Are Trade Liberalizations a Source of Global Imbalances?

Jiandong Ju* and Shang-Jin Wei**

June 17, 2010
Preliminary and Incomplete

Abstract

A wave of trade liberalizations have taken place in both developing and developed countries in the last two decades. Global capital flows and the so-called global imbalances have also risen to an unprecedented level. Are the two developments related? We study how trade reforms affect capital flows in a modified Heckscher-Ohlin framework that incorporates convex costs of capital flows, factor adjustment costs, and financial institutions. We show that goods trade and capital flows are substitutes in most cases. Since the nature of trade liberalizations is inherently asymmetric between developed and developing countries, we show that trade reforms could induce cross-country capital flows in a way that could contribute to global imbalances.

JEL Classification Numbers: F3 and F4

*University of Oklahoma, Tsinghua University, and Center for International Economic Research; E-mail: jdju@ou.edu. **Columbia Business School, NBER, CEPR and CIER, E-mail: shangjin.wei@columbia.edu, Web page: www.nber.org/~wei.
Contents

1 Introduction ... 2

2 The Model ... 4
 2.1 Household ... 5
 2.2 Production ... 6

3 Equilibrium Analysis .. 7
 3.1 Heckscher-Ohlin Model with Capital Flows 7
 3.2 Specific Labor ... 9
 3.3 Specific Capital 11
 3.4 Partial Rigidities 13

4 Financial Institutions and Structures of Capital Flows 16
 4.1 Determinants of Financial Interest Rates 20
 4.2 Financial Capital Flow and FDI 20
 4.3 Comparative Statics 21

5 Conclusion ... 23

6 Appendix .. 23
1 Introduction

A wave of trade liberalizations have taken place in both developing and developed countries in the last two decades. Global capital flows and global imbalances have also risen to an unprecedented level. Figure 1 (from Caballero, Farhi, and Gourinchas (2008)) displays the main patterns of global imbalances since 1990. Starting in 1991 the U.S. current account deficit worsened continuously, reaching 6.4 percent of U.S. GDP in the fourth quarter of 2005, then falling back to 5 percent of GDP by early 2008. The current account surpluses that were the counterpart of the U.S. deficits initially emerged in Japan and Europe and were bolstered by surpluses in emerging Asia and the commodity-producing countries after 1997.

Figure 2 (Figure 4 in Jaumotte, Lall, and Papageorgiou (2008)) illustrates the wave of trade liberalizations. World trade, measured as the ratio of imports plus exports over GDP, has grown five times in real terms since 1980. All groups of emerging market and developing countries, when aggregated by income group, have been catching up with or surpassing high-income countries in their trade openness. In particular, the ratio of imports and exports to GDP in low income countries has increased from about 20% in 1990 to more than 40%, and the average tariff rate in low income countries has declined from about 60% to 15%. Figure 3 shows balances of current account in China. China joined the WTO in 2001. The current account balance was 7.6 billion dollars from 1982 to 2001, but increased to 156 billion dollars from 2002 to 2007: a 20 times jump!

This paper aims to develop a theoretical model to explain the data patterns indicated above. In particular, we study how trade reforms affect capital flows in a modified Heckscher-Ohlin framework that incorporates convex costs of capital flows, factor adjustment costs, and financial institutions. We show that if a developing (labor abundant) country reduces the tariff in the capital intensive sector, the interest rate declines. As a result, capital flows out so that trade liberalizations
in a labor abundant country lead to current account surplus. On the other hand, tariff reductions in the labor intensive sector in a capital abundant country lead to a decrease in the wage rate but an increase in the interest rate. As a result, capital flows into the country so that trade liberalizations in a capital abundant country lead to current account deficits.

Two main problems exist in the classical Heckscher-Ohlin-Samuelson framework when both goods trade and capital flows are considered. First, As Mundell (1957) argues, goods trade and capital flow are perfect substitutes in the HO model. Without costs of trade in goods or capital, there are infinite combinations of goods trade and capital flow composition that constitute equilibria. So the exact amount of capital flows is indeterminate. With linear costs of trade in goods and/or capital, the corner solutions occur: either goods trade or capital flow takes place, but goods trade and capital flow do not coexist.1 Second, if factors are freely mobile across sectors, goods trade and capital flow are substitutes. If factors are sector-specific, however, as Markusen (1983) and Antras and Caballero (2009) point out, goods trade and capital flow are complement.

By introducing convex costs of capital flows to the Heckscher-Ohlin framework, we show that there is a unique equilibrium in which goods trade and capital flows coexist. With factor adjustment costs across sectors, the HO model and the factor-specific model become two polar cases in our model. Thus, the issue of substitutability or complementarity between goods trade and capital flows can be examined comprehensively.

Suppose a labor abundant country reduces the tariff in the capital intensive sector. When the capital adjustment cost is small, we show that the tariff cut leads to lower returns to capital and therefore capital outflows in both sectors. Therefore, trade liberalizations and capital flows are substitutes in this case. When the labor adjustment cost is small, the tariff cut always results in lower returns to capital in the importing sector. The effect on the return to capital in the exporting sector,

1For more detail discussions, readers are guided to Ju and Wei (2007).
however, varies with the capital adjustment cost. If the capital adjustment cost is small, the return to capital in the exporting sector is lower, but becomes higher when the capital adjustment cost is above a threshold value. In the extreme case, when labor is freely mobile across sectors, but capital is sector specific, a tariff reduction results in a decrease in the return to capital in the importing sector, but an increase in the return to capital in the exporting sector. However, the average return to capital for all sectors are always lower than that before the trade reform. Therefore, trade liberalizations and capital flows are substitutes on average. The theoretical results in this paper, that trade liberalizations in labor abundant countries lead to the current account surplus, are consistent with the data patterns of global imbalances we have observed.

We then introduce financial institutions into the model and consider two types of capital flows: financial capital flow and FDI. We show that trade liberalizations in a labor abundant country lead to capital outflows in both financial capital and FDI. So trade liberalizations and two types of capital flows are all substitutes. However, the effects of financial development on financial capital flow and FDI are opposite: the higher level of financial development in the country leads to more financial capital inflow but more FDI outflow.

If trade liberalizations may not balance the trade, we show one possible solution to the global imbalances is for emerging economies to improve the technology in the capital intensive sector, and therefore increases the domestic investment demand.

2 The Model

We develop a comprehensive benchmark model in this section. First, we introduce a convex cost of capital flows so that there is an unique equilibrium in which goods trade and capital flows coexist. Second, we introduce both labor and capital adjustment costs so that the HO models and the factor specific models become
special cases of our model. In section 4, we further introduce the financial system to the benchmark model and study how the efficiency of financial system affects capital flows. To simplify the analysis, we focus on the case of small open economy in this section.

2.1 Household

The economy’s endowment consists of labor L and capital stock K, which are owned by households. There are two sectors in the economy. The households supply labor and capital to both sectors. However, the factors cannot be costlessly reallocated between two sectors. To model the factor market friction, we assume that the households are subject to quadratic labor and capital adjustment costs for working in each sector. That is, if the households supply L_i to sector i for $i = 1, 2$, they will bear the adjustment costs $\frac{\xi_L}{2} (L_{it} - \bar{L}_i)^2$ and $\frac{\xi_K}{2} (K_{it} - \bar{K}_i)^2$, where ξ_L and ξ_K are parameters that measure the labor and capital market frictions in sector i, and \bar{L}_i and \bar{K}_i are labor and capital usages before the trade liberalization, respectively. As a result, the wage and rental rates will be different across sectors. The wage rate and the return to capital (the interest rate) in sector i are represented by w_i and R_i, respectively. Let x_i and p_i be the quantity of consumption and the price in sector i. The representative consumer’s utility function is $u(x_1, x_2)$ and she solves the following maximization problem:

$$\max_{x_i, L_i, K_i} u(x_1, x_2) \quad (1)$$

subject to
\[p_1 x_1 + p_2 x_2 + \sum_{i=1}^{2} \frac{\xi}{2} (L_i - \overline{L}_i)^2 + \sum_{i=1}^{2} \frac{\xi}{2} (K_i - \overline{K}_i)^2 = \sum_{i=1}^{2} (w_i L_i + r_i K_i) \] (2)

\[L_1 + L_2 = L \] (3)

\[K_1 + K_2 = K \] (4)

Solving the first order conditions of the above problem, we obtain:

\[L_1 = \overline{L}_1 + \frac{w_1 - w_2}{2\xi L}, \quad L_2 = \overline{L}_2 - \frac{w_1 - w_2}{2\xi L} \] (5)

\[K_1 = \overline{K}_1 + \frac{R_1 - R_2}{2\xi K}, \quad K_2 = \overline{K}_2 - \frac{R_1 - R_2}{2\xi K} \] (6)

2.2 Production

Both goods and capital are tradable, while labor is immobile across the border. The market is perfectly competitive. The production function for good \(i \) is \(y_i = f_i(A_i L_i, K_i) \) where \(A_i \) measures labor productivity in sector \(i \). \(H_i = A_i L_i \) can be understood as effective labor. All production functions are assumed to be homogeneous of degree one. The unit cost function for \(y_i \) is

\[c_i\left(\frac{w_i}{A_i}, R_i\right) = \min\{w_i L_i + R_i K_i \mid f_i(A_i L_i, K_i) \geq 1\} \]

\[= \min\left\{ \frac{w_i}{A_i} H_i + R_i K_i \mid f_i(H_i, K_i) \geq 1\right\} \] (7)

Free entry ensures zero profit for producers. If the country’s endowment is within the diversification cone, both goods are produced, and we have:

\[p_1 = c_1(w_1/A_1, R_1) \text{ and } p_2 = c_2(w_2/A_2, R_2) \] (8)
where \(p_i \) is the price of good \(i \). Let \(p^* \) be the world price,\(^2\) and \(\tau_i \) be the tariff rate in good \(i \). Then we have \(p_i = (1 + \tau_i) p_i^* \).

3 Equilibrium Analysis

We will first consider two polar cases: the HO model where factors are freely mobile across sectors, and the specific factor models where either labor or capital is sector-specific. In the HO model, the parameters that measure factor adjustment costs, \(\xi_L \) and \(\xi_K \) are set to zero. The wage and the interest rates in two sectors are equalized and are denoted as \(w \) and \(R \), respectively. When labor (or capital) is sector-specific, on the other hand, \(\xi_L \) (or \(\xi_K \)) is infinity, so labor (or capital) employed in sector \(i \) is fixed. We then move to the general case where \(\xi_L \) and \(\xi_K \) are between zero and infinity.

3.1 Heckscher-Ohlin Model with Capital Flows

Let \(\tilde{K} \) be the amount of capital flow. \(\tilde{K} > 0 \) denotes capital inflow while \(\tilde{K} < 0 \) denotes capital outflow. The marginal cost of capital flow is represented by \(\phi \tilde{K} \) where \(\phi \) is a positive number. Thus, the cost of capital flow is assumed to be convex so that the marginal cost of capital flow is increasing. The equilibrium condition for capital flows is written as follows:

\[
R - R^* = \phi \tilde{K} \iff \tilde{K} = \frac{R - R^*}{\phi}
\]

(9)

When \(R > R^* \), \(\tilde{K} > 0 \) so capital flows into the country; when \(R < R^* \), \(\tilde{K} < 0 \) so capital flows out.

\(^2\)We use a superscript "*" to denote variables in the foreign country.
The full employment conditions for labor and capital, respectively, are

\[a_{1L}y_1 + a_{2L}y_2 = L \] \hspace{1cm} (10)
\[a_{1K}y_1 + a_{2K}y_2 = K + \tilde{K} \] \hspace{1cm} (11)

where

\[a_{iL} = \frac{\partial \phi_i(w,R)}{\partial w}, \hspace{0.5cm} \text{and} \hspace{0.5cm} a_{iK} = \frac{\partial \phi_i(w,R)}{\partial R} \] \hspace{1cm} (12)

are labor and capital usages per unit of production, respectively.

Let sector 1 be labor intensive. That is, \(\frac{a_{1L}}{a_{1K}} > \frac{a_{2L}}{a_{2K}} \). In equations (8), we have \(w_1 = w_2 = w \) and \(R_1 = R_2 = R \) in HO model. In this HO model, the Stolper-Samuelson theorem holds. That is, an increase in the price of a good will increase the return to the factor used intensively in that good, and reduce the return to the other factor. More formally, we have \(\frac{\partial w_1}{\partial \tau_1} > 0, \frac{\partial R}{\partial \tau_1} < 0, \frac{\partial w_2}{\partial \tau_1} < 0, \) and \(\frac{\partial R}{\partial \tau_2} > 0 \). Note that in our small country model, the increase in price \(p_i \) is qualitatively equivalent to the improvement in technology \(A_i \) in equations equations (8). Thus, we also have \(\frac{\partial w_1}{\partial A_1} > 0, \frac{\partial R}{\partial A_1} < 0, \frac{\partial w_2}{\partial A_1} < 0, \) and \(\frac{\partial R}{\partial A_2} > 0 \).

Trade liberalizations are represented by reductions in tariffs, \(\tau_1 \) and \(\tau_2 \). A tariff reduction in labor intensive sector (a decrease in \(\tau_1 \)) increases \(R \) since \(\frac{\partial R}{\partial \tau_1} < 0 \). Thus, using equation (9), the amount of capital inflow (outflow) increases (decreases). As \(K + \tilde{K} \) increases, using the Rybczynski theorem, the output of capital intensive sector, \(y_2 \), increases relative to \(y_1 \) so that the country exports more the capital intensive good. On the other hand, A tariff reduction in \(\tau_2 \) reduces \(R \), and therefore results in capital outflow. Using the Rybczynski theorem again, the country produces less \(y_2 \) relative to \(y_1 \) so it imports more capital intensive good. Summarizing the results, we have:

Proposition 1 Suppose factors are freely mobile across sectors. If a country reduces the tariff in the labor intensive sector, it will export more the capital intensive good
but export less capital. On the other hand, if a country reduces the tariff in the capital intensive sector, it will import more the capital intensive good but import less capital.

A labor abundant country imports the capital intensive good in the HO model. Trade liberalizations in the country, therefore, feature a tariff reduction in the capital intensive sector, which promotes imports of the capital intensive good, but reduces the interest rate and therefore leads to more (less) capital outflow (inflow). In other words, trade liberalizations in a developing (labor abundant) country result in more current account surpluses. By contrast, trade liberalizations in a developed (capital abundant) country increases the interest rate and therefore result in more current account deficits.

3.2 Specific Labor

Let \mathcal{T}_i be the fixed labor usage in sector i, $\mathcal{T}_1 + \mathcal{T}_2 = L$. Capital, however, is assumed to be freely mobile across sectors. If there is no capital flow across the border, the domestic return to capital, R, is determined by

$$p_1 \partial f_1(A_1 \mathcal{T}_1, K_1)/\partial K_1 = p_2 \partial f_2(A_2 \mathcal{T}_2, K - K_1)/\partial K_2 = R$$ \hspace{1cm} (13)

It is straightforward to show, using Figure 4, that decreases in either p_1 or p_2 (due to trade liberalizations) reduce R. In Figure 4 the length of the horizontal axis is equal to the total supply of domestic capital, K, the vertical axis measures R. The value marginal product of capital curves for sectors 1 and 2, labeled as V_{1K} and V_{2K}, respectively, are plotted relative to origins O_1 and O_2. The equilibrium position without capital flows is shown by E where $V_{1K} = p_1 \partial f_1(A_1 \mathcal{T}_1, K_1)/\partial K_1$ and $V_{2K} = p_2 \partial f_2(A_2 \mathcal{T}_2, K - K_1)/\partial K_2$ intersect.

Consider a trade liberalization that reduces p_2 to p'_2. When p_2 declines, V_{2K} (or V_{2K}') shifts down to V_{2K}' in Figure 4, and the return to capital decreases from R^0 to
Likewise, a decline in p_1 shifts down V_{1K} and correspondingly reduces R. It is interesting to note the difference between HO model and the specific-labor model. In the HO model, the decrease in p_2 reduces R but the decrease in p_1 increases R, while in the specific-labor model, both decreases in p_1 and p_2 reduce R.

With capital flows across the border, the equilibrium condition after the trade liberalization becomes:

$$p'_1 \partial f_1(A_1 \overline{T}_1, K_1) / \partial K_1 = p_2 \partial f_2(A_2 \overline{T}_2, K + \overline{K} - K_1) / \partial K_2 = R$$

$$R - R^* = \phi \overline{K}$$ \hspace{1cm} (14)

Three endogenous variables, K_1, \overline{K}, and R are solved by the system (14). Summarizing we have:

Proposition 2 Suppose labor is sector specific, but capital is freely mobile across sectors. A tariff reduction in any sector reduces the return to capital. As the result, the country experiences a capital outflow (current account surplus).

Comparing Proposition 2 with Proposition 1, it is interesting to note that for a labor abundant country, a trade liberalization (reduction in p_2) leads to a decrease in the return to capital, R, and therefore a capital outflow in both the HO model and the specific-labor model. However, a trade liberalization (reduction in p_1) in a capital abundant country leads to an increase in R and therefore a capital inflow in the HO model, but a reduction in R and therefore a capital outflow in the specific-labor model.

Two effects are associated with trade liberalizations. First, the decrease in price reduces the value marginal product of capital, which is labelled as the price effect. Second, the trade liberalization results in changes in production structures and leads the country to produce more goods that use its abundant factor intensively, which is called the structural effect. The former reduces R in any country. The later, on
the other hand, increases the demand for capital in a capital abundant country and therefore raises R, but decreases it in a labor abundant country.

Both the price effect and the structural effect reduce the return to capital in a labor abundant country, so a trade liberalization leads to capital outflow in the HO model and in the specific-labor model. However, the structural effect is weaker in the specific-labor model, as immobile labor prevents the structural adjustment at the full scale. Thus, the reduction in R and therefore the amount of capital outflow in a labor abundant country is smaller in the specific-labor model than that in the HO model. On the other hand, however, the price effect and the structural effect move in opposite directions in a capital abundant country. Furthermore, in HO model the later dominates the former, so a trade liberalization leads to a capital inflow, while in the specific-labor model, it is the reverse.

3.3 Specific Capital

Let K_i be the fixed capital usage in sector i. Now labor is assumed to be freely mobile across sectors. Without capital flow across the border, the wage rate is determined by

\[
p_1 \partial f_1(A_1L_1, K_1)/\partial L_1 = p_2 \partial f_2(A_2 (L - L_1), K_2)/\partial L_2 = w
\]

(15)

Similar to the above analysis, the wage rate w declines after the trade liberalization.

Consider a decrease in p_2. Similar to the analysis in Figure 4, but now the the horizontal axis represents the supply of labor, L, and the vertical axis measures the wage rate w. As a result of the decrease in p_2, the value marginal product of labor curve for sector 2, $V_{2L} = p_2 \partial f_2(A_2 L_2, K_2)/\partial L_2$ shifts down. So L_2 decreases. Both decreases in p_2 and L_2 reduce the return to capital in sector 2, $R_2 = p_2 \partial f_2(A_2 L_2, K_2)/\partial K_2$. Thus, the decrease in p_2 leads a capital outflow in the importing sector 2. On the other hand, the decrease in L_2 implies that L_1 increases. Therefore, the return to
capital in sector 1, \(R_1 = p_1 \partial f_1(A_1 L_1, K_1)/\partial K_1 \), must increase, which leads to a capital inflow in sector 1. Likewise, if a tariff reduction results in a decrease in \(p_1 \), then \(R_1 \) declines but \(R_2 \) increases. Summarizing we have:

Proposition 3 Suppose capital is sector specific, but labor is freely mobile across sectors. A tariff reduction results in a decrease in the return to capital in the importing sector, but an increase in the return to capital in the exporting sector. As a result, the country experiences a capital outflow in the importing sector but a capital inflow in the exporting sector.

The effects of trade liberalizations on capital flows can be summarized as follows.

<table>
<thead>
<tr>
<th>Tariff Reductions</th>
<th>Labor Abundant Country</th>
<th>Capital Abundant Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO</td>
<td>(p_2 \downarrow)</td>
<td>(p_1 \downarrow)</td>
</tr>
<tr>
<td>Specific Labor</td>
<td>(R \downarrow)</td>
<td>(R \uparrow)</td>
</tr>
<tr>
<td>Specific Capital</td>
<td>(R_1 \uparrow, R_2 \downarrow)</td>
<td>(R_1 \downarrow, R_2 \uparrow)</td>
</tr>
</tbody>
</table>

Antras and Caballero (2009) argue that trade liberalizations and capital flow are *complements*, in the sense that a process of trade integration increases the incentives for capital to flow to developing country. From the above table, only one case in our analysis that if capital is sector specific, and capital in sector 2 is prohibited to flow across the border, then trade liberalizations and capital flow are *complements*. This case bears some similarity to the case discussed by Antras and Caballero (2009) where capital in sector 2 is fixed due to financial frictions and capital in sector 2 (called entrepreneurs’ capital) is not allowed to flow across the border. In this case, trade liberalization in the developing country expands the country’s production in sector 1, and therefore induces foreign capital to flow into the sector.
It is interesting to note that the complementarity between trade liberalizations and capital flows discussed by Antras and Caballero (2009) is rather special in our discussions. If factors are freely mobile (HO model), or labor but not capital is sector specific, we all have that trade and capital flows are substitutes, rather than complement. The effect of financial development on capital flows, which is a focus in Antras and Caballero (2009), will be discussed in section 4.

3.4 Partial Rigidities

We now discuss the general case that both labor and capital are partially rigid. That is, the adjustment cost parameters, ξ_L and ξ_K, are between zero and infinity. The model with general function forms is complicated and we do not have a closed form solution to the comparative statics. So we parameterize the model and use simulations to analyze the effect of factor market rigidities on capital flows.

We assume the following Cobb-Douglas production functions

$$ f_1(A_1L_1, K_1) = (A_1L_1)^{\alpha_1} K_1^{1-\alpha_1} \text{ and } f_2(A_2L_2, K_2) = (A_2L_2)^{\alpha_2} K_2^{1-\alpha_2} \quad (16) $$

Thus, we have

$$ w_i = \frac{p_i \partial f_i(A_iL_i, K_i)}{\partial L_i} = p_i \alpha_i A_i^{\alpha_i} k_i^{1-\alpha_i} \quad (17) $$

$$ R_i = \frac{p_i \partial f_i(A_iL_i, K_i)}{\partial K_i} = p_i (1 - \alpha_i) A_i^{\alpha_i} k_i^{-\alpha_i} \quad (18) $$

where $k_i = \frac{K_i}{L_i}$. Using (5) and (6), we obtain:

$$ k_1 = \frac{\bar{K}_1 + \frac{H_1k_1^{-\alpha_1} - H_2k_2^{-\alpha_2}}{2\xi_K}}{\bar{L}_1 + \frac{H_1k_1^{-\alpha_1} - H_2k_2^{-\alpha_2}}{2\xi_L}} \quad (19) $$

$$ k_2 = \frac{\bar{K}_2 - \frac{H_1k_1^{-\alpha_1} - H_2k_2^{-\alpha_2}}{2\xi_K}}{\bar{L}_2 - \frac{H_1k_1^{-\alpha_1} - H_2k_2^{-\alpha_2}}{2\xi_L}} \quad (20) $$
where \(H_{iL} = p_i \alpha_i A_i^{\alpha_i} \) and \(H_{iK} = p_i (1 - \alpha_i) A_i^{\alpha_i} \). Equations (19) and (20) solve for \(k_1 \) and \(k_2 \), which than solve for the wage rates and the returns to capital, using (17) and (18). Let \(\phi_i \) be the marginal cost of capital flow in sector \(i \) to across the border. Similar to equation (9), capital flows across the border in two sectors, respectively, are determined by the following equations:

\[
\tilde{K}_1 = \frac{R_1 - R^*}{\phi_1}, \quad \tilde{K}_2 = \frac{R_2 - R^*}{\phi_2} \tag{21}
\]

Finally, the factor usages \(L_i \) and \(K_i \) in each sector are solved by four equations as follows.

\[
\frac{K_1}{L_1} = k_1, \quad \frac{K_2}{L_2} = k_2, \\
L_1 + L_2 = L, \quad \text{and} \quad K_1 + K_2 = K + \tilde{K}_1 + \tilde{K}_2
\]

We set the parameters in the model as follows:

<table>
<thead>
<tr>
<th>(\alpha_1 = 0.75)</th>
<th>(\alpha_2 = 0.25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1^* = 9)</td>
<td>(p_2^* = 1)</td>
</tr>
<tr>
<td>(\tau_1 = 0)</td>
<td>(\tau_2 = 0.2)</td>
</tr>
<tr>
<td>(\tau_1^* = 0)</td>
<td>(\tau_2^* = 0)</td>
</tr>
<tr>
<td>(w^* = 15.3867)</td>
<td>(R^* = 0.19)</td>
</tr>
<tr>
<td>(A_1 = 1)</td>
<td>(A_2 = 0.482)</td>
</tr>
<tr>
<td>(A_1^* = 1)</td>
<td>(A_2^* = 1)</td>
</tr>
<tr>
<td>(L = 1)</td>
<td>(K = 135)</td>
</tr>
</tbody>
</table>

\(\alpha_1 > \alpha_2 \) so sector 1 is labor intensive. The home country is labor abundant and exports good 1 before the trade reform. Let the tariff rate be zero in sector 1, and 20% in sector 2 at home. Thus the prices at home are \(p_1 = 9 \) and \(p_2 = 1.2 \). \(A_1 \) is set to 1. \(A_2 \) is chosen so that \(p_2 A_2^{\alpha_2} = 1 \). Assume that the foreign country imposes
zero tariffs. Thus \(p_i A_i^\alpha = \bar{p}_i^* A_i^\alpha \). The economy is in the steady state equilibrium before the reform and adjustment costs are zero. So we must have \(w_1 = w_2 = w \) and \(R_1 = R_2 = R \). Using (17) and (18), therefore, factor prices at home and abroad are equalized, so there is no capital flow before the reform.

Using equations (17) and (18), we have the solution \(\omega_1 = \omega_2 = \omega \) and \(\Omega_1 = \Omega_2 = \Omega \). Using (17) and (18), therefore, factor prices at home and abroad are equalized, so there is no capital flow before the reform.

Now consider a tariff cut which reduces \(\tau_2 \) to zero. After the reform \(H_{1L} = p_i^{*1} \alpha_1 A_i^\alpha_1 = 6.75, H_{2L} = p_2^{*2} \alpha_2 A_2^\alpha_2 = 0.208, H_{1K} = p_i^{*1} (1 - \alpha_1) A_i^\alpha_1 = 2.25 \), and \(H_{2K} = p_2^{*2} (1 - \alpha_2) A_2^\alpha_2 = 0.625 \). Using these results, we then solve for \(k_1 \) and \(k_2 \) by equations (19) and (20). To examine the effect of factor market rigidities, we first fix the capital adjustment cost \(\Omega \) at \(0.001 \), while \(\Omega \) changes from \(0.001 \) to \(10 \). The results are reported in Figure 5. The 20% tariff cut in sector 2 reduces \(\Omega_1 \) to below \(0.1642 \), and \(\Omega_2 \) to below \(0.1524 \). That is, the tariff cut reduces the interest rate by more than \(\frac{0.19 - 0.1642}{0.19} = 13.6\% \) in sector 1, and more than \(\frac{0.19 - 0.1524}{0.19} = 19.8\% \) in sector 2. When \(\xi_L \) increases from 0.1 to 10, both \(\Omega_1 \) and \(\Omega_2 \) increase, reflecting that as the labor market becomes more rigid, less labor intensive good is produced and the domestic demand for capital is higher.

We then examine the case that the labor adjustment cost \(\xi_L \) is fixed at 0.1, while \(\xi_K \) changes from 0.001 to 10. The results are reported in Figures 6 and 7. Both \(\Omega_1 \) and \(\Omega_2 \) increase as \(\xi_K \) becomes larger. For all range of \(\xi_K \), the return to capital in the importing sector, \(\Omega_2 \), is below the steady state rate \(R^* = 0.19 \). The return to capital in the exporting sector, \(\Omega_1 \), is below \(R^* = 0.19 \) when \(\xi_K \) is smaller than \(0.01 \), and above it otherwise, as shown in Figure 6. The average return to capital reported in Figure 7, \(\frac{\Omega_1 + \Omega_2}{2} \), is below 0.182 for all cases. Using equations (21), capital flows into sector 1 and flows out of sector 2 for \(\xi_K > 0.01 \). If the marginal costs of capital flows in two sectors, \(\phi_1 \) and \(\phi_2 \), are the same, the current account (net capital flow in two sectors) must be in surplus, as \(\frac{\Omega_1 + \Omega_2}{2} < R^* \). Summarizing we have:
Proposition 4 Suppose a labor abundant country reduces its tariff in the capital intensive sector. A) The tariff cut always results in lower return to capital in the importing sector. B) If the capital adjustment cost is sufficiently small, the tariff cut also leads to lower return to capital in the exporting sector; if the capital adjustment cost is above a threshold, however, the return to capital in the exporting sector becomes higher. On average, the return to capital is lower than that before the reform. C) As factor adjustment costs across sectors become larger, the return to capital increases.

4 Financial Institutions and Structures of Capital Flows

In this section we introduce the financial contract into the model discussed above. The financial contract model is based on Ju and Wei (2008) who incorporate the financial contract model of Holmstrom and Tirole (1997) into the standard Heckscher-Ohlin framework. The model in this paper differs from that in Ju and Wei (2008) as we allow the private benefit to entrepreneurs to be endogenous in this paper.

Suppose the production process takes two periods. The capital endowment K in the country is owned by K number of capitalists, each born with 1 unit of capital and facing an endogenous choice of becoming either an entrepreneur or a financial investor at the beginning of the first period. If a capitalist chooses to be an entrepreneur, she would manage one project, investing her 1 unit of capital (labeled as internal capital) and raising x_i amount of additional capital (external capital) from financial investors in sector i, possibly through a financial institution. The total investment in the firm in sector i is the sum of internal and external capital, or $z_i = 1 + x_i$. There will be $N_i = K_i / z_i$ of firms in sector i.

After the investment decision is made in the first period, production and consumption take place in the second period. Let depreciation rate be zero. If the project succeeds, the gross return to one unit of capital in sector i is R_i, which is the value
marginal product of capital discussed in the above sections. The financial interest rate received by investors is denoted as r. Note that if capital is freely mobile across sectors, $R_1 = R_2 = R$.

For a representative firm, the final output depends in part on the entrepreneur's level of effort, which can be low or high, but is not observable by the financial investors or the financial institution. Assume that the entrepreneur can choose among two versions of the project. The “Good” version has a high probability of success, λ^H, while offering no private benefit. The “Bad” version has a lower probability of success, λ^L, but offering a private benefit per unit of capital managed, b, to the entrepreneur. Following Holmstrom and Tirole (1997), we further assume that only the “Good” project is economically viable. That is, $\lambda^H R_i - (1 + r_i) > 0 > \lambda^L R_i - (1 + r_i) + b$ so that only the “Good” project is implemented in the moral hazard problem.

We use g to denote a country’s level of property rights protection, where $(1 - g)$ could be understood as a tax rate on the capital returns, where taxation is broadly defined to include state expropriation. We normalize $\lambda^L = 0$ and define $\lambda = g\lambda^H$ thereafter. Since we fix λ^H, without loss of generality, we can conveniently refer to λ directly as an index of property rights protection.

The entrepreneur is paid R^E_i per unit of capital to induce her to choose the “Good” project. In addition to that, we assume that c_i/θ units of numeraire good are used to intermediate one unit of investment in sector i. Thus, the pay to the financial intermediation is c_i/θ units of good per unit of investment. c_i/θ may represent the transaction cost, the monitoring cost to reduce the extent of moral hazard, or the expropriation by government officials. The efficiency level of the financial system in the country is then represented by θ. The higher the θ, the lower is the financial intermediation cost.

The entrepreneur in sector i chooses the amount of external capital x_i, her own capital contribution to the project I_i, total investment of the project z_i, and the
marginal pay to the entrepreneur’s effort R^E_i to solve the following program:

$$\max_{x_i, I_i, z_i, R^E_i} U_i = z_i \lambda R^E_i + (1 + r) (1 - I_i)$$

subject to

$$I_i \leq 1$$

$$z_i \leq x_i + I_i$$

$$[\lambda (R_i - R^E_i) - c_i / \theta] z_i \geq (1 + r) x_i$$

$$\lambda R^E_i \geq b$$

The objective function (22) represents the entrepreneur’s expected income. The first term represents the entrepreneur’s share in total capital revenue. The second term is the return from investing her own $1 - I_i$ capital in the market. Turning into the constraints, inequality (23) requires that entrepreneur’s internal capital is less than her capital endowment. Inequality (24) requires that total investment does not exceed the sum of internal and external capitals. Inequality (25) is the participation constraint for the outside financial investors, while inequality (26) is the entrepreneur’s incentive compatibility constraint.

It is then straightforward to show that all constraints must be binding in equilibrium. The entrepreneur will invest all her endowment $I_i = 1$ in the firm. The total investment z_i equals the sum of internal and external capitals $x_i + 1$. The incentive compatibility constraint (26) gives

$$R^E_i = \frac{b_i}{\lambda}$$

3 Following Holmstrom and Tirole (1997), it is assumed that financial intermediaries monitor entire project to ensure entrepreneurs to behave. Thus, the intermediation cost is proportional to the amount of total capital, not just external capital.

4 The problem is solved by setting the Lagrangian. The marginal return to internal capital must be higher than the financial interest rate as the entrepreneur needs to pay an entry cost (to be specified later). Then straightforward manipulation of the first order conditions shows that (23), (24), (25), and (26) must bind.
Substituting (27) into (25) gives the firm’s optimal investment:\(^5\)

\[
\begin{align*}
\bar{z}_i &= \frac{1 + r}{(1 + r) + c_i / \theta + b_i - \lambda R_i} \\
\tag{28}
\end{align*}
\]

Substituting (27) and (28) into (11), the entrepreneur’s expected income becomes

\[
\begin{align*}
\bar{U}_i &= \frac{b(1 + r)}{(1 + r) + c_i / \theta + b_i - \lambda R_i} \\
\tag{29}
\end{align*}
\]

We assume that a capitalist (a potential entrepreneur) needs to pay a fixed entry cost of \(t_i\) units of goods to become an entrepreneur.\(^6\) With free entry and exit of entrepreneurs, an entrepreneur’s expected income net of the entry cost, \(\bar{U}_i - (1 + r)t_i\), should be equal to \((1 + r)\) so that capitalists are indifferent between becoming entrepreneurs or financial investors in equilibrium. That is,

\[
\bar{U}_i - (1 + r)t_i = (1 + r) \\
\tag{30}
\]

Using (29), the free entry condition (30) implies that

\[
\lambda R_i = (1 + r) + \frac{c_i}{\theta} + \frac{bt_i}{1 + t_i} \\
\tag{31}
\]

The equation (31) describes how the expected return to the physical capital is divided up among its usages, which we label as a \textit{capital revenue sharing rule}. The expected marginal product of capital on the left hand side of the equation, is shared by the return to financial investment, \((1 + r)\), the cost of financial intermediation, \(c_i / \theta\), and the agency cost \(bt_i / (1 + t_i)\) paid to the entrepreneur.

\(^5\) Following Holmstrom and Tirole (1997), we rule out the case that \((1 + r) + c_i / \theta + b - \lambda R < 0\) in which the firm would want to invest without limit.

\(^6\) Both intermediation costs, \(c_i / \theta\), and the entry cost, \(t_i\), are in the unit of numeraire good which has the same function form as the consumer’s utility function.
4.1 Determinants of Financial Interest Rates

The financial interest rate, \(r \), and the private benefit, \(b \), are solved by *capital revenue sharing rules* (31) in sectors 1 and 2. To simplify the analysis, we consider the case that the capital adjustment cost is zero so that \(R_1 = R_2 = R \). Denoting \(\frac{t_i}{t_i + t_j} \) as \(T_i \), we have:

\[
\begin{align*}
 r &= \lambda R - 1 - \frac{T_2 c_1 - T_1 c_2}{\theta (T_2 - T_1)} \\
 b &= \frac{c_1 - c_2}{\theta (T_2 - T_1)}
\end{align*}
\]

We assume that the fixed cost to become an entrepreneur in capital intensive sector 2 is higher than that in sector 2, so that \(T_2 > T_1 \). Furthermore, we assume that the monitoring cost in sector 1 is higher than that in sector 2. That is, \(c_1 > c_2 \). Under these assumptions, the private benefit \(b \) is positive when \(R_1 = R_2 \).

4.2 Financial Capital Flow and FDI

Let \(K^f \) and \(K^d \) be the amounts of financial capital flow and FDI, respectively. Recall that a positive number represents capital inflow and a negative number represents capital outflow. The marginal costs of financial capital flow and FDI are \(\phi^f K^f \) and \(\phi^d K^d \), respectively. Financial capital goes where the interest rate is the highest. The equilibrium condition for financial capital flow is

\[
r - r^* = \phi^f K^f
\]

Foreign direct investment (FDI) goes to where the expected return to an entrepreneur is the highest. It takes place when the entrepreneur decides to take her project (and the capital under her management) to a foreign country and use foreign labor to

7 Alternatively, we may assume that \(T_1 > T_2 \) and \(c_1 < c_2 \).
produce.

We assume that the entrepreneur still uses her native financial system only and pay the domestic interest rate. In other words, if a U.S. multinational firm operates in India, the US firm still uses a US bank or stock market for its financing need. When an entrepreneur at home in sector i directly invests in the foreign country and produces there, using (29), the entrepreneur’s expected income becomes

\[U_i^d = \frac{b(1 + r)}{(1 + r) + c_i/\theta + b - (\lambda^* R^* + \phi^d K^d)} \] \hspace{1cm} (35)

In equilibrium, we must have \(U_i = U_i^d \), which holds if and only if

\[\lambda R = \lambda^* R^* + \phi^d K^d \] \hspace{1cm} (36)

It is easy to verify that condition (36) is also the equilibrium condition for a foreign entrepreneur to directly invest in the home country.

4.3 Comparative Statics

The return to capital, \(R \), is determined by product prices and total capital usages (together with labor productivity, labor endowment, and factor adjustment costs) in the home country. Thus, we write \(R = R(p_1, p_2, K + K^f + K^d) \). Substituting (32) into (34) and rewriting (36), we have:

\[
\lambda R(p_1, p_2, K + K^f + K^d) - \phi^f K^f = 1 + \frac{1}{\theta} \left(\frac{T_2 c_1 - T_1 c_2}{T_2 - T_1} \right) + r^* \] \hspace{1cm} (37)

\[
\lambda R(p_1, p_2, K + K^f + K^d) - \phi^d K^d = \lambda^* R^* \] \hspace{1cm} (38)

Totally differentiating equations (37) and (38), in the Appendix we show that \(\frac{\partial K^f}{\partial \theta} > 0 \) but \(\frac{\partial K^d}{\partial \theta} < 0 \), while \(\frac{\partial K^f}{\partial p_i} = \lambda \phi^d \frac{\partial R}{\partial p_i} \) and \(\frac{\partial K^d}{\partial p_i} = \lambda \phi^f \frac{\partial R}{\partial p_i} \). Thus, as the efficiency of financial system improves (\(\theta \) increases), there will be more financial
capital inflow, but more FDI outflow. Consider trade liberalizations in a labor abundant country (decrease in p_2) and changes in the efficiency of financial system. We have:

\[
dK^f = \frac{\partial K^f}{\partial p_2} dp_2 + \frac{\partial K^f}{\partial \theta} d\theta = \lambda \phi^d \frac{\partial R}{dp_2} dp_2 + \frac{\partial K^f}{\partial \theta} d\theta \quad (39)
\]

\[
dK^d = \frac{\partial K^d}{\partial p_2} dp_2 + \frac{\partial K^d}{\partial \theta} d\theta = \lambda \phi^f \frac{\partial R}{dp_2} dp_2 + \frac{\partial K^d}{\partial \theta} d\theta \quad (40)
\]

When the capital adjustment cost is zero, as we have discussed in Proposition 2, a reduction in p_2 decreases the return to capital R. That is, $\frac{\partial R}{dp_2} > 0$. Thus, there will be more (less) outflows (inflows) in both financial capital and FDI. On the other hand, an improvement in a developing country’s efficiency of financial institutions (an increase in θ), tends to simultaneously reduce its financial capital outflow and FDI inflow. While an increase in θ does not directly affect the marginal product of capital, it leads to a higher financial interest rate r in condition (32). As a result, there is less incentive for financial capital to leave the country. As more financial capital stays with local firms, the marginal product of capital declines, which makes it less attractive for inward FDI.

Therefore, trade liberalizations and both financial capital flow and FDI are substitutes, in the sense that the trade liberalizations in a labor abundant country lead to less inflows in both financial capital and FDI. It is interesting to note that different from Antras and Caballero (2009) which shows that the lower financial development in South, the lower the amount of trade integration needed (higher tariff rate) to ensure that capital flows into South, in our model the effect of trade liberalizations on capital flows is independent from the level of financial development, as $\frac{\partial^2 K^f}{\partial p_2 \partial \theta} = \frac{\partial^2 K^d}{\partial p_2 \partial \theta} = 0$. Summarizing we have:

Proposition 5 The trade liberalizations in a labor abundant country lead to less inflows (more outflows) in both financial capital and FDI. The lower financial development
in the country leads to more financial capital outflow but more FDI inflow. The effect of trade liberalizations on capital flows is independent from the level of financial development.

5 Conclusion

To be written.

References

[5] to be added.

6 Appendix

This appendix analyzes the effect of changes in prices and efficiency of financial system on financial capital flow and FDI. Totally differentiating equations (37) and (38), we obtain:

\[
\left(\lambda \frac{\partial R}{\partial K^f} - \phi^f \right) dK^f + \lambda \frac{\partial R}{\partial K^d} dK^d = -\frac{B}{g^2} d\theta - \lambda \frac{\partial R}{\partial p_1} dp_1 - \lambda \frac{\partial R}{\partial p_2} dp_2 \tag{41}
\]

\[
\lambda \frac{\partial R}{\partial K^f} dK^f + \left(\lambda \frac{\partial R}{\partial K^d} - \phi^d \right) dK^d = -\lambda \frac{\partial R}{\partial p_1} dp_1 - \lambda \frac{\partial R}{\partial p_2} dp_2 \tag{42}
\]

where \(B = \frac{T_2 c_1 - T_1 c_2}{T_2 - T_1} > 0 \). Let \(|\kappa|\) denote the determinant of the 2 \times 2 matrix on the left hand side of the above system. We can show that

\[
|\kappa| = -\phi^d \lambda \frac{\partial R}{\partial K^f} - \phi^f \lambda \frac{\partial R}{\partial K^d} + \phi^f \phi^d > 0 \tag{43}
\]
since \(\frac{\partial R}{\partial K_f} < 0 \) and \(\frac{\partial R}{\partial K^d} < 0 \). It is then easy to show that

\[
\frac{\partial K_f}{\partial \theta} = -\frac{B}{\theta^2} \left(\lambda \frac{\partial R}{\partial K^d} - \phi^d \right) > 0, \quad \frac{\partial K^d}{\partial \theta} = \frac{B}{\theta^2} \lambda \frac{\partial R}{\partial K_f} < 0
\]

\[
\frac{\partial K^d}{\partial p_i} = \lambda \frac{\partial R}{\partial p_i}, \quad \text{and} \quad \frac{\partial K^d}{\partial p_i} = \lambda \frac{\partial R}{\partial p_i}
\] (44)
Figure 1. Current Account Balances, 1990–2008

Percent of world GDP

a. Austria, Belgium, Denmark, France, Germany, Iceland, Ireland, Italy, Netherlands, Spain, Sweden, and Switzerland.
b. Bahrain, Canada, Iran, Kuwait, Libya, Mexico, Norway, Oman, Russia, Saudi Arabia, and Venezuela.
c. China, Hong Kong, Indonesia, Malaysia, the Philippines, Singapore, South Korea, Taiwan, and Thailand.
Figure 2 (Figure 4 in Jaumotte, Lall, and Papageorgiou, 2008)

Figure 4. Trade Liberalization Within Income Country Groups

Notes: Income country groups are defined in the appendix. Tariff rates are calculated as the average of the effective rate (ratio of tariff revenue to import value) and of the average un-weighted tariff rates.
Figure 3

Trade Balance (Billion $)

[Graph showing the trade balance from 1980 to 2006, with years on the x-axis and trade balance on the y-axis.]
Figure 4
Figure 5

Holding $\phi=0.001$ and Change λ.
Figure 6

Holding $\lambda=0.1$ and Change ϕ
Figure 7

Holding $\lambda=0.1$ and Change ϕ

Graph showing R_1, R_2, and $(R_1 + R_2)$ as functions of ϕ.