A Defence of the FOMC∗

Martin Ellison Thomas J. Sargent
University of Oxford New York University

December 17, 2009

Abstract

We defend the forecasting performance of the FOMC from the recent criticism of Christina and David Romer (2008). Our argument is that the FOMC forecasts a worst-case scenario that it uses to design robust decisions that will work well enough despite possible misspecification of its model. Our interpretation of the FOMC as reporting forecasts designed to rationalise a robust decision rule can explain all the findings of Romer and Romer, including the pattern of differences between FOMC forecasts and forecasts published by the staff of the Federal Reserve System in the Greenbook.

Keywords: forecasting, monetary policy, robustness

JEL classification: C53, E52, E58

∗An early version of this paper under the title “What questions are staff and FOMC forecasts supposed to answer?” was thoughtfully discussed by James Bullard at the 10th EABCN Workshop on Uncertainty over the Business Cycle, Frankfurt, March 2009. We thank Christian Matthes and Anna Orlik for helpful comments on an earlier draft and Timothy Besley for early discussions about the problem. We thank Ricardo Mayer for sharing his MATLAB routines to calculate robust optimal policies in hidden Markov models, and Christina and David Romer for making available their dataset of FOMC and staff forecasts. Francisco Barillas provided excellent research assistance in the initial stages of the project. Martin Ellison acknowledges the Hoover Institution for its generous hospitality whilst part of this paper was completed.
1 Introduction

A recent paper by Romer and Romer (2008) provocatively questions how much value the Federal Reserve Open Market Committee (FOMC) adds to the monetary policymaking process in the US. Their criticism is derived from an econometric comparison of the accuracy of forecasts published by the FOMC in the *Monetary Policy Report* and forecasts published by the staff of the Federal Reserve System in the *Greenbook*. The staff forecasts are available to FOMC members at the time they produce their own forecasts so, together with presumed superior knowledge of their own preferences, the information advantage lies firmly with the FOMC. Despite this, Romer and Romer (2008) find that:

1. Optimal predictions of inflation and unemployment essentially put zero weight on FOMC forecasts and unit weight on staff forecasts.

2. Staff forecasts have smaller mean squared forecast errors than FOMC forecasts.

3. There is statistical and narrative evidence to suggest that differences between FOMC and staff forecasts affect actual policy outcomes.

Romer and Romer (2008) use these findings to paint a bleak picture of the FOMC as a policymaker that is “not using the information in the staff forecasts effectively” and that “may indeed act on information that is of little or negative value”. In their opinion the evidence is sufficiently damning to warrant a radical restructuring of the role of the FOMC in monetary policymaking:

“a more effective division of labor within the Federal Reserve System might be for the staff to present policymakers with policy options and related forecast outcomes, and for policymakers to take those forecasts as given. With this division, the role of the FOMC would be to choose among the suggested alternatives, not to debate the likely outcome of a given policy.”

The criticisms made by Romer and Romer (2008) are understandable in a world where private agents, policymakers, and researchers have common knowledge of the true probability densities governing economic outcomes. In such a context it is difficult to justify the apparently poor performance of FOMC forecasts. Our defence therefore rests on breaking the single probability density assumption by allowing the FOMC to doubt the specification of the model used by the staff to produce its forecasts.\footnote{A very incomplete list of examples drawn from the growing body of work in macroeconomics that incorporates concerns about robustness of decisions to model misspecifications includes Barlevy (2009), Benigno and Nisticò (2009), Billi (2009), Brock and Durlauf (2005), Brock, Durlauf, and Rondina (2008), Brock, Durlauf, Nason, and Rondina (2008).} In our view of policymaking, the staff uses state-of-the-art but imperfect economic
models to produce the best possible forecasts, but these forecasts are not taken at face value by the members of the FOMC. Instead, the FOMC suspects that the staff’s model is imperfect and wants policies that are robust to specification errors.

The technicalities of how to design robust decisions are laid down in detail in the robust control literature. The idea is to construct a decision rule that satisfies bounds on expected losses under alternatives to an approximating model by paying special attention to events that give higher expected loss. To achieve this, the policymaker “exponentially twists” what in our application are the forecasting densities of the staff and puts larger probabilities on outcomes that involve inflation and unemployment being away from their targets. Twisting the staff’s forecasting probability densities in this way results in worst-case scenarios, differing in their severity according to how large are the specification doubts the policymakers wishes to guard against. These worst-case scenarios are a key input to the robust policymaking decision process, because by responding optimally to them a policy maker acquires acceptable performance of its loss function evaluated under each of a large set of possible models, not just under the imperfect staff model.\(^2\) Our defence of the FOMC argues that the forecasts it publishes are exactly these worst-case scenarios and should not be interpreted as forecasts of what the FOMC necessarily thinks is going to happen. They are instead worst-case scenarios used to construct robust decisions.

Our equating of FOMC forecasts with worst-case scenarios immediately causes us to question the appropriateness of the forecasting horse race run by Romer and Romer (2008). In our interpretation, the forecasts of the staff and the FOMC are incomparable, like apples and pears, because only the staff forecast can be fairly compared to actual outcomes. The FOMC forecast is a worst-case scenario that by construction is likely to be an inferior predictor of future events if, as the Fed hopes, the staff’s approximating statistical model actually does govern the data. In this light, it is not surprising that Romer and Romer (2008) found that the staff forecast outperforms that of the FOMC. It is what we would expect if the division of labour within the Federal Reserve System is as we have described. Furthermore, if the FOMC undertakes robust control, then the worst-case scenarios that it publishes will definitely influence the policy actions actually taken; it is precisely when the worst-case scenario

\(^2\)See the ex post Bayesian interpretation of robust decision rules advanced by Hansen and Sargent (2008, chapters 1 and 7).
differs from the staff forecast that robust policy calls for the FOMC to take preemptive policy steps. The finding of Romer and Romer (2008) that forecast differences predict monetary policy actions is, therefore, completely compatible with careful application of robust control techniques by the FOMC. In our view, the FOMC may be setting policy rationally to guard against model misspecification by responding to worst-case scenarios rather than reacting to “information that has little or negative value”. Our case defending the FOMC rests on whether specification doubts of this type really can quantitatively explain the differences in forecasts published by the FOMC and the staff.

To make our defence more precise, we demonstrate how a concern about robustness can explain the results of Romer and Romer (2008) in a simple model of US monetary policy inspired by Primiceri (2006). In our model, the FOMC faces a joint estimation and optimisation problem as it attempts to set appropriate policy whilst simultaneously keeping track of a time-varying NAIRU. Allowing the policymaker to have specification doubts puts our model in the general class of hidden Markov models discussed by Hansen and Sargent (2007) and Hansen et al. (2009). Accordingly, our policymaker faces a policy design problem in which it doubts not only its model per se but also how it uses its potentially misspecified model to construct a Kalman filter to infer the NAIRU. Once the model has been set up, it is a simple matter to apply the techniques in Hansen et al. (2009) to show that the evidence used by Romer and Romer (2008) to criticise the FOMC is explained and negated by the assumption that the FOMC follows robust policy and publishes worst-case scenarios that are not comparable to the forecasts published by the staff.

The idea that the FOMC twists staff forecasts in the process of calculating robust policies is in itself sufficient to explain the Romer and Romer (2008) findings. However, for our defence of the FOMC to be convincing, it should be that the forecasts published by the FOMC are systematically biased towards a worst-case scenario in comparison to the staff forecasts. Romer and Romer (2008) found that FOMC forecasts were on average higher than staff forecasts for inflation and lower than staff forecasts for unemployment. At first sight, the optimistic bias in unemployment forecasts appears at odds with our claim that the FOMC forecasts are worst-case scenarios. However, what constitutes a worst-case scenario is dependent on the staff’s approximating model as well as on the policy maker’s objective function and involves complicated nonlinear present value calculations. In our simple model, we find that for plausible regions of the parameter space the worst-case scenario biases the inflation forecast upwards away from its target and the unemployment forecast downwards towards zero. The intuition for this lies in the dynamics of the model and the way in which the combination of high inflation and low unemployment at the forecast horizon considered by the FOMC is a strong signal of persistently bad outcomes into the more distant future. We therefore argue that seemingly “pessimistic” inflation forecasts and “optimistic” unemployment forecasts can still be rationalised as a description of the worst-case scenario. Furthermore, the region of the parameter space where this happens is consistent with the FOMC being more concerned about model misspec-
ifications that lead to poor quality inferences about the current state of the economy rather than misspecifications that lead to poor understanding of the state transition dynamics of the system. According to Bullard (2009), it is precisely the concern for accurate tracking of the economy - not a concern for accurate forecasting - that is uppermost in the minds of FOMC members.

The paper is organised as follows. Section 2 describes a simple model of monetary policymaking and shows how it maps into the more general class of hidden Markov models analysed by Hansen et al. (2009). After Section 3 describes the policy maker’s filtering problem, the robust policy is derived in Section 4 and a calibrated numerical example is constructed in Section 5 to show how the findings of Romer and Romer (2008) can be explained as an artefact of the FOMC exhibiting a preference for robustness. Section 6 demonstrates how our story can also justify the relative degree of optimism and pessimism seen in actual FOMC and staff forecasts once the FOMC is assumed to be more concerned about tracking hidden states than dynamics of the system given those hidden states. A final Section 7 concludes with a discussion of the narrative evidence in support of a division of labour in the Federal Reserve System whereby FOMC forecasts become twists of the staff forecasts.

2 A Simple Model of Monetary Policymaking

The precise modus operandi of monetary policymakers is never completely clear and has to be inferred from the speeches and decisions made by central bankers. Nevertheless, a consensus has emerged that modern monetary policymaking incorporates three key beliefs. First, there is a natural rate of unemployment at which inflation is stable. Second, there is a transmission mechanism through which monetary policy actions affect the economy. Third, monetary policymakers face trade-offs. Indeed, the Financial Times (“King backs job losses to curb inflation”) imputed this type of model to Bank of England Governor Mervyn King on Tuesday April 1, 2008. The FT wrote:

“The economy needs to slow to the point where there is spare capacity in order to bring inflation under control, Mervyn King, the Bank of England governor, said on Monday. ... Mr King’s recognition that the Bank’s monetary stance was designed to slow the economy to reinforce its monetary policy committee’s inflation-fighting credentials came at an awkward time, he conceded, describing the ‘difficult balancing act’.”

The simple model of monetary policymaking we present is designed to capture these features in a parsimonious way. The model shares much of the structure proposed by Primiceri (2006) but features an unobserved non-accelerating inflation rate of unemployment (NAIRU) that confronts the monetary policymaker with a joint estimation and decision problem. We assume that the policymaker has an approximating model in which the NAIRU u_t^* evolves as:

$$(u_{t+1}^* - u^{**}) = \delta(u_t^* - u^{**}) + \eta_{t+1},$$
where \(\eta_{t+1} \) is an i.i.d. mean zero Gaussian shock and \(\begin{bmatrix} u_0^* & u_{-1}^* \end{bmatrix}' \sim N(\mu(u^*), \Sigma(u^*)) \). \(u^* \) is the steady-state value of the NAIRU. The approximating model further describes inflation \(\pi_t \) and unemployment \(U_t \) as related to the NAIRU and a policy variable \(V_t \) by:

\[
\begin{align*}
\pi_{t+1} &= \pi_t + \gamma_0(U_t - u_t^*) + \gamma_1(U_{t-1} - u_{t-1}^*) + \varepsilon_{\pi t+1}, \\
(U_{t+1} - u_{t+1}^*) &= \rho_1(U_t - u_t^*) + \rho_2(U_{t-1} - u_{t-1}^*) + V_t + \varepsilon_{U t+1},
\end{align*}
\]

with \(\varepsilon_{\pi t+1} \) and \(\varepsilon_{U t+1} \) i.i.d. mean zero Gaussian shocks to inflation and unemployment, respectively.

The monetary policymaker’s objective is the expected value of:

\[
-0.5 \sum_{t=0}^{\infty} \beta^t \left((\pi_t - \pi^*)^2 + \lambda(U_t - ku_t^*)^2 + \phi(V_t - V_{t-1})^2 \right)
\]

where \(\lambda \) is the weight placed on unemployment and \(k \in (0, 1) \) controls whether the policymaker dislikes unemployment or the gap between unemployment and the NAIRU. The parameter \(\phi \) measures the preference for policy smoothing. The monetary policymaker’s signal vector at time \(t + 1 \) is:

\[
\begin{bmatrix}
\tilde{\pi}_{t+1} \\
\tilde{U}_{t+1}
\end{bmatrix} =
\begin{bmatrix}
\pi_{t+1} \\
U_{t+1}
\end{bmatrix} +
\begin{bmatrix}
\eta_{\pi t+1} \\
\varepsilon_{\pi t+1} \\
\eta_{U t+1} \\
\varepsilon_{U t+1}
\end{bmatrix},
\]

i.e., it observes noisy measures of inflation and unemployment. To map the model into the hidden Markov models of Hansen et al. (2009), let the observed state vector \(y_t \), the unobserved state vector \(z_t \), the control \(a_t \), the shock vector \(w_t \), and the signal vector \(s_t \) be given by:

\[
\begin{align*}
y_t &= \begin{bmatrix} 1 \\ V_{t-1} \end{bmatrix}, \\
z_t &= \begin{bmatrix} \pi_t \\ U_t \\ U_{t-1} - u_{t-1}^* \\ u_t^* \end{bmatrix}, \\
a_t &= V_t, \\
w_t &= \begin{bmatrix} \eta_t \\ \varepsilon_{\pi t} \\ \varepsilon_{U t} \\ \eta_{\pi t} \\ \varepsilon_{U t} \end{bmatrix}, \\
s_t &= \begin{bmatrix} \tilde{\pi}_t \\ \tilde{U}_t \end{bmatrix},
\end{align*}
\]

and write the matrices in the laws of motion and signal equation:

\[
\begin{align*}
y_{t+1} &= A_{11}y_t + A_{12}z_t + B_1a_t + C_1w_{t+1}, \\
z_{t+1} &= A_{21}y_t + A_{22}z_t + B_2a_t + C_2w_{t+1}, \\
s_{t+1} &= D_1y_t + D_2z_t + H_0a_t + Gw_{t+1}
\end{align*}
\]

as

\[
A_{11} = \begin{bmatrix} 1 & 0 \\
0 & 0 \end{bmatrix}, \quad A_{12} = 0_{2 \times 4}, \quad B_1 = \begin{bmatrix} 0 \\
1 \end{bmatrix}, \quad C_1 = 0_{2 \times 5},
\]

6
specification of its approximating model. The policymaker observes here is how the policymaker would infer the unobserved NAIRU if it had full confidence in the linear system:

\[
\begin{bmatrix}
0
0
0
(1 - \delta)u^{**}
\end{bmatrix},
\begin{bmatrix}
1 & \gamma_0 & \gamma_1 & -\gamma_0
0 & \rho_1 & \rho_2 & (\delta - \rho_1)
0 & 1 & 0 & -1
0 & 0 & 0 & \delta
\end{bmatrix},
\begin{bmatrix}
0
1
0
0
\end{bmatrix},
\begin{bmatrix}
c_\pi
c_U + c_{u^*}
0_{1 \times 5}
c_{u^*}
\end{bmatrix},
\]

\[
D_1 = 0_{2 \times 2}, \quad D_2 = \begin{bmatrix}
1 & \gamma_0 & \gamma_1 & -\gamma_0
0 & \rho_1 & \rho_2 & (\delta - \rho_1)
\end{bmatrix}, \quad H = \begin{bmatrix}
0
1
\end{bmatrix}, \quad G = \begin{bmatrix}
c_\pi & c_{\beta^*}
c_U + c_{u^*} & c_{U^*}
\end{bmatrix},
\]

where \(c_\pi, c_U, c_{u^*}, c_{\beta^*}, c_{U^*}\) are indicator vectors that pick out the required elements of \(w_{t+1}\). Notice that the matrices in the systematic parts of the signal equation are identical to those in the equation of the unobserved state vector \(z_{t+1}\). The quadratic form in the Hansen et al. (2009) objective function:

\[
-\frac{1}{2} \sum_{t=0}^{\infty} \beta^t \begin{bmatrix}
a_t
y_t
z_t
\end{bmatrix}' \begin{bmatrix}
Q
P_1
P_2
P_1'
R_{11}
R_{12}
P_2'
R_{21}
R_{22}
\end{bmatrix} \begin{bmatrix}
a_t
y_t
z_t
\end{bmatrix}
\]

can be expressed as:

\[
-\frac{1}{2} \sum_{t=0}^{\infty} \beta^t \begin{bmatrix}
V_t
1
V_{t-1}
\pi_t
U_t
U_{t-1} - u_{t-1}^*
\end{bmatrix}' \begin{bmatrix}
\phi
0
-\phi
0
0
0
0
0
\pi^*2
0
-\pi^*
0
0
0
0
\end{bmatrix} \begin{bmatrix}
V_t
1
V_{t-1}
\pi_t
U_t
U_{t-1} - u_{t-1}^*
\end{bmatrix}.
\]

3 Filtering

Here is how the policymaker would infer the unobserved NAIRU if it had full confidence in the specification of its approximating model. The policymaker observes \(y_t\), has a prior distribution \(z_0 \sim \mathcal{N}(z_0, \Delta_0)\) over the initial values of the unobserved states, and observes a sequence of signals \(\{s_{t+1}\}\). With no concerns about model misspecification, the policymaker applies Bayes’ law directly to the approximating model (1) to construct a sequence of posterior distributions \(z_t \sim \mathcal{N}(z_t, \Delta_t)\) for \(t \geq 1\), where \(z_t = E(z_t | y_t, \ldots, y_0)\) and \(\Delta_t = E[(z_t - \hat{z}_t)(z_t - \hat{z}_t)' | y_t, \ldots, y_0]\) satisfy the recursive linear system:

\[
y_{t+1} = A_{11} y_t + A_{12} \hat{z}_t + B_1 a_t + C_1 w_{t+1} + A_{12}(z_t - \hat{z}_t),
\]

\[
\hat{z}_{t+1} = A_{21} y_t + A_{22} \hat{z}_t + B_2 a_t + K_2(\Delta_t)Gw_{t+1} + K_2(\Delta_t)D_2(\hat{z}_t - z_t),
\]

\[
\Delta_{t+1} = C(\Delta_t),
\]

(2)
and are sufficient statistics for the history of signals. \(K_2(\Delta_t) \) and \(\Delta_t \) satisfy the Kalman filtering equations:

\[
K_2(\Delta) = (A_{22}\Delta D'_2 + C_2 G')(D_2\Delta D'_2 + G G')^{-1},
\]

\[
C(\Delta) \equiv A_{22}\Delta A'_{22} + C_2 C'_{2} - K_2(\Delta A D'_2 + C_2 G'),
\]

and the policymaker’s information set at \(t \) can be represented as \((y_t, \tilde{z}_t, \Delta_t) \).

4 Robust Policy and Worst-Case Scenarios

Now we allow the policymaker to doubt the specification of its approximating model. Hansen and Sargent (2007) and Hansen et al. (2009) show how to compute a decision rule for \(a_t \) that is robust to possible misspecifications of (i) the approximating model (1) defining the distribution of \((y_{t+1}, z_{t+1})' \) conditional on values of \((y_{\tau}, z_{\tau})' \) for \(\tau \leq t \), and (ii) the distribution of the unknown state \(z_t \) conditional on the history of signals \(s_{\tau} \) for \(\tau \leq t \) that comes from applying the ordinary Kalman filter (2)-(3) to the approximating model. Following the steps in Hansen et al. (2009), we begin by letting primes represent next period values to ease notation and noting that the law of motion for \((y, z, \tilde{z}, \Delta) \) can be written in terms of the state variables \((y, z, \tilde{z}, \Delta) \) as:

\[
y' = A_{11} y + A_{12} \tilde{z} + B_1 a + C_1 w' + A_{12}(z - \tilde{z}),
\]

\[
z' = A_{21} y + A_{22} \tilde{z} + B_2 a + C_2 w' + A_{22}(z - \tilde{z}),
\]

\[
\tilde{z}' = A_{21} y + A_{22} \tilde{z} + B_2 a + K_2(\Delta) G w' + K_2(\Delta) D_2(\tilde{z} - z),
\]

\[
\Delta' = C(\Delta),
\]

where \(w' \sim \mathcal{N}(0, I) \) and \(z - \tilde{z} \sim \mathcal{N}(0, \Delta) \). To represent misspecification in the dynamics of the approximating model, the policymaker replaces the distributions of \(w' \) and \(z - \tilde{z} \) by distorted distributions \(w' \sim \mathcal{N}(\tilde{\nu}, \Sigma) \) and \(z - \tilde{z} \sim \mathcal{N}(u, \Gamma) \) that potentially feed back on state variables. The idea of the distorted distributions is to allow perturbations to the dynamics of the approximating model that make it difficult for the policymaker to achieve its objectives. At this point, Hansen et al. (2009) suggest deriving robust policy as the outcome of a two-player zero-sum game in which the policymaker chooses an action \(a \) to maximise its objective whilst a fictitious agent chooses perturbations \(w' \) and \(z - \tilde{z} \) to minimise that same objective. Hansen and Sargent (2007, p. 33) show that a modified certainty equivalence principle holds in this setting, so instead of directly analysing the full stochastic game it is sufficient to solve a deterministic game in which the policymaker chooses an action \(a \) and the minimising agent chooses the mean distortions \(\tilde{\nu} \) and \(u \) rather than the distortions

\[\text{Notice how the approximating model includes the law of motion for } (\tilde{z}, \Delta) \text{ as dictated by Bayes' law.}\]
themselves. The appropriate law of motion for the deterministic game then has shocks replaced by distorted means:

\[
\begin{align*}
y' &= A_{11}y + A_{12}\tilde{z} + B_1a + C_1\tilde{v} + A_{12}u, \\
z' &= A_{21}y + A_{22}\tilde{z} + B_2a + C_2\tilde{v} + A_{22}u, \\
z' &= A_{21}y + A_{22}\tilde{z} + B_2a + K_2(\Delta)G\tilde{v} + K_2(\Delta)D_2u, \\
\Delta' &= \mathcal{C}(\Delta),
\end{align*}
\]

where \(\tilde{v}\) and \(u\) are treated as under the control of the minimising agent and allowed to feed back on state variables \((z, \tilde{z}, \Delta)\). For a quadratic continuation value function \(W(y, \tilde{z}, \Delta, z)\) and one-period return function \(\bar{U}(y, \tilde{z}, z - \tilde{z}, a)\), the policymaker chooses an action \(a\) and accompanying mean distortions \(\bar{v}\) and \(u\) for the minimising agent by solving:

\[
\max_{\theta} \min_{u} \left[\bar{U}(y, \tilde{z}, z - \tilde{z}, a) + \theta_2 \frac{u'\Delta^{-1}u}{2} + \min_{v} (\beta W(y', z', \Delta', z') + \theta_1 \frac{v'v}{2}) \right],
\]

where the optimisation is subject to the laws of motion (4) and the minimising agent faces penalties \(\theta_1(\bar{v}'\bar{v})/2 \) and \(\theta_2(u'\Delta^{-1}u)/2\) on its choices of \(\bar{v}\) and \(u\). The penalties are on the entropy contributions \((\bar{v}'\bar{v})/2\) and \((u'\Delta^{-1}u)/2\) created when the minimising agent distorts the means of \(u'\) and \(z\). The

\[4\]This is a consequence of the return function being quadratic, the transition law being linear, and distributions of random shocks and the prior for \(z_0\) being Gaussian. The minimising decision player *increases* shock covariance matrices as well as means, but the certainty equivalence result allows us to compute the mean distortions by solving the purely deterministic game. The omitted stochastic terms affect constants in the value functions but not decision rules.

\[5\]This is game I of Hansen et. al. (2009), which corresponds to recursions (17)-(18) of Hansen and Sargent (2007). These pertain to a situation in which the decision maker conditions continuation values on hidden state variables.

\[6\]The continuation value function \(W\) has form:

\[
W(y, \tilde{z}, \Delta, z) = -\frac{1}{2} \begin{bmatrix} y & z \end{bmatrix}' \Omega(\Delta) \begin{bmatrix} y \\ z \end{bmatrix} - \omega,
\]

and is computed as the fixed-point of:

\[
W(y, \tilde{z}, \Delta, z) = U(y, z, a) + \min_{v} \left(\beta W(y', z', \Delta', z') + \theta_1 \frac{v'v}{2} \right),
\]

where \(^'\) denote next period values and the law of motion is modified in the following way to condition on \(z\):

\[
\begin{bmatrix} y' \\ z' \\ z' \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & 0 \\ A_{21} & A_{22} & 0 \\ A_{21} & K_2(\Delta)D_2 & A_{22} - K_2(\Delta)D_2 \end{bmatrix} \begin{bmatrix} y \\ z \\ z \end{bmatrix} - \begin{bmatrix} B_1 \\ B_2 \\ B_2 \end{bmatrix} F(\Delta) \begin{bmatrix} y \\ z \end{bmatrix} + \begin{bmatrix} C_1 \\ C_2 \\ K_2(\Delta)G \end{bmatrix} v,
\]

together with:

\[
\Delta^* = \mathcal{C}(\Delta).
\]

Here \(v\) is the distorted mean of \(w'\) conditioned on \((y, z, \tilde{z}, \Delta)\), while \(\tilde{v}\) is the distorted mean of \(w'\) emerging from (5) conditional on \((y, \tilde{z}, \Delta)\).
precise degree to which the minimising agent is constrained depends on the positive multipliers θ_1 and θ_2, with lower values giving more scope for the minimising agent to perturb the approximating model. When $\theta_1 = \theta_2 = +\infty$, the policy maker trusts his model. Then the minimizing values of u and \tilde{v} are both zero and problem (5) becomes an ordinary Bellman equation. The more the policymaker distrusts its approximating model of the dynamics of the state, given the current state, the lower is the value of θ_1; the more the policy maker distrusts its current probability distribution over the hidden state z, the lower is the value of θ_2. We discuss the impact of the penalty parameters θ_1 and θ_2 in the context of our model in section 6.

The max min problem faced by the policymaker can be solved using standard techniques from linear-quadratic control. The solution is for the policymaker to follow a feedback rule:

$$ a = - \left[\begin{array}{c} F_y \\ F_z \end{array} \right] \left[\begin{array}{c} y \\ \tilde{z} \end{array} \right], $$

and for the minimising agent to choose distorted conditional means according to:

$$ \tilde{v} = - \left[\begin{array}{c} K_y \\ K_z \end{array} \right] \left[\begin{array}{c} y \\ \tilde{z} \end{array} \right], $$

$$ u = - \left[\begin{array}{c} L_y \\ L_z \end{array} \right] \left[\begin{array}{c} y \\ \tilde{z} \end{array} \right]. $$

The feedback rule (6) prescribes a robust policy for a policymaker concerned that its approximating model may be misspecified. In this paper, we argue that the staff of the Federal Reserve system produces Greenbook forecasts by using the approximating model of the economy. Of course, the staff’s forecast have to assume some decision rule for the monetary authority. To make its forecast under the approximating model, we endow the staff with the decision rule that the FOMC ultimately chooses, namely, the robust decision rule. Under this interpretation, the staff produce forecasts believing that decisions and outcomes are governed by the first-order vector stochastic difference equation:

$$ \begin{bmatrix} y_{t+1} \\ z_{t+1} \\ \tilde{z}_{t+1} \end{bmatrix} = \begin{bmatrix} A_{11} - B_1 F_y \\ A_{21} - B_2 F_y \\ A_{21} - B_2 F_y \end{bmatrix} \begin{bmatrix} y_t \\ z_t \\ \tilde{z}_t \end{bmatrix} + \begin{bmatrix} C_1 \\ C_2 \\ K_2(\Delta)G \end{bmatrix} w_{t+1}, $$

and one-period ahead staff forecasts are:

$$ E[y^* | y, \tilde{z}] = (A_{11} - B_1 F_y)y + (A_{12} - B_1 F_z)\tilde{z}, $$

$$ E[z^* | y, \tilde{z}] = (A_{21} - B_2 F_y)y + (A_{22} - B_2 F_z)\tilde{z}. $$

10
Multi-period staff forecasts are obtained by iterating forward (10) and raising the appropriate transition matrices to the jth power. The j-period ahead staff forecasts under the approximating model are denoted by:

$$
E[y^j | y, \bar{z}] = A_{11}(j)y + A_{12}(j)\bar{z},
$$

$$
E[z^j | y, \bar{z}] = A_{21}(j)y + A_{22}(j)\bar{z}.
$$

The staff forecasts represent the best objective assessment of how the states in the economy will evolve, given the approximating model and the robust policy being followed by the policymaker. However, they are not the forecasts currently exerting most influence on policy. To see those we return to the policymaker’s minmax problem. The forecasts underpinning its solution are worst-case scenarios that explicitly incorporate the actions of the minimising agent, as imagined by the policymaker as a way to cope with specification doubts. The worst-case one-step ahead forecasts that result are twisted by the actions (7)-(8) of the minimising agent:

$$
\hat{E}[y^* | y, \bar{z}] = (A_{11} - B_1 F_y - C_1 K_y - A_{12} L_y)y + (A_{12} - B_1 F_z - C_2 K_z - A_{12} L_z)\bar{z},
$$

$$
\hat{E}[z^* | y, \bar{z}] = (A_{21} - B_2 F_y - K_2(\Delta)G K_y - K_2(\Delta)D_2 L_y)y + (A_{22} - B_2 F_z - K_2(\Delta)G K_z - K_2(\Delta)D_2 L_z)\bar{z},
$$

with multi-step worst-case forecasts given by forward iteration as before:

$$
\hat{E}[y^j | y, \bar{z}] = \hat{A}_{11}(j)y + \hat{A}_{12}(j)\bar{z},
$$

$$
\hat{E}[z^j | y, \bar{z}] = \hat{A}_{21}(j)y + \hat{A}_{22}(j)\bar{z}.
$$

It is our contention that these worst-case forecasts are the ones published by the FOMC in the Monetary Policy Report. The gap between (11) and (12) is our theory of the differential prediction errors analysed by Romer and Romer (2008). Whilst the approximating model says that the conditional expectations (11) are the best forecasts, the twisted forecasts given by (12) influence decisions in the sense that the FOMC, as the maximising player in a two-player zero-sum game, plays a best response to the twisted forecasts. The FOMC does this to protect itself against both misspecified dynamics and a misspecified posterior probability distribution over hidden states.

7In addition to twisting forecast means, the minimizing agent also increases conditional variances as described in footnote 4. That means that worst-case ‘fan charts’ would be wider than those produced under the approximating model. We do not pursue this observation about fan charts here because we think that to do so in an informative way would require expanding the features about which there is uncertainty by treating the coefficients in our state space model (1) as hidden state variables too.
5 A Calibrated Example

Our defence of the FOMC relies on the ability of our model to rationalise the findings of Romer and Romer (2008). In this section we present our arguments via a numerical example, although qualitatively our defence does not really depend on specific parameter settings. The parameter values for the numerical example are presented in Table 1, which with two exceptions are taken from the OLS estimates in the third column of Table 1 in Primiceri (2006). The first exception is that we set a lower value of δ and a higher value of c_u so fluctuations in the NAIRU play less of a role in determining unemployment. The second exception is that we set a lower k to induce the policymaker to move unemployment away from its estimate of NAIRU. The parameters $c_{\tilde{\pi}}$ and $c_{\tilde{u}}$ calibrating measurement error volatilities have small values. We set the initial prior over $u_{t_0}^*, u_{t-1}^*$ to have a mean of 6, 6 and a covariance equal to the steady state implied by the Kalman filter. We examine the model at first for $\theta_1 = \theta_2 = 200$. In section 6, we explore how aspects of our results depend on our setting of the parameter θ_1 governing fear of misspecified state transition dynamics and parameter θ_2 governing fear of a misspecified posterior distribution over hidden states.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_0</td>
<td>-1.02</td>
</tr>
<tr>
<td>γ_1</td>
<td>0.93</td>
</tr>
<tr>
<td>β</td>
<td>0.99</td>
</tr>
<tr>
<td>θ_2</td>
<td>200</td>
</tr>
<tr>
<td>ρ_1</td>
<td>1.756</td>
</tr>
<tr>
<td>ρ_2</td>
<td>-0.779</td>
</tr>
<tr>
<td>δ</td>
<td>0.95</td>
</tr>
<tr>
<td>ϕ</td>
<td>475</td>
</tr>
<tr>
<td>u^{**}</td>
<td>6</td>
</tr>
<tr>
<td>θ_1</td>
<td>200</td>
</tr>
<tr>
<td>$c_{\tilde{u}}$</td>
<td>$\sqrt{0.1}$</td>
</tr>
</tbody>
</table>

Table 1: Parameter values

The behaviour of the calibrated model is illustrated by a representative simulation in Figure 1. The solid line in the first part of each panel is a simulated time path for inflation and unemployment, so at $t = 10$ the economy is just exiting a recession with inflation low and unemployment high. The solid and dotted lines in the second part of each panel are forecasts for $t > 10$ using information available up to and including period $t = 10$. The solid lines, labelled ‘staff forecast’, are derived under the approximating model (11) and predict rapid return of inflation and unemployment to their steady-state values. The dotted lines, labelled ‘FOMC forecast’, are worst-case scenarios (12) in which both inflation and unemployment overshoot and the return to steady state is prolonged and oscillatory.

8The rationale for this will be discussed in footnote 10 of Section 6.
We now use the numerical example to defend the FOMC against the criticisms made by Romer and Romer (2008). In the introduction, we reported how three specific findings led them to their conclusions, so to refute their claims we show that each finding is consistent with our interpretation of FOMC forecasts as twists of the staff forecasts.

1. Optimal predictions of inflation and unemployment essentially put zero weight on FOMC forecasts and unit weight on staff forecasts.

The first finding of Romer and Romer (2008) follows immediately from our interpretation of FOMC forecasts as forecasts under its worst-case model. In our model, the FOMC forecasts contain no information over and above that in the staff forecasts, so by definition the optimal predictions of inflation and unemployment under the approximating model should put zero weight on FOMC forecasts and unit weight on staff forecasts. To make this more concrete, we replicate the econometric analysis of Romer and Romer (2008) but with data simulated from our calibrated model. They estimate a regression of the form \(X_t = a + bS_t + cP_t + \epsilon_t \), where \(X_t \) is inflation or unemployment and \(S_t \) and \(P_t \) are the relevant FOMC and staff forecasts. We simulate the model for \(n = 68 \) periods and consider FOMC and staff forecasts at the horizon of four periods ahead. Table 2 shows the results; it is directly comparable to Table 1 in Romer and Romer (2008).
As expected, the optimal predictions of inflation and unemployment put close to zero weight on the FOMC forecast and close to unit weight on the staff forecast. In this particular simulation, there is over-weighting of the staff forecast relative to the FOMC forecasts, a result also obtained and stressed by Romer and Romer (2008). None of this is a cause for concern once FOMC forecasts are interpreted as twisted staff forecasts.

2. **Staff forecasts have smaller mean squared forecast errors than FOMC forecasts.**

We can explain the second finding of Romer and Romer (2008) as an artefact of a misguided attempt to run a horse race between two forecasts that answer different questions. In our model, only the staff forecasts are designed to minimise forecast errors in a mean squared sense under the approximating model - the FOMC forecasts come from a worst-case model used for planning purposes that, by construction, will not minimise mean squared forecast errors under the approximating model. With the two forecasts answering different questions, it is inappropriate to measure their performance against a common mean squared error criterion that by definition favours the staff forecast, at least if as we hope, the approximating model actually comes closer to governing the data. Calculations using simulated data from our calibrated model confirm this; in a representative simulation the mean squared errors of staff forecast are 3.36 for inflation and 2.80 for unemployment, which compare favourably to the mean squared errors of 4.26 for inflation and 3.34 for unemployment made by FOMC forecasts. Again, this should not be a cause for concern.

3. **There is statistical and narrative evidence to suggest that differences between FOMC and staff forecasts affect actual policy outcomes.**

The statistical evidence that differences in forecasts affect policy decisions is based on the correlation between forecast differences and the Romer and Romer (2004) measure of monetary policy shocks. The main finding in Romer and Romer (2008) is that contractionary monetary policy shocks
are associated with the FOMC inflation forecast being above that of the staff. We refute using this finding to criticise the FOMC by pointing out that it obtains by construction in our model. The problem lies in the way Romer and Romer (2004) estimate a series of monetary policy shocks by regressing the intended federal funds rate on Greenbook forecasts to arrive at a “series for monetary policy shocks that should be free of both endogenous and anticipatory actions”. The shock series that results is purged of information in the staff forecast but there is no guarantee that it will be exogenous with respect to the FOMC forecast. Quite the contrary, as robust policy expressly requires the policymaker to take particular policy actions at times when worst-case forecasts differ from forecasts from the approximating model. The ‘shocks’ identified by the Romer and Romer (2004) procedure are then by construction correlated with the differences in forecasts. To see this mechanism in action in our model, we apply the Romer and Romer (2004) procedure to simulated data and identify a measure of monetary policy shocks M_t that is orthogonal to the staff forecasts. We then follow Romer and Romer (2008) by estimating a regression of the form $M_t = a + b(S_t - P_t) + e_t$, where $S_t - P_t$ is the difference between FOMC and staff forecasts. The results appear in Table 3 in the same format as those for actual data in Table 2 of Romer and Romer (2008).

\[
\begin{array}{cccc}
\text{Constant} & \text{Inflation} & \text{Unemployment} & R^2 \\
-0.07 & 0.023 & & 0.08 \\
-0.05 & -0.030 & & 0.06 \\
\end{array}
\]

Table 3: Role of forecast differences in predicting monetary policy shocks for simulated data with $\theta_1 = \theta_2 = 200$

The difference between FOMC and staff forecasts correlates with monetary policy shocks in simulated data as expected. The strongest finding is that monetary policy contractions are associated with the FOMC inflation forecast being above that of the staff, which mirrors the results of Romer and Romer (2008). It is worth stressing that this result is a misleading consequence of incorrect identification of monetary policy shocks by the Romer and Romer (2004) procedure. If we identify shocks by regressing policy actions on both staff and FOMC forecasts then we are unlikely to find a significant correlation between shocks and forecast differences. For simulated data this is certainly the case.

The narrative evidence presented by Romer and Romer (2008) centres on the transcripts of three FOMC meetings at which policy actions appear to be rationalised by the differences between FOMC and staff forecasts. At the meetings in July 1979 and February 1982 the FOMC inflation forecast
was well above that of the staff, and it is argued that there was a substantial contractionary policy shock. At the meeting in February 1991 the situation was reversed, with the FOMC inflation forecast well below the staff’s and the argument being that there was a substantial expansionary shock. Even putting aside the difficulty of correctly identifying policy shocks, it is not clear how much weight one should put on the narrative evidence. For example, Romer and Romer (2008) quote Mr Mayo in July 1979 as arguing that “Although the staff forecast is a reasonable one, I find myself a little more pessimistic. I am concerned about both the likelihood of less real growth and more inflation” and Mr Boehe as saying in February 1991 that “I think the staff forecast, while well thought out, is on the rosy side ... I’d rather err on the side of too much stimulus at this point than too little”. Whilst the interpretation of narrative evidence such as this is debatable, we see both these quotes as consistent with our view that the FOMC produces worst-case scenarios by twisting the staff forecasts.

6 Average Forecast Differences

The findings of Romer and Romer (2008) are consistent with our interpretation of FOMC forecasts as worst-case scenarios that inform robust policy designed to confront specification doubts. As such, we have already provided a full defence of the FOMC against their criticisms. We can go further though, because our characterisation of policymaking has sharp predictions about the relationship between FOMC and staff forecasts. In particular, the FOMC forecast should be systematically biased towards the worst-case scenario. Romer and Romer (2008) report that the FOMC inflation forecasts is on average 13 basis points above the corresponding staff forecast. For unemployment, the FOMC forecast is on average 6 basis points below that of the staff. At first sight the combination of pessimistic inflation forecasts and optimistic unemployment forecasts appears difficult to reconcile with our idea of FOMC forecasts as worst-case scenarios. However, what constitutes a worst-case scenario depends on the objectives and approximating model of the policymaker. A worst-case scenario is dynamic and time-varying, so it is generally inappropriate to equate average forecast difference with pessimism or optimism. Instead, we need to return to the model and calculate the average forecast differences it implies at different horizons. We do this now and ask whether our model can explain the differences in forecasts found by Romer and Romer (2008).

To calculate the average forecast differences at any horizon, it is sufficient to apply forecasting equations (11) and (12) to the steady-state values of y, z, \hat{z} of the stochastic difference equation for decisions and outcomes (9). It is a common feature of models with robust control that the policymaker can become completely overwhelmed if they have too many doubts about the specification of their model. In the language of Whittle (2002), there is ‘neurotic breakdown’ as specification doubts...
completely overwhelm the ability of the decision maker to choose. To see how much this affects our calibrated model, Figure 2 documents the range of θ_1 and θ_2 values for which breakdown occurs and finds problems if either of the entropy multipliers is too small. It is clear that any explanation of the average forecast differences in Romer and Romer (2008) needs to avoid calibrations that are in the breakdown region.10

![Figure 2: Region of neurotic breakdown](image)

The average difference between FOMC and staff inflation forecasts is shown in Figure 3 as a function of θ_1 and θ_2. The rest of the calibration is as before. Forecast differences are shown via a contour map so, for example, the 0.2 contour depicts the locus of θ_1 and θ_2 values for which the four-period ahead inflation forecast of the FOMC is on average 20 basis points higher than the corresponding staff forecast. According to the figure, the largest forecast differences occur near the region of neurotic breakdown at the point where the policymaker has the largest permissible specification doubts. Conversely, if θ_1 and θ_2 are large then the policymaker has a lot of confidence in its approximating model and the difference between the worst-case scenario and the forecast from the model is small. The contour map shows that FOMC inflation forecasts are on average higher than staff inflation forecasts for any values of θ_1 and θ_2 outside the region of neurotic breakdown.

10This requirement explains our decision in Section 5 to calibrate δ such that fluctuations in the NAIRU play less of a role in determining unemployment. If δ is set such that the NAIRU has near unit root behaviour as in Primiceri (2006), then the region of neurotic breakdown is very large and it is difficult for the model to generate noticeable differences in FOMC and staff forecasts.
This means it is easy to reconcile our model with the Romer and Romer (2008) finding of FOMC inflation forecasts being on average 13 basis points higher than those of the staff.

![Figure 3: Average difference between FOMC and staff inflation forecasts four periods ahead](image)

The average difference between FOMC and staff unemployment forecasts is shown in Figure 4. This time the contour map is non-monotonic and whether the FOMC forecasts are higher or lower than the staff forecasts depends on the values of θ_1 and θ_2. An early indication that this might be the case was present in Figure 1 where the FOMC unemployment forecast first drops below and then rises above the staff forecast. This is caused by the dynamic nature of the min max problem underpinning the worst-case scenario. In the simulated example, the initial low FOMC forecast of unemployment is a valid description of the worst-case because it signals large fluctuations in inflation and unemployment in the future. A similar mechanism drives the average forecast differences in the model, so for some regions of the parameter space, the worst-case scenario for unemployment appears to be ‘optimistic’ initially and then ‘pessimistic’. The non-monotonicity of the contour map means we can rationalise the average optimism of the FOMC in unemployment forecasts with the average pessimism of FOMC inflation forecasts. Values of $\theta_1 = 76383$ and $\theta_2 = 238$ give a match between our model and the results of Romer and Romer (2008).
The need to tilt the calibration towards a large θ_1 and a small θ_2 helps identify the nature of specification doubts held by the FOMC. A large value of θ_1 in the min max problem (5) implies that the FOMC is not overly concerned with its ability to forecast the future state of the economy, provided that it can accurately estimate the current state. The small value of θ_2 means that the FOMC is concerned about its ability to infer the current state of the economy. In the parlance of monetary policymakers, this translates as the FOMC being more worried about tracking than forecasting. This result resonates with the discussion by President James Bullard of the Federal Reserve Bank of St. Louis (2009) on an earlier version of this paper. In it he claimed that “Forecasting is tracking ... Most of the focus in policy discussion concerns today’s state vector ... Further out is normally slow mean reversion ... Through experience, forecasters learned that the near random walk model works best”.

7 Conclusions

The arguments in this paper amount to a spirited defence of the FOMC. Once we identify FOMC forecasts as worst-case scenarios, there is no need to reorganise the division of labour within the Federal Reserve System. In our story, policymakers do “use the information in the staff forecasts effectively” and do not “act on information that is of little or negative value”. The model with specification doubts is consistent with all the findings of Romer and Romer (2008) and explains the average difference between forecasts as what we regard as a rational response of the FOMC to doubts about the specification of its model.
Whether individuals within the Federal Reserve System see themselves as dividing up policymaking tasks in the way we propose is open to debate. The communications strategies of policymakers mean they are unlikely to describe their forecasts in terms of explicit adjustments that express doubts about their model. But some policymakers have though gone on the record with arguments that support our view. For example, on 4th January 2008 Forbes Magazine (“Kohn says Fed operating with diverse views, not just strong chairman”) reported on a discussion of Romer and Romer (2008) given by former Federal Reserve Monetary Affairs Director Vincent Reinhart at the American Economic Association meetings in New Orleans. Forbes wrote:

“However, former Fed staffer Vincent Reinhart said while it may look as if ‘the FOMC’s contribution to the monetary policy process is to reduce forecast accuracy,’ they are not there primarily to be forecasters. Instead, they exist in a political system and have to be held accountable for the outcomes of their decisions. ‘They can be bad forecasters and good policymakers,’ Reinhart said, ‘if the diversity of views about the outlook informs their policy choice.’”

This paper also contributes to a recent literature due to Elliott et al. (2006) that uses forecast biases to identify the objective functions of the people making those forecasts. For example, in this vein Capistrán (2008) argues that the systematic biases periodically appearing in Greenbook forecasts can be rationalised by assuming that the staff of the Federal Reserve System has a time-varying and asymmetric forecasting objective. Our approach is arguably more disciplined than this because the objective function we identify has a structural interpretation as expressing a forecaster’s doubts about the specification of its model. We believe that our approach has the potential to deliver real insights into the mindset of policymakers. In future work, we plan to push our story further by asking whether specification doubts can explain actual - not just average - differences between forecasts. Another exciting development is the dataset of individual FOMC member forecasts recently put together by Romer (2009). This is likely to prove a rich seam for future research.
References

23