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B Variable Cost of Effort

This section extends the core model to allow a deterministically varying marginal cost of effort.
In practice, this occurs if either the cost function or maximum effort level changes over time.
For example, for a start-up firm, the CEO can undertake many actions to improve firm value
(augmenting the maximum effort level) and effort is relatively productive (reducing the cost of
effort).

We now allow for a time-varying maximum effort level @; and cost of effort g, (). The slope

of the contract in Theorem 1 (equations (11) and (12)) now becomes:

g;(at)
Qt _ W for ¢ S L, (58)
0fort>L
if manipulation is impossible, and if manipulation is possible
_ e —t
= 0, = Trpr.pr—tP fort <L+ M, (59)
Ofort>L+M

where © = sup,.; (p°¢, (a.)).

We previously showed that imposing the NM constraint causes the contract’s slope to rise
over time; the speed of the rise depended only on the CEQ’s impatience p. With a non-constant
target action, it depends on © = sup,.; (p°g; (Gs)), the maximum discounted sensitivity during
the CEQO’s working life. Let s < L denote the period in which p°¢’ (a,) is highest. The CEO
has an incentive to increase r, at the expense of the signal in any ¢ within M periods of
s. Therefore, the sensitivity for all ¢ within M periods of s must increase, to remove these
incentives. However, this in turn has a knock-on effect: since the sensitivity for t = s — M
has now risen, the CEO has an incentive to increase r,_j; at the expense of r,_5,;, and so on.
Therefore, the sensitivity at s forces upward the sensitivity in all periods t < L+ M, even those
more than M periods away from s, owing to the knock-on effects. This “resonance” explains
why the contract in all periods ¢ < L + M depends on © in equation (59).

This dependence can be illustrated in a numerical example. We first set T" = 5, L = 3,
p=1,9; (@)= g5 (@) =1 and ¢} (a3) = 2. If manipulation is impossible, the optimal contract

is
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Since the marginal cost of effort is high at ¢ = 3, the contract sensitivity must be high at
t = 3 to satisfy the EF condition. However, this now gives the CEO incentives to engage in
manipulation if it were possible. If he manipulates r, downwards by 1 unit to augment r3 by 1
unit, lifetime consumption falls by 1 unit and rises by 2 units. Therefore, the sensitivity of the
contract at ¢ = 2 must increase to remove these incentives. This increased sensitivity at ¢ = 2
in turn augments the required sensitivity at t = 1, else the CEO would manipulate to reduce
r1 and increase 1o. Therefore, even though the maximum release lag M is 1 and so the CEO
cannot directly manipulate r; to affect r3, the high sensitivity at r3 still affects the sensitivity

at r; by changing the sensitivity at r5. The new contract is given by:

11’1C1 = 57“1 + K1

2
IHCQZ —7“1—|—Q—|—I€2

5179
] 2

11’103257"1"‘5"‘37“3—’_%3
1 S 2
neg=-r1+—+=r3+rs+k

4 51 2 33 4 4
1 2 2y
nes = -ri+ — + —r3+ry + ks.

5 51 2 33 4 5

C Analysis of Theorem 2

This section provides the analysis behind the comparative statics of the determinants of 6,
discussed in the main paper shortly after Theorem 2. To study the impact of volatility on the
contract, we parameterize the innovations by ¢; = o¢}, where o indicates volatility. We define
the function:

GOy o) =11

InFE [6_7006/} —InFE [6(1_7)0%,} (60)

in the domain # > 0,0 > 0, > 1. For instance, when ¢’ is a standard normal, G (0,v,0) =

0202 “Y_;l, and G is increasing in 6, ~, and o.
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We also define

_Inp+R

H(0,v,0)=G(0,v,0) (61)

If In p + R is sufficiently small, then H (6,, o) is increasing in in 6, , 0.

Lemma 11 Consider the domain 6 > 0,0 > 0,v > 1, in the case where ¢ = 0, T = L,
and without the NM constraint. Suppose that H (0,7, 0) is increasing in its arguments in that
domain. Then, Or = ¢' (@), and fort < T, 0, is increasing in vy, in o, and decreasing in p. If

H (0,v,0) is close enough to 0, then 0, is increasing in t.

The lemma means that the slope profile is increasing, and becomes flatter as v and ¢ are
higher. The intuition is thus: a higher v, a higher o, or a lower p, tend to decrease the relative
importance of future consumptions F [ptci _7]. Hence, it is important to give a higher slope to
the agent early on. By contrast, when ~ is low, future consumptions are more important and
so it is sufficient to give a lower slope early on.

Proof Using Theorem 2, simple calculations show, for ¢t < L,

0, = q (@)
STt T o~ G0n7,0)+152 (R+np)
— q (@)
ST T, ¢ GO+ Re T
_ g (a)
9t - ZT—t e ZZ:t+1(H(9n7’Y,O')+R) (62)

We have 07 = ¢’ (a). Proceeding by backward induction on ¢, starting at ¢t = T', we see that
0, is increasing in ~: this is because a higher 7 increases H (6,,,, o) via the direct effect on H,
and the effect on the future 6,, (n > t), so it increases ;. The same reasoning holds for the
comparative statics with respect to o and p.

The last part of Lemma 11 comes from the fact that when H — 0, 6, — %, which
is increasing in t. ®

Another tractable case is the infinite horizon limit, where 7" = L — oco. Since the problem

is stationary, 6, is equal to a limit . From (62), this satisfies:
0=yg (a)(l- e_H(e’%U)_R) . (63)

For instance, in the continuous-time, Gaussian noise limit,

1
6= g (a) 920—”2 - np7+R+R . (64)

It is economically clear that the lower root is the relevant one (for instance, it is increasing in
the marginal cost of effort; it is also the root that is the limit of the finite-7" slope). The slope of
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incentives () is higher when the agent is more risk-averse (higher ), there is more risk (higher

o), and the agent is less patient (lower p).

D The Optimality of No Manipulation

Section 4.3 proves that it is optimal for the principal to implement maximum effort in every
period if the firm is large enough, in the case where manipulation is not possible. This section
provides a potential microfoundation for the optimality of zero manipulation. We generalize

the dividend expression (5) to:

D, = (1 - M) Xexp <Z (T/s + as) - Z A (m&i)) )

s—1 s=1 i
where 1 = 0 if the CEO engages in zero manipulation (i.e. m; =0V t) and p = p, > 0 if the
probability that the CEO engages in manipulation is greater than zero. Thus, manipulation
imposes a fixed cost on firm value: the expectation of even an infinitessimal amount of manip-
ulation lowers firm value by a fixed amount p,. This technological assumption gives a tractable
way to capture the fact that the possibility of manipulation leads to a step-change reduction in
value (e.g. because monitoring is needed to verify accounts or scrutinize investment projects.)
Note that the assumption of this cost p allows us to dispense with the cost A (m) featured in
the main paper.

Hence, the loss in expected firm value from allowing manipulation is b.X with

exp (Z (ns + 6))

s=1

b= e E,

Y

where X is baseline firm value without manipulation, while the benefit is at most Ay, the present
value of the CEQ’s salary under the optimal contract which deters manipulation. Thus, if X

is sufficiently large (if it is greater than Ay/b), no manipulation is optimal.

E Continuous Time

We now consider the continuous-time analog of the model. The CEQ’s utility is given by:

E fOTpt%dt] if v #£1

U= T 4 .
E\f, p (lnct—i—lnh(at))dt] if y=1.

(65)
The firm’s returns evolve according to:

th = atdt + O'tdZt
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where Z; is a Brownian motion, and the volatility process o; is deterministic. We normalize
ro = 0 and the risk premium to zero, i.e. the expected rate of return on the stock is R in each

period.

Proposition 1 (Optimal contract, continuous time, log utility). The continuous-time limit of

the optimal contract pays the CEO ¢; at each instant, where ¢; satisfies:

t
Inc, = / 0sdRs + Ky, (66)
0

where 05 and k; are deterministic functions. If manipulation is impossible, the slope 0; is given
by:
L@ fort <L
0, = Ji preds - (67)
0 fort > L.

If manipulation is possible, 0; is given by:

[ pr—sds - (68)

) @ fort < L+ M
=
0 fort>L+ M.

If private saving is impossible, the constant k; is given by

02 2
Ky = (R—i—lnp)t—/@E[dR (/ : Sd8+li (69)
If private saving is possible, k; is given by
(R+1np)t—/0E[dR +</ ”ds+/<; (70)

where Kk ensures that the agent is at his reservation utility.

Proposition 2 (Optimal contract, continuous time, general CRRA wutility, with Private Sav-
ings constraint). Let o, denote the stock volatility. The optimal contract pays the CEO ¢; at

each instant, where ¢; satisfies:

¢
Inc, = / 0,dR, + Ky, (71)
0

where 0 and k; are deterministic functions. The continuous-time limit of the optimal contract

is the following. If manipulation is impossible, the slope 0, is given by:

p e (1 ’7) ( )g (d
ﬁ pe~ v)g(a)+ Y(ks—kt) [ - [ GTdRT} ds

0, =0 fort > L.

0r = fort <L, (72)
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If manipulation is possible, 0; is given by:

De(l_'Y)(’iL+N[_’it)Et |: (1=v) fL+N10 dR~, i|

0, = - ort < L+ M,
! LT pe~(1="9@+1-)(ks—r1) B, [e(lﬂ) Ji (’deT] ds J

0; =0 fort > L+ M.

The value of Ky 1s:

t 1 t
i = (R+Inp)t — (1 —v)g(a)li>r — 7/ fsads + 572/ 0202ds + &, (73)
0 0

where Kk ensures that the agent is at his reservation utility, and D is the lowest constant such
that:
Del=M (L= g 6(1—7)ftL+M¢97dRT} > pte=(=19@ ¢/ (@), for all t < L.

The implications of the optimal contract are the same as for discrete time, except that the

rebalancing of the account is now continuous.

F Proofs of Lemmas

This section contains proofs of lemmas in the main paper.

Proof of Lemma 2 Let

Py((by)i<r) = oY dn(bn)+ 0ot (o)

T
((be)e<r) Ze et O+ v G5 ) = an((bt)tSL)a

for any s < T. For the rest of the proof, fix an argument sequence (b;);<r. We will evaluate
all the functions at this sequence, and consequently economize on notation by dropping the
argument of Sy, Py, js and ¢'.

Step 1: Derivatives. For unit vectors e’ and e¥, r > s, i,k < M +1, consider the derivatives
of the function I:

a[ s+M-—1
Dk Z Oy Pr + OrjsSssm,
921 s+M—1 r+M—1
Jeidek Z Okqs 0iqy P + Ok Js Z 0iq, P + 033, Srynm | +
TS n=max{r,s+M}
s+M—1
+ ]-r:s,i:k Z alzqun + alzjsSS—O—M )
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where we define O f(x) :% () and 92 f(z) :(gk)f(x). Therefore, for a fixed vector y =

(yt)i<r the second derivative in the direction y = (y;)¢<r is:

M1 T T
01

Z Z Z YsYr aekaez -

ayay k=1 s=1 r=1
M+1 T s+M—1 M1
=2 Z Z Z Ys yr Z akq: Zq;r'lpn + 814:]8 Z alq;‘Pn + 8ijrSr+M
k=1 s=1 r>s n=r n=max{r,s+M}
M+1 T s+M—1
+Zzy Z P_'_ajsSerM :W+V
=1 s=1 n=s

Step 2: Bounding P, and S,. For any s < T and ¢ < T — s we have:

P, = e2ne1 Int 2 n—s g M1 9n < Msup Gt 2 op in < eMsuwparta SUp jt 327, =1 Jn < eqSUPJtJFM(SUPQt*mffIt)Ps’

It follows that for ¢ = % we have:

S Pet ) <P, 3 Pyt — Zy?PZ“’””<szPysa (74)

r>s S,r>8 s<r

where

T T
C, = eM(SuPQt*iant) Z em/)’ Cy = Z €m/}. (75)

n=0

Moreover, since Sy, < e?sWit+M (supai—infa) G the inequalities for S, analogous to (74) also
hold.

Step 3: Bounding the derivatives. For any vector z=(z)i<r, 2: € R, we have:

1/2
S an P =Y 2> VPaert )\ /Bei) < ZZ (ZP 22 s)) (Z Pre_w(T_s))

8T8 s r2s r>s r>s
1/2 1/2 1/2
< \/az 2\/P, (Z P,z2e¥(r=s ) <Oy <Z szs> (Z (Z Przfew(rs)>>
r>s s B r>s

1/2
< +/C1Cy <Z szS> (Z PSZ§> =C Z Z?Ps,

where the first and third inequalities follow from the Cauchy-Schwartz inequality, and C; and

Cy are as in (75). Similarly, we obtain > 2s2:Sy < O, 2255, Therefore:

S,r>s8
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M+1 T s+M—-1 r+M-1

=2 Z Z Z ysyr Z angL zqszn + akjs Z azqun + aijrsr—‘rM

k=1 s=1 r>s n=r n=max{r,s+M}
M+1 M-1 T
<SSRy vnavan] s S i n
k=1 s>n—M,r>s m=0 s=1 r>s
+ ZZ Vs On sy, i T+M}}
s=1 r>s

> mgX(yéaiq?)m?X(yi&-Q?)]

s>n—Mr>s

1)2 {Z P,

T
+ Z Z [maX(ysazq§+m) max(yTa qH—m r+m] + Z Z [mftx(yéﬁzjs) m?X(yiaijr)Sr+M} }

m=0 s=1 r>s s=1 r>s
T M-1 T
<2(M + 1) {Z P, Z M max(y.0;q™)? | + Z [C’ max(ysa ¢ctm)? Ps+m]
n=1 s>n—M m=0 s=1

T

+ Z [C m?X<y;az]s>2Sr+M]}
! T M+1 M—-1

Z(M + 1)2 Z Z y? [Z M + C)(a qs+m) s+m T C(aijs)2ST+M] :
m=0

s=1 i=1

Finally,
0*I
=W+V
Iy i

> M+ CO) M+ 1)%(9:q7)* + 0747) P+ (20(M +1)% (9:.)* + 074s) Ss |

establishing the Lemma. m
Proof of Lemma 3 To show that I ((my)i<r, (7:)i<r) is jointly concave in leisure (z;);<; and
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manipulations (m;);<r, we use Lemma 2 with b; = (my, z;) and:

M 7] M
Js(ms, x5) = (0s — ¢0s11) | fws) — @+ Z(ms,i — Amsi)) | — Z(9s+z’ — Psrit1)ms; +Inp,
L i=1 J =1
(76)
[ M t—s
qz(m& ms) = (08 - ¢95+1) f(xs) —a—+ Z(ms,i - )\(ms,z)) - Z(eeri - ¢95+i+1)ms,i + In p, §< t
L =1 | =1

M
qs(mg,xs) =05 | f(xs) —a+ Z(ms,i — A(ms,;)) | +1np.

=1

We have 0; — @01 < Do (0s — ¢p0s11) as long as t > s and [t — s| < M, for some Dy > 0. Let A
be such that sup Dym — A(m) < Dy, for some Dy > 0, and m* be such that Dogm — A(m) < 0
for m > m*. We can assume without loss of generality that the CEO chooses manipulations
only within the interval [—m*, m*], and so

T
C = 6M(supqgfinfqé)/2 Z ensupjt/2
n=0
is finite. Finally, since
—1 —g"(f(zs)) '
flxg) = ———, fl2s) = 2~ and 0, < g (a),
) =Gy 7 = ) @)

the condition (50) is satisfied for ¢ = 1 if g has sufficiently high curvature. Moreover, since

4 /
om qz = (93 - ¢es+1)(1 - A (ms,i)) — ]‘t<S+i(95+i _ ¢08+i+1),
0
3ms,i
o ¢ 82 ] "
(8ms’i)2 qs = (ams,i)st - _(93 - ¢95+1))\ (msﬂ-),

Js = (95 - ¢(95+1)(1 - )‘I(mS,i> and

the condition (50) is satisfied for i > 1 if A has sufficiently high curvature. m

Proof of Lemma 4 We must verify condition (50) in Lemma 2 for j, and ¢! defined as:

M M

js(m57 335) = (95 - ¢03+1) [f(xs) - Va + Z(ms,i - )\(mS,Z))] - Z es-i-ims,i + D37 (77)
i=1 i=1
M t—s

qz(msaxs) = (93 - ¢95+1) [f(xs) - 76 + Z(ms,i - )\(mSﬂ))] - 208+im8,i + Ds; S S t,
i=1 i=1

for Dy =(1—7v)ks+InFE (6(1*“*)9868) + In p. The rest of the proof follows as in the v = 1 case,
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with the derivatives of the f function being:

/ _ 1 M) — 1 / o . 2gll(f(xs))
flw) = =Dy 1 @) x@%ﬂ%»(D9“<” l)yu@m>’

for D = %= sign(1 — 7). Consequently I'((m)i<r, (%:):<1) is pathwise concave and so Eﬁn is
concave in the processes (z;)i<r and (my)i<,. ®

Proof of Lemma 5 Let U(n,; n,) be the CEO’s continuation utility after history n), if the agent

reports 1,_q,n,. (54) follows from the standard envelope conditions, i.e. %Ut(nt; N)n=n, = 0
together with:
Ui i) = U1, i) + 9(ae(n,—1,mp)) — 9(ae(ny—vsmp) +np — mi), for v =1,
Ye(n,_q,m)) 7 [emgtaeeymt)+ni—n) (A=) _ g=glar(n—1.))(1-7)
Uy ) = Us(my—y,m;) + : : [ ] for v # 1.

I—x

The technical assumptions on a;(n,_;,-) guarantee that U;(n,_,, -) is absolutely continuous (for
details see e.g. EG p. 49). w(n,) > 0 follows from the private savings constraint, since the
marginal utility of consumption at zero is infinite. m

Proof of Lemma 6 Note that if instead of U¥(n,_,,-) and {(n,_,,-) we solve for the functions
Ut#("hfp -) and ((n,_,, -) that satisfy Ut#(mflm) = Ui(n,-1,n) and

R PR U .
Ut#("h—la m) = Ut#(m_la 77) +/ [C("?t—17$)yt("7t—1a I)e_g(a)]l_ygl(a)dxa (78)
n

U m_yym) — Uiy, m) = g(ai(my_y,m)) — g(@) +In{(m,_y,m), fory = 1.

Ut#(m_l’m) _ [y me)ye (g, )@ for 4 £ 1
Ut<77t—1777t) [yt(nt—pWt)eig(at(m_l’m))]liv 7 7

then we have ¢(n,_;,7:) < ((m,_1,m:) (and ¢(n,_1,m:) = ((M,_1,m) when t = L). Therefore it
will be sufficient to E;_; [Z(ntfl, nt)} )
Since m,_, is fixed, to economize on notation we write Uy(n;) instead of Uy(m,_,,m:) etc.
Case v # 1. We have:

=, [ U ) ion
0F ) =UF )+ [ 5 ) o)

Ui(ny) = U_t#(g) + /m5 [yt(m)e—g(at(x))}lfv ¢ (ay(z))dz.
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Therefore:

U_t#<77t) / _
Ui(n:)

[a t —qg(a 1- / a —qg(a 1— /
U () [ye(ny)e9ta D] g (at(ﬁt))g/(g#Ut(ﬁt) — [ye(m) e~ @] g/ (ay(ne))UF* (me)

_ Ulm) at(nt)) _
Ut(ﬁt)2
TT# —gl(at(ne 1- ! (@ —
UF () [y (m)e 2@ @' g'(ay(m)) | sy — 1] - Ui’é(m)(1 @) [ J(@) 1} . X
= — a) | ——— — or v < 1,
Us(mn)? =Ty~ Y g am)) !

It follows that:

# L J (@) '@ (@) . 7" o
U’ () < M@ S (Tt o Ja-sw LB (FES-1) < 00 @ e gyl for < 1.

Ue(n) B
(79)
9" (xa+(1—z)a

where the last inequality follows because Z:EZ; = ¢'(a) [ﬁ + (a— a)m for some
x € [0,1]. For v > 1 we obtain the analogous chain with the inequality signs reversed. Thus,

Ut# (Ut)

Ui(n:)

o/ (@ sup fgg—','QEtfl aamlp [e[g(ﬁ)fg(at(m))](lf'y)} <

1
1—v

elg@—glat(n))(1-7) | < (80)

Ei [Z(ﬂt)] =FEi

IA

< o @ g Filimalnl (g e9@-9@ (1 — 3)g' (@) B,y [a — ai(n)]) -

Case v = 1. Comparing (54) and (78) we immediately obtain:

_ B ur gl<a) B (e 2 — ola
o) = [ (Aot —1) (e + o(@) = ool

Using the analogous bounds as in (79) and (80) we obtain:

)

E,_, [Z(Ut)] <E,_, {69’((1) f:t(g/(ut(m))1)da:+g(a)g(at(:6))} < oJ (@ sup #Et—l[a*at(nt)]Et_l [eg(a)—g(at(nt))} <

< egl(ﬁ) sup fggi,gEt—l[ﬁfat(nt)] (1 + eg(ﬁ)—g(g)g/(a)Et_l [a . a't(nt)]) )

]
Proof of Lemma 7 Multiplying all payoffs by ¢ results in all the continuation utilities Uy(n,)
and deviation continuation utilities U;(n,; ;) multiplied by constant (*~7 for v # 1, or having a
constant In ¢ x ZSL:_S p° added at time ¢, for v = 1, and so the local EF constraint is unaffected.

This also results in the marginal utilities of current consumption multiplied by (77, and so the

local PS constraint is also unaffected. m
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Proof of Lemma 8 We prove only the v # 1 case. For the  as in the proof of Lemma (6) we

have:
mul’f’é(m 15 7t) ——y 1 _
B |—F—~| 2 B [C (M1, M) x 7P m)mg@) | —
ma(Ny_1, M)
JE— 7
7 =
_ g | [YE @) | 0@ gtartn om0t -g@) |
Ue(My—15 1)

1"
—vg' (@) sup L5 E¢—1[a—ar(n,)]
e te' Ei

v

[e—(1+’Y)(1—’Y)[9(5)—9(%(%—1777t))]} >

g9

> e_wg/(a) Sup 73 Ei_1[a—ai(n,)] (1 . 1’Y<167(1+’y)(lf’y)[g(ﬁ)fg(g)]g/(a)(1 . 7)(1 + V)Etfl [a . at(nt)]) )

|
Proof of Lemma 9 We prove only the v # 1 case. From (54) it follows that for every 7, and

U
eM=m9g'@) yf(mil’m)1—76—(1—7)9(#("#1,770) > yf(nFl?77;)1—76—(1—7)g(a§‘(nt717n£))’
and so for every 7, and 7, :

yh(mil’n£>—wevg(a?(m_1m£)) > e*|ﬁ|(ﬁfﬂ)9/(ﬁ) % ylz(nFl,m)—yewg(ah(nt_l,m))’

By [ (g, m)] 2 e[ P51 000 @000 s,y ),

It follows that for Dy = el 25 |- @ +9(@)-g @

muﬁ( t—1,1¢t)
Ei [mui(mwm)} > B [mu?(m*l’ntﬂ (1 —Dax (1 — L |:mu€b(:77t—11jzlt):|>>
E,_4 [mU?(’r]t—h Ut)} N Ei [mu?<nt—l7 Ut)}

!
—1— D, x <1 —E,_, [mut(m_l,m)D .

muf ("7t71a 77t)

]
Proof of Lemma 10 Let Y be the payoff scheme Y*. For any n, 0 < n < L, we construct the
payoff scheme Y™ as follows. Start with the payoff scheme Y"1, After any history n,, multiply
the payoffs at time n by ("*(n,,) > 1 so that the PS constraint at history n,, is satisfied; then
multiply the payoffs after any history n,,, m > n and n,,,, = n,, by ("?*(n,) < 1 so that
the continuation utility at history m,, remains unchanged. After any history m,,_; multiply the
payoffs at time n — 1 by ("?*(n,_;) > 1 so that the PS constraint at n,_, is satisfied; then
multiply the payoffs after any history n,,, m > n—1and n,,,,_1 = n,,_1, by ¢"P(m,,_q) < 1so
that the continuation utility at m,,_; remains unchanged. Follow this procedure until histories

at time 1, and let Y be the resulting payoff scheme. One can inductively show that ("P%(n,,,)x
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¢ (n,,) = 1, m < .

Let A* always require the maximum effort. Lemma 7 yields that each contract (A*,Y™)
satisfies the local EF constraint and also satisfies the local PS constraint up to round n. Let
Y* =YL~ It remains to prove (57).

For any history n,, we have y;(12) = y5(012) x [T TTX2h ¢ (n),,) < v (1) and so the
condition (57) is satisfied.

For any history n,, t < L, we have, by construction above:

- L-1 -
ZZZ (H H G (M) X HCM’S ul ) > (11 C””’%m)) :

m=1n=m

Moreover,

gt,ps(n )_7 Et [mu t+1 77t71>77t)} > ¢ (Et {mufﬂ(nt_l,nt)}) >
' Ey [mut+1 (M, 1»%)} N M1 (1,1, M) -

> ¢ (Y (Ee[a — a1 (ne41)]))

where the first inequality follows from Lemma 9, and the second one from Lemma 8. By the

same logic, for any n, t <n < L — 1,

n,ps - E; [mu?ﬂ("?tﬂltﬂ)} < {mufﬂ(nt,mﬂ)}) . B
D t v e — Z Et — Z Et D Mt ¥
S By [maui 5! (e, ne)] ¢ mau i (Mg, Mg ¢ (Er [C"7° (04, me1) 7))

. Eii1 [mu?+2(77t777t+1777t+2)} mut+2<nt>nt+1unt+2)
- Qb Et n—1 ¢ EH‘I ur
Eiq [mut+2 (M4 Meg1, 77t+2)] Upio (ntvnt+1>77t+2)

|
_ ¢2 (Et |:mu?+2(ntant+1777t+2):|) > > ¢n—t< [ nt777t+17- 1) })

n—1
My, o ("7t777t+177h+2) muy,™ "7t,77t+1>--,77n)

ETL n ty t+1s5 -5 lIn
> ¢! (Et [C”’ps(m, Ni+1, ...,Un)_v]) =" (Et [mu SIUAVIRIERY H)} ])

En [munJrl (nt7 /RS PR 77H+1)]

> ¢" (B [ (B [@ = ans1(My, sy oo Mag1)])]) -
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