the maximum e¤ort level) and e¤ort is relatively productive (reducing the cost of

e¤ort).

We now allow for a time-varying maximum e¤ort level at and cost of e¤ort gt (�). The slope
of the contract in Theorem 1 (equations (11) and (12)) now becomes:

�t =

(
g0t(�at)

1+�+:::�T�t for t � L;

0 for t > L
(58)

if manipulation is impossible, and if manipulation is possible

�t =

(
�t =

�
1+�+:::�T�t�

�t for t � L+M;

0 for t > L+M
: (59)

where � = sups�L (�
sg0s (�as)) :

We previously showed that imposing the NM constraint causes the contract�s slope to rise

over time; the speed of the rise depended only on the CEO�s impatience �. With a non-constant

target action, it depends on � = sups�L (�
sg0s (�as)), the maximum discounted sensitivity during

the CEO�s working life. Let s � L denote the period in which �sg0s (�as) is highest. The CEO

has an incentive to increase rs at the expense of the signal in any t within M periods of

s. Therefore, the sensitivity for all t within M periods of s must increase, to remove these

incentives. However, this in turn has a knock-on e¤ect: since the sensitivity for t = s �M

has now risen, the CEO has an incentive to increase rs�M at the expense of rs�2M , and so on.

Therefore, the sensitivity at s forces upward the sensitivity in all periods t � L+M , even those

more than M periods away from s, owing to the knock-on e¤ects. This �resonance�explains

why the contract in all periods t � L+M depends on � in equation (59).

This dependence can be illustrated in a numerical example. We �rst set T = 5, L = 3,

� = 1, g01 (a1) = g02 (a2) = 1 and g
0
3 (a3) = 2. If manipulation is impossible, the optimal contract

is
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5
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4
+
2

3
r3 + �5:

Since the marginal cost of e¤ort is high at t = 3, the contract sensitivity must be high at

t = 3 to satisfy the EF condition. However, this now gives the CEO incentives to engage in

manipulation if it were possible. If he manipulates r2 downwards by 1 unit to augment r3 by 1

unit, lifetime consumption falls by 1 unit and rises by 2 units. Therefore, the sensitivity of the

contract at t = 2 must increase to remove these incentives. This increased sensitivity at t = 2

in turn augments the required sensitivity at t = 1, else the CEO would manipulate to reduce

r1 and increase r2. Therefore, even though the maximum release lag M is 1 and so the CEO

cannot directly manipulate r1 to a¤ect r3, the high sensitivity at r3 still a¤ects the sensitivity

at r1 by changing the sensitivity at r2. The new contract is given by:

ln c1 =
2

5
r1 + �1

ln c2 =
2

5
r1 +

r2
2
+ �2

ln c3 =
2

5
r1 +

r2
2
+
2

3
r3 + �3

ln c4 =
2

5
r1 +

r2
2
+
2

3
r3 + r4 + �4

ln c5 =
2

5
r1 +

r2
2
+
2

3
r3 + r4 + �5:

C Analysis of Theorem 2

This section provides the analysis behind the comparative statics of the determinants of �t,

discussed in the main paper shortly after Theorem 2. To study the impact of volatility on the

contract, we parameterize the innovations by "t = �"0t, where � indicates volatility. We de�ne

the function:

G (�; ; �) =
 � 1


lnE
h
e���"

0
i
� lnE

h
e(1�)��"

0
i

(60)

in the domain � � 0; � � 0;  � 1. For instance, when "0 is a standard normal, G (�; ; �) =

�2�2 �1
2
, and G is increasing in �; , and �.
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We also de�ne

H (�; ; �) = G (�; ; �)� ln �+R


(61)

If ln �+R is su¢ ciently small, then H (�; ; �) is increasing in in �; ; �.

Lemma 11 Consider the domain � � 0; � � 0;  � 1, in the case where � = 0, T = L,

and without the NM constraint. Suppose that H (�; ; �) is increasing in its arguments in that

domain. Then, �T = g0 (a), and for t < T , �t is increasing in , in �, and decreasing in �. If

H (�; ; �) is close enough to 0, then �t is increasing in t.

The lemma means that the slope pro�le is increasing, and becomes �atter as  and � are

higher. The intuition is thus: a higher , a higher �, or a lower �, tend to decrease the relative

importance of future consumptions E
�
�tc1�t

�
. Hence, it is important to give a higher slope to

the agent early on. By contrast, when  is low, future consumptions are more important and

so it is su¢ cient to give a lower slope early on.

Proof Using Theorem 2, simple calculations show, for t � L,

�t =
g0 (a)PT

s=t �
s�tQs

n=t+1 e
�G(�n;;�)+ 1�


(R+ln �)

=
g0 (a)PT

s=t

Qs
n=t+1 e

�G(�n;;�)+ 1�

R+ 1


ln �

�t =
g0 (a)PT

s=t e
�
Ps
n=t+1(H(�n;;�)+R)

(62)

We have �T = g0 (a). Proceeding by backward induction on t, starting at t = T , we see that

�t is increasing in : this is because a higher  increases H (�n; ; �) via the direct e¤ect on H,

and the e¤ect on the future �n (n > t), so it increases �t. The same reasoning holds for the

comparative statics with respect to � and �.

The last part of Lemma 11 comes from the fact that when H ! 0, �t ! g0(a)PT
s=t e

�R(t�s) , which

is increasing in t.

Another tractable case is the in�nite horizon limit, where T = L!1. Since the problem
is stationary, �t is equal to a limit �. From (62), this satis�es:

� = g0 (a)
�
1� e�H(�;;�)�R

�
: (63)

For instance, in the continuous-time, Gaussian noise limit,

� = g0 (a)

�
�2�2

 � 1
2

� ln �+R


+R

�
: (64)

It is economically clear that the lower root is the relevant one (for instance, it is increasing in

the marginal cost of e¤ort; it is also the root that is the limit of the �nite-T slope). The slope of
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incentives (�) is higher when the agent is more risk-averse (higher ), there is more risk (higher

�), and the agent is less patient (lower �).

D The Optimality of No Manipulation

Section 4.3 proves that it is optimal for the principal to implement maximum e¤ort in every

period if the �rm is large enough, in the case where manipulation is not possible. This section

provides a potential microfoundation for the optimality of zero manipulation. We generalize

the dividend expression (5) to:

D� = (1� �)X exp

 
�X
s=1

(�s + as)�
�X
s=1

MX
i=1

� (ms;i)

!
;

where � = 0 if the CEO engages in zero manipulation (i.e. mt = 0 8 t) and � = �� > 0 if the

probability that the CEO engages in manipulation is greater than zero. Thus, manipulation

imposes a �xed cost on �rm value: the expectation of even an in�nitessimal amount of manip-

ulation lowers �rm value by a �xed amount ��. This technological assumption gives a tractable

way to capture the fact that the possibility of manipulation leads to a step-change reduction in

value (e.g. because monitoring is needed to verify accounts or scrutinize investment projects.)

Note that the assumption of this cost � allows us to dispense with the cost � (m) featured in

the main paper.

Hence, the loss in expected �rm value from allowing manipulation is bX with

b � ��e
�R�E0

"
exp

 
�X
s=1

(�s + a)

!#
;

whereX is baseline �rm value without manipulation, while the bene�t is at most A0, the present

value of the CEO�s salary under the optimal contract which deters manipulation. Thus, if X

is su¢ ciently large (if it is greater than A0=b), no manipulation is optimal.

E Continuous Time

We now consider the continuous-time analog of the model. The CEO�s utility is given by:

U =

8<: E
hR T
0
�t (cth(at))

1��1
1� dt

i
if  6= 1

E
hR T
0
�t (ln ct + lnh (at)) dt

i
if  = 1:

(65)

The �rm�s returns evolve according to:

dRt = atdt+ �tdZt
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where Zt is a Brownian motion, and the volatility process �t is deterministic. We normalize

r0 = 0 and the risk premium to zero, i.e. the expected rate of return on the stock is R in each

period.

Proposition 1 (Optimal contract, continuous time, log utility). The continuous-time limit of
the optimal contract pays the CEO ct at each instant, where ct satis�es:

ln ct =

Z t

0

�sdRs + �t, (66)

where �s and �t are deterministic functions. If manipulation is impossible, the slope �t is given

by:

�t =

(
g0(a)R T

t ���sds
for t � L

0 for t > L:
(67)

If manipulation is possible, �t is given by:

�t =

(
g0(a)��tR T
t ���sds

for t � L+M

0 for t > L+M:
(68)

If private saving is impossible, the constant �t is given by

�t = (R + ln �) t�
Z t

0

�sE [dRs]� �

Z t

0

�2s�
2
s

2
ds+ �: (69)

If private saving is possible, �t is given by

�t = (R + ln �) t�
Z t

0

�sE [dRs] + �

Z t

0

�2s�
2
s

2
ds+ �: (70)

where � ensures that the agent is at his reservation utility.

Proposition 2 (Optimal contract, continuous time, general CRRA utility, with Private Sav-
ings constraint). Let �t denote the stock volatility. The optimal contract pays the CEO ct at

each instant, where ct satis�es:

ln ct =

Z t

0

�sdRs + �t; (71)

where �s and �t are deterministic functions. The continuous-time limit of the optimal contract

is the following. If manipulation is impossible, the slope �t is given by:

�t =
�te�(1�)g(�a)g0(�a)R T

t
�se�(1�)g(�a)+(1�)(�s��t)Et

�
e(1�)

R s
t ��dR�

�
ds

for t � L, (72)

�t = 0 for t > L.
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If manipulation is possible, �t is given by:

�t =
De(1�)(�L+M��t)Et

h
e(1�)

R L+M
t ��dR�

i
R T
t
�se�(1�)g(�a)+(1�)(�s��t)Et

�
e(1�)

R s
t ��dR�

�
ds

for t � L+M ,

�t = 0 for t > L+M .

The value of �t is:

�t = (R + ln �)t� (1� )g(a)1t�L � 

Z t

0

�sads+
1

2
2
Z t

0

�2s�
2
sds+ �; (73)

where � ensures that the agent is at his reservation utility, and D is the lowest constant such

that:

De(1�)(�L+M��t)Et

h
e(1�)

R L+M
t ��dR�

i
� �te�(1�)g(�a)g0(�a); for all t � L.

The implications of the optimal contract are the same as for discrete time, except that the

rebalancing of the account is now continuous.

F Proofs of Lemmas

This section contains proofs of lemmas in the main paper.

Proof of Lemma 2 Let

Ps((bt)t�T ) = e
Ps�M
n=1 jn(bn)+

Ps
n=s�M+1 q

s
n(bn);

Ss((bt)t�T ) =
TX
n=s

e
Pn�M
m=1 jm(bm)+

Pn
m=n�M+1 q

n
m(bm) =

TX
n=s

Pn((bt)t�L);

for any s � T . For the rest of the proof, �x an argument sequence (bt)t�T . We will evaluate

all the functions at this sequence, and consequently economize on notation by dropping the

argument of Ss, Ps; js and qts.

Step 1: Derivatives. For unit vectors eir and e
k
s ; r � s, i; k �M +1; consider the derivatives

of the function I:

@I

@eks
=

s+M�1X
n=s

@kq
n
sPn + @kjsSs+M ;

@2I

@eir@e
k
s

=
s+M�1X
n=r

@kq
n
s @iq

n
rPn + @kjs

0@ r+M�1X
n=maxfr;s+Mg

@iq
n
rPn + @ijrSr+M

1A+
+ 1r=s;i=k

"
s+M�1X
n=s

@2kq
n
sPn + @2kjsSs+M

#
;
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where we de�ne @kf(x) = @
@xk

f(x) and @2kf(x) =
@2

(@xk)
f(x): Therefore, for a �xed vector y =

(yt)t�T the second derivative in the direction y = (yt)t�T is:

@2I

@y@y
=

M+1X
k;i=1

TX
s=1

TX
r=1

yksy
i
r

@2I

@eks@e
i
r

=

=2

M+1X
k;i=1

TX
s=1

X
r�s

yksy
i
r

24s+M�1X
n=r

@kq
n
s @iq

n
rPn + @kjs

0@ r+M�1X
n=maxfr;s+Mg

@iq
n
rPn + @ijrSr+M

1A35
+

M+1X
i=1

TX
s=1

yi2s

"
s+M�1X
n=s

@2i q
n
sPn + @2i jsSs+M

#
=: W + V:

Step 2: Bounding Pr and Sr. For any s � T and q � T � s we have:

Ps+q = e
Ps+q
n=1 jn+

Ps
n=s+q�M+1 q

s
n � eM sup qte

Ps+q
n=1 jn � eM sup qt+q sup jte

Ps
n=1 jn � eq sup jt+M(sup qt�inf qt)Ps;

It follows that for  = sup js
2

we have:X
r�s

Pre
� (r�s) � C1Ps;

X
s;r�s

Pry
2
re
 (r�s) =

X
r

y2rPr
X
s�r

e (r�s) � C2
X
s

Psy
2
s ; (74)

where

C1 = eM(sup qt�inf qt)
TX
n=0

en ; C2 =
TX
n=0

en : (75)

Moreover, since Ss+q � eq sup jt+M(sup qt�inf qt)Ss, the inequalities for Sr analogous to (74) also

hold.

Step 3: Bounding the derivatives. For any vector z=(zt)t�T ; zt 2 R; we have:

X
s;r�s

zszrPr =
X
s

zs
X
r�s

p
Przre

 
2
(r�s)

p
Pre

� 
2
(r�s) �

X
s

zs

 X
r�s

Prz
2
re
 (r�s)

!1=2 X
r�s

Pre
� (r�s)

!1=2

�
p
C1
X
s

zs
p
Ps

 X
r�s

Prz
2
re
 (r�s)

!1=2
�
p
C1

 X
s

z2sPs

!1=2 X
s

 X
r�s

Prz
2
re
 (r�s)

!!1=2

�
p
C1C2

 X
s

z2sPs

!1=2 X
s

Psz
2
s

!1=2
= C

X
s

z2sPs;

where the �rst and third inequalities follow from the Cauchy-Schwartz inequality, and C1 and

C2 are as in (75). Similarly, we obtain
P

s;r�s zszrSr � C
P

s z
2
sSs: Therefore:
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W = 2

M+1X
k;i=1

TX
s=1

X
r�s

yksy
i
r

24s+M�1X
n=r

@kq
n
s @iq

n
rPn + @kjs

0@ r+M�1X
n=maxfr;s+Mg

@iq
n
rPn + @ijrSr+M

1A35
� 2

M+1X
k;i=1

(
TX
n=1

Pn

" X
s�n�M;r�s

yks@kq
n
s y

i
r@iq

n
r

#
+

M�1X
m=0

TX
s=1

X
r�s

�
yks@kq

s+m
s yir@iq

r+m
r Pr+m

�
+

+

TX
s=1

X
r�s

�
yks@kjsy

i
r@ijrSr+M

�)

� 2(M + 1)2

(
TX
n=1

Pn

" X
s�n�M;r�s

max
i
(yis@iq

n
s )max

i
(yir@iq

n
r )

#

+

M�1X
m=0

TX
s=1

X
r�s

h
max
i
(yis@iq

s+m
s )max

i
(yir@iq

r+m
r )Pr+m

i
+

TX
s=1

X
r�s

h
max
i
(yis@ijs)max

i
(yir@ijr)Sr+M

i)

� 2(M + 1)2

(
TX
n=1

Pn

" X
s�n�M

M max
i
(yis@iq

n
s )
2

#
+

M�1X
m=0

TX
s=1

h
Cmax

i
(yis@iq

s+m
s )2Ps+m

i
+

TX
s=1

h
Cmax

i
(yis@ijs)

2Sr+M

i)

� 2(M + 1)2
TX
s=1

M+1X
i=1

yi2s

"
M�1X
m=0

(M + C)(@iq
s+m
s )2Ps+m + C(@ijs)

2Sr+M

#
:

Finally,

@2I

@y@y
= W + V

�
TX
s=1

M+1X
i=1

yi2s

"
s+M�1X
n=s

�
2(M + C)(M + 1)2 (@iq

n
s )
2 + @2i q

n
s

�
Pn +

�
2C(M + 1)2 (@ijs)

2 + @2i js
�
Ss

#
;

establishing the Lemma.

Proof of Lemma 3 To show that I ((mt)t�L; (xt)t�L) is jointly concave in leisure (xt)t�L and
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manipulations (mt)t�L, we use Lemma 2 with bt = (mt; xt) and:

js(ms; xs) = (�s � ��s+1)

"
f(xs)� a+

MX
i=1

(ms;i � �(ms;i))

#
�

MX
i=1

(�s+i � ��s+i+1)ms;i + ln �;

(76)

qts(ms; xs) = (�s � ��s+1)

"
f(xs)� a+

MX
i=1

(ms;i � �(ms;i))

#
�

t�sX
i=1

(�s+i � ��s+i+1)ms;i + ln �; s < t

qss(ms; xs) = �s

"
f(xs)� a+

MX
i=1

(ms;i � �(ms;i))

#
+ ln �:

We have �t� ��t+1 � D0 (�s � ��s+1) as long as t > s and jt� sj �M; for some D0 > 0. Let �

be such that supD0m � �(m) � D1, for some D1 > 0, and m� be such that D0m � �(m) � 0
for m � m�. We can assume without loss of generality that the CEO chooses manipulations

only within the interval [�m�;m�], and so

C = eM(sup qts�inf qts)=2
TX
n=0

en sup jt=2

is �nite. Finally, since

f 0(xs) =
�1

g0(f(xs))
; f 00(xs) =

�g00(f(xs))
g03(f(xs))

and �s � g
0
(a);

the condition (50) is satis�ed for i = 1 if g has su¢ ciently high curvature. Moreover, since

@

@ms;i

qts = (�s � ��s+1)(1� �0(ms;i))� 1t<s+i(�s+i � ��s+i+1);

@

@ms;i

js = (�s � ��s+1)(1� �0(ms;i) and

@2

(@ms;i)2
qts =

@2

(@ms;i)2
js = �(�s � ��s+1)�

00(ms;i);

the condition (50) is satis�ed for i > 1 if � has su¢ ciently high curvature.

Proof of Lemma 4 We must verify condition (50) in Lemma 2 for js and qts de�ned as:

js(ms; xs) = (�s � ��s+1)

"
f(xs)� a+

MX
i=1

(ms;i � �(ms;i))

#
�

MX
i=1

�s+ims;i +Ds; (77)

qts(ms; xs) = (�s � ��S+1)

"
f(xs)� a+

MX
i=1

(ms;i � �(ms;i))

#
�

t�sX
i=1

�s+ims;i +Ds; s � t;

for Ds = (1� )ks + lnE
�
e(1�)�ses

�
+ ln �: The rest of the proof follows as in the  = 1 case,
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with the derivatives of the f function being:

f 0(xs) = �D
1

xsg0(f(xs))
; f 00(xs) =

1

x2sg
02(f(xs))

�
Dg0(f(xs))�D2 g

00(f(xs))

g0(f(xs))

�
;

for D = 
1� sign(1 � ). Consequently I 0((mt)t�L; (xt)t�L) is pathwise concave and so E eU� is

concave in the processes (xt)t�L and (mt)t�L.

Proof of Lemma 5 Let Ut(�t; �0t) be the CEO�s continuation utility after history �t if the agent
reports �t�1; �

0
t: (54) follows from the standard envelope conditions, i.e. @

@�0t
Ut(�t; �

0
t)j�0t=�t = 0

together with:

Ut(�t; �
0
t) = Ut(�t�1; �

0
t) + g(at(�t�1; �

0
t))� g(at(�t�1; �

0
t) + �0t � �t); for  = 1;

Ut(�t; �
0
t) = Ut(�t�1; �

0
t) +

yt(�t�1; �
0
t)
1� �e�g(at(�t�1;�0t)+�0t��t)(1�) � e�g(at(�t�1;�

0
t))(1�)

�
1� 

: for  6= 1:

The technical assumptions on at(�t�1; �) guarantee that Ut(�t�1; �) is absolutely continuous (for
details see e.g. EG p. 49). yt(�t) > 0 follows from the private savings constraint, since the

marginal utility of consumption at zero is in�nite.

Proof of Lemma 6 Note that if instead of U#t (�t�1; �) and �(�t�1; �) we solve for the functions
U#t (�t�1; �) and �(�t�1; �) that satisfy U

#
t (�t�1; �) = Ut(�t�1; �) and

U#t (�t�1; �t) = U#t (�t�1; �) +

Z �t

�

[�(�t�1; x)yt(�t�1; x)e
�g(a)]1�g0(a)dx; (78)

U#t (�t�1; �t)� Ut(�t�1; �t) = g(at(�t�1; �t))� g(a) + ln �(�t�1; �t); for = 1:

U#t (�t�1; �t)

Ut(�t�1; �t)
=
[�(�t�1; �t)yt(�t�1; �t)e

�g(a)]1�

[yt(�t�1; �t)e
�g(at(�t�1;�t))]1�

; for  6= 1;

then we have �(�t�1; �t) � �(�t�1; �t) (and �(�t�1; �t) = �(�t�1; �t) when t = L): Therefore it

will be su¢ cient to Et�1
�
�(�t�1; �t)

�
:

Since �t�1 is �xed, to economize on notation we write Ut(�t) instead of Ut(�t�1; �t) etc.

Case  6= 1: We have:

U#t (�t) = U#t (�) +

Z �t

�

U#t (x)

Ut(x)

�
yt(x)e

�g(at(x))
�1�

g0(at(x))
g0(a)

g0(at(x))
dx;

Ut(�t) = U#t (�) +

Z �t

�

�
yt(x)e

�g(at(x))
�1�

g0(at(x))dx:
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Therefore: 
U#t (�t)

Ut(�t)

!0
=

=

U#t (�t)

Ut(�t)

�
yt(�t)e

�g(at(�t))
�1�

g0(at(�t))
g0(a)

g0(at(�t))
Ut(�t)�

�
yt(�t)e

�g(at(�t))
�1�

g0(at(�t))U
#
t (�t)

Ut(�t)2
=

=
U#t (�t)

�
yt(�t)e

�g(at(�t))
�1�

g0(at(�t))
h

g0(a)
g0(at(�t))

� 1
i

Ut(�t)2
� U#t (�t)

Ut(�t)
(1� )g0(a)

�
g0(a)

g0(at(�t))
� 1
�
for  < 1;

It follows that:

U#t (�t)

Ut(�t)
� e

(1�)g0(a)
R �t
�

�
g0(a)

g0(at(x))
�1
�
dx � e

(1�) sup g
0(a)
f

Et�1
�

g0(a)
g0(at(x))

�1
�
� e

(1�)g0(a) sup g00
fg02Et�1[a�at(�t)]; for  < 1:

(79)

where the last inequality follows because g0(a)
g0(a) = g0(a)

h
1

g0(a) + (a� a) g
00(xa+(1�x)a)
g02(xa+(1�x)a)

i
for some

x 2 [0; 1]: For  > 1 we obtain the analogous chain with the inequality signs reversed. Thus,

Et�1
�
�(�t)

�
= Et�1

24"U#t (�t)
Ut(�t)

# 1
1�

e[g(a)�g(at(�t))](1�)

35 � (80)

� e
g0(a) sup g00

fg02Et�1[a�at(�t)]Et�1
�
e[g(a)�g(at(�t))](1�)

�
�

� e
g0(a) sup g00

fg02Et�1[a�at(�t)]
�
1 + 1<1e

g(a)�g(a)(1� )g0(a)Et�1 [a� at(�t)]
�
:

Case  = 1: Comparing (54) and (78) we immediately obtain:

ln �(�t) =

Z �t

�

�
g0(a)

g0(at(x))
� 1
�
g0(at(x))dx+ g(a)� g(at(�t)):

Using the analogous bounds as in (79) and (80) we obtain:

Et�1
�
�(�t)

�
� Et�1

�
e
g0(a)

R �t
�

�
g0(a)

g0(at(x))
�1
�
dx+g(a)�g(at(x))

�
� e

g0(a) sup g00
fg02Et�1[a�at(�t)]Et�1

�
eg(a)�g(at(�t))

�
�

� e
g0(a) sup g00

fg02Et�1[a�at(�t)]
�
1 + eg(a)�g(a)g0(a)Et�1 [a� at(�t)]

�
:

Proof of Lemma 7 Multiplying all payo¤s by � results in all the continuation utilities Ut(�t)
and deviation continuation utilities Ut(�t; �

0
t) multiplied by constant �

1� for  6= 1, or having a
constant ln ��

PL�t
s=0 �

s added at time t, for  = 1, and so the local EF constraint is una¤ected.

This also results in the marginal utilities of current consumption multiplied by ��, and so the

local PS constraint is also una¤ected.
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Proof of Lemma 8We prove only the  6= 1 case. For the � as in the proof of Lemma (6) we
have:

Et�1

"
mu#t (�t�1; �t)

mut(�t�1; �t)

#
� Et�1

h
�
�
(�t�1; �t�1)� e(1�)(g(a(�t�1;�t))�g(a))

i
=

= Et�1

24"U#t (�t�1; �t)
Ut(�t�1; �t)

# �
1�

e�(1�)[g(a)�g(at(�t�1;�t))] � e(1�)(g(at(�t�1;�t))�g(a))

35 =
� e

�g0(a) sup g00
fg02Et�1[a�at(�t)]Et�1

�
e�(1+)(1�)[g(a)�g(at(�t�1;�t))]

�
�

� e
�g0(a) sup g00

fg02Et�1[a�at(�t)]
�
1� 1<1e�(1+)(1�)[g(a)�g(a)]g0(a)(1� )(1 + )Et�1 [a� at(�t)]

�
:

Proof of Lemma 9 We prove only the  6= 1 case. From (54) it follows that for every �t and

�0t :

e(���)g
0(a) � yht (�t�1; �t)

1�e�(1�)g(a
h
t (�t�1;�t)) � yht (�t�1; �

0
t)
1�e�(1�)g(a

h
t (�t�1;�

0
t));

and so for every �t and �0t :

yh(�t�1; �
0
t)
�eg(a

h
t (�t�1;�

0
t)) � e�j


1� j(���)g0(a) � yht (�t�1; �t)

�eg(a
h(�t�1;�t));

Et�1
�
muht (�t�1; �t)

�
� e�j


1� j(���)g0(a)+g(a)�g(a) �max

x
muht (�t�1; x):

It follows that for D2 = ej


1� j(���)g0(a)+g(a)�g(a);

Et�1
�
mult(�t�1; �t)

�
Et�1

�
muht (�t�1; �t)

� � Et�1
�
muht (�t�1; �t)

� �
1�D2 �

�
1� Et�1

h
mult(�t�1;�t)

muht (�t�1;�t)

i��
Et�1

�
muht (�t�1; �t)

� =

= 1�D2 �
�
1� Et�1

�
mult(�t�1; �t)

muht (�t�1; �t)

��
:

Proof of Lemma 10 Let Y 0 be the payo¤ scheme Y x. For any n; 0 < n < L; we construct the

payo¤ scheme Y n as follows. Start with the payo¤ scheme Y n�1: After any history �n multiply

the payo¤s at time n by �n;ps(�n) > 1 so that the PS constraint at history �n is satis�ed; then

multiply the payo¤s after any history �m, m � n and �mjn = �n; by �
n;pu(�n) < 1 so that

the continuation utility at history �n remains unchanged. After any history �n�1 multiply the

payo¤s at time n � 1 by �n;ps(�n�1) > 1 so that the PS constraint at �n�1 is satis�ed; then

multiply the payo¤s after any history �m, m � n� 1 and �mjn�1 = �n�1; by �n;pu(�n�1) < 1 so
that the continuation utility at �n�1 remains unchanged. Follow this procedure until histories

at time 1, and let Y n be the resulting payo¤ scheme. One can inductively show that �n;pu(�m)�
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�n;ps(�m) � 1, m � n:

Let A� always require the maximum e¤ort. Lemma 7 yields that each contract (A�; Y n)

satis�es the local EF constraint and also satis�es the local PS constraint up to round n. Let

Y � = Y L�1. It remains to prove (57).

For any history �L we have y
�
L(�L) = yxL(�L)�

QL�1
m=1

QL�1
n=m �

n;pu(�Ljm) � yxL(�L) and so the

condition (57) is satis�ed.

For any history �t, t < L; we have, by construction above:

mu�t (�t)

muxt (�t)
=

 
tY

m=1

L�1Y
n=m

�n;pu(�tjm)�
L�1Y
n=t

�n;ps(�t)

!�
�
 
L�1Y
n=t

�n;ps(�t)

!�
:

Moreover,

�t;ps(�t)
� =

Et
�
muxt+1(�t�1; �t)

�
Et
�
mut+1(�t�1; �t)

� � �

�
Et

�
muxt+1(�t�1; �t)

mut+1(�t�1; �t)

��
�

� � ( (Et [a� at+1(�t+1)])) ;

where the �rst inequality follows from Lemma 9, and the second one from Lemma 8. By the

same logic, for any n; t < n � L� 1;

�n;ps(�t)
� =

Et
�
munt+1(�t; �t+1)

�
Et
�
mun�1t+1 (�t; �t+1)

� � �

�
Et

�
munt+1(�t; �t+1)

mun�1t+1 (�t; �t+1)

��
� �

�
Et
�
�n;ps(�t; �t+1)

���
= �

 
Et

"
Et+1

�
munt+2(�t; �t+1; �t+2)

�
Et+1

�
mun�1t+2 (�t; �t+1; �t+2)

�#! � �

�
Et

�
�

�
Et+1

�
munt+2(�t; �t+1; �t+2)

mun�1t+2 (�t; �t+1; �t+2)

����
= �2

�
Et

�
munt+2(�t; �t+1; �t+2)

mun�1t+2 (�t; �t+1; �t+2)

��
� ::: � �n�t

�
Et

�
munn(�t; �t+1; :::; �n)

mun�1n (�t; �t+1; :::; �n)

��
� �n�t

�
Et
�
�n;ps(�t; �t+1; :::; �n)

��� = �n�t

 
Et

"
En
�
muxn+1(�t; �t+1; :::; �n+1)

�
En [mun+1(�t; �t+1; :::; �n+1)]

#!
� �n�t+1 (Et [ (En [a� an+1(�t; �t+1; :::; �n+1)])]) :
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