
Artificial Intelligence in Research and Development

Benjamin F. Jones∗

September 22, 2025

Abstract

How much can AI accelerate progress in different research fields? This paper shows

that three features – the share of research tasks AI performs, the productivity of AI at

those tasks, and the strength of bottlenecks—are key determinants of AI’s implications

in any area, from cancer therapeutics to software design. The model maps changes in AI

capabilities to research outcomes, quantifies the “marginal returns to intelligence,” and

shows how AI can shift returns to R&D investment. Concepts like superintelligence,

Powerful AI, and Transformative AI are further engaged and disciplined. Finally, the

framework sets a measurement agenda linking AI benchmarks to field-specific opportu-

nities for accelerating progress.
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“I believe that in the AI age, we should be talking about the marginal returns to

intelligence, and trying to figure out what the other factors are that are complementary to

intelligence and that become limiting factors when intelligence is very high. We are not

used to thinking in this way—to asking “how much does being smarter help with this

task, and on what timescale?” — but it seems like the right way to conceptualize a world

with very powerful AI.”

– Dario Amodei, CEO Anthropic (October 2024)

1 Introduction

Amidst advancing capabilities of artificial intelligence (AI), economists, technologists,

policymakers, and broader society are seeking to understand its manifold implications. In

economics, models suggest that substantial automation in the production of ordinary goods

and services can lead to large effects on both economic growth and inequality (e.g., Zeira

1998; Acemoglu and Restrepo 2018, 2020; Aghion et al. 2019, Jones and Liu 2024). But

beyond ordinary goods and services, it is now understood that AI can influence the “ideas

production function” - i.e., the research and development (R&D) process - and thereby

directly and perhaps sharply increase rates of progress for wide-ranging outcomes. Growth

models suggest that AI’s role in accelerating ideas production may drive especially powerful

dynamics for the economy (Aghion et al. 2019, Trammell and Korinek 2023) and some

observers expect accelerating advances for human health (King 2025, Zhou et al. 2025).

Meanwhile, AI tools are increasingly used in research - for prediction, discovery, literature

reviews, generating code, building datasets, writing and editing, and other tasks (Chen et

al. 2025). Domain-specific AIs appear potentially transformative in certain research fields,

like GNoME (Merchant et al. 2023) for material discovery or the Nobel-Prize winning

AlphaFold (Jumper et al. 2021) in structural biology.

This paper provides a framework to assess how AI may impact R&D. The centerpiece

is a model that, while simple, is broad in three senses. First, the model includes both

“machines” and “people” as inputs to R&D. By machines, we mean AI but also any kind

of research-related machines (microscopes, centrifuges, particle accelerators, etc.). To the
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extent that the innovation literature has paid less attention to capital inputs to R&D (in

favor of studying human inputs to R&D), the model provides a framework for incorporating

machines in a fairly general manner. Second, the model allows machines to advance flexibly

both in (i) the range of tasks machines can perform and (ii) how good machines are at

various tasks. Related, while the model can be used to study modest advances in AI, it

also allows AI to become extraordinarily capable, providing closed-form solutions where AI

takes over large shares of tasks that were previously performed by research labor or where

AI supercedes human performance at specific research tasks by large multiples. Finally,

the model remains open to various R&D objectives: gains in productivity, health, national

security, or other dimensions. That is, rather than embed R&D into a general equilibrium

context where the outcomes are macroeconomic variables (as in models of economic growth),

this model will be open about the outcomes of interest and ask how to allocate a given R&D

budget to advance that outcome. For example, the outcome might be relatively narrow

(e.g., determine the structure of a protein, write a section of code), somewhat broader (e.g.,

produce a new drug for a specific cancer, or increase the productivity of a specific firm), or

very broad (e.g., increase overall longevity or economy-wide total factor productivity).

The model emphasizes three key features that will determine AI’s impact. These features

are: (a) the share of research tasks that AI can perform; (b) the productivity of AI at these

heterogeneous research tasks; and (c) the strength of bottlenecks in ideas production. The

model shows that these three features are essential for understanding whether AI will, or

will not, significantly accelerate progress on dimensions of interest - that taking a stand on

these three features is central to assessing what we may expect from AI in any research

area. These features also point to key empirical objects, defining a measurement agenda

that is critical to making any strong claims about AI in R&D. Importantly, while the

future capabilities of AI are uncertain, the conceptual framework clarifies simple empirical

constructs - including some available measures today - that can inform what we might

expect.

The model can also elucidate the “marginal return to intelligence,” to borrow an evoca-

tive phrase from Dario Amodei (Amodei 2024), who has wondered whether abundant, ex-

tremely intelligent AIs will massively or modestly advance rates of progress. The model

develops explicit results for assessing the R&D implications of computer servers full of
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hyper-intelligent synthetic researchers or even superintelligence, which some technologists

and industry leaders suggest is close at hand. More generally, the model determines the

rate of progress per dollar spent on R&D, conditional on the research technologies available.

Thus we can see how advances in machine intelligence will change the relationship between

a unit of R&D investment and a unit of progress. By applying some value weight to the

progress, such as value-added output for a productivity gain or quality-adjusted-life-year

valuation to a health improvement, one can then calculate a rate of return.

This paper is organized as follows. Section 2 situates the modeling approach in relation

to existing literature. Section 3 presents the baseline model. Section 4 applies the model

to assess the implications of specific AI capabilities. Section 5 examines the potential

for Transformative AI. Section 6 discusses applications to specific research areas and the

relationship between the model and explicit AI benchmarks. Section 7 concludes.

2 Conceptual Approach and Prior Literature

This paper views R&D as a set of activities or “tasks.” These tasks can be understood

flexibly. They could be high-level steps familiar to science, such as defining a research

question, developing a conceptual framework and/or empirical approach, collecting and an-

alyzing data, and writing up results. Or they could concern product development, involving

steps like design, prototyping, and testing. Research tasks could also be defined with in-

creasing specificity. More specific steps will vary substantially depending on the field and

specific research question - from running difference-in-difference models in economics to us-

ing phosphoproteomics techniques in cancer biology.1 As such, we might apply the model,

and its key measures, differently to different types of research.

1Procedures, techniques, and capital equipment vary greatly across fields. For example, a project in

economics using U.S. administrative data could involve: conceiving of a research question and its empirical

strategy, proposing the project and obtaining approval from U.S. Census, accessing a nearby Research Data

Center, learning data dictionaries and database structures, implementing empirical strategies by writing

code for statistical analysis, iteratively producing and assessing the main empirical findings and robustness

analyses, and completing the disclosure process. By contrast, in designing a cancer therapeutic, research steps

could include identifying an oncogenic mutation and determining relevant protein structure and function.

Beyond the protein’s “fold,” post-translational modifications via phosphorylation will inform protein activity,

including cancer-relevant roles in cellular processes. Experimental steps may utilize cryo-electron microscopy,

nuclear magnetic resonance relaxation, single-cell phosphoproteomics, and mass spectrometry. Subsequent
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Taking a task-based view allows us to leverage recent advances in task-based models

(Zeira 1998; Autor et al. 2003; Acemoglu and Restrepo 2018; Aghion et al. 2019; Jones and

Liu 2024). The approach used here is closest to Jones and Liu (2024), which incorporates

the standard idea that machines can take over tasks previously performed by labor while

also allowing for machines to become especially good at these tasks - a feature that seems

essential for understanding potential gains from AI. This paper is distinct from most prior

task-oriented models in focusing on the ideas production function and in taking a micro

approach (as opposed to a general equilibrium, growth-oriented approach). Specifically,

we consider how a research team, laboratory, public research institution, or business can

maximize the rate of progress per dollar spent on R&D, taking factor prices as given.2

Other recent contributions have developed important insights into how AI can influence

R&D. Taking creativity perspectives, one view is that AI can improve upon exploratory

search into uncertain terrain (Gans 2025). Another view it that AI can better leverage

combinatoric possibilities (Agrawal et al. 2024). According to the related “burden of knowl-

edge” viewpoint, individual researchers have increasingly narrow expertise, as one person

can know only a shrinking share of aggregate knowledge, the more humanity’s collective

knowledge accumulates (Jones 2009, Hill et al. 2025). The capacity of AI to aggregate

wide-ranging knowledge may thus be an essential advantage, allowing AI to overcome hu-

man creative limits. Tools like GNoME already suggest this AI potential for identifying

new materials (as combinations of molecules) or chemical synthesis pathways (as combina-

tions of steps) that may be hard or costly for human researchers to see (Segler et al. 2018,

Merchant et al. 2023). This paper incorporates creative search in only a simple way by

focusing on “tasks,” which can embrace both creative search tasks and research execution

tasks. While some key insights can be lost by being broad in this way, the benefit is that

steps in drug design involve finding a compound that disrupts the oncogenic pathway with sufficient potency

and minimal side effects, tested across cells, animals, and humans, and using additional specialized methods.
2To the extent that R&D is a very small share (on the order of 3%) of the overall economy, taking

capital and labor prices as given seems a reasonable place to start. To the extent that AI simultaneously,

substantially affects many sectors of the economy, one may further consider shifts in factor prices, in general

equilibrium settings. See Aghion et al. (2019) and Trammell and Korinek (2023). But also see the discussion

of “double bottlenecks”, which will further constrain AI’s aggregate potential, in Section 5. At root, if the

bottlenecks in this paper are sufficiently germane, then the partial equilibrium analysis is more fitting. If

the bottlenecks are overcome, then additional general equilibrium forces would come into play.
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we can provide a more embracing view of research activities. One can then apply the model

at various levels of focus, where measures of tasks describe different aspects of the research

process. We will further discuss the nature of key research activities and their implications

for assessing AI’s potential in Section 5.

3 The Model

We consider R&D efforts that seek to advance some outcome. Let the outcome of

interest be measured as Zt. In an economic context, Zt could be productivity in a specific

production process, or perhaps productivity across an entire production chain in a given

sector. In a health context, Zt could be longevity in the face of a specific heart ailment, like

a cardiac arrhythmia, or perhaps longevity given heart disease as a whole. The type and

breadth of outcome measured by Zt is important for assessing AI’s potential impact, as we

will discuss later. But as a starting point, focusing on R&D activity, we can be generic:

there is a desire to improve some measure, Zt, which we do by applying inputs into research

and development activities.

To proceed, define the “idea production function” (the mapping between R&D inputs

and resulting improvement in Zt) as:

Żt = ζ Zφ
t

[∫ 1

0
rt(j)

θ dj
]1/θ

, θ < 0 (1)

Here, there is a unit measure of research tasks, indexed by j ∈ [0, 1], and rt(j) is the output

at a given research task. The parameter θ governs the degree of complementarity between

tasks - i.e., the strength of “bottlenecks.” Finally, the rate of progress may depend on the

current state of Zt itself, as governed by the parameter φ, so that research advances might

become easier (φ > 0) or harder (φ < 0) as progress continues.

To introduce AI, we imagine that a given task may be performed either by machines or

humans. In particular, we imagine that humans can do all these tasks, but that machines

have been created over time that perform some fraction of these tasks. Moreover, machines

may greatly exceed human capacity at specific tasks. For instance, instruments such as

telescopes, microscopes, and thermometers can outperform human senses of observation,

while computers outstrip human cognition at floating-point arithmetic, regression modeling,

and information retention.
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Task-level production is

rt(j) =


mt(j)xt(j), 0 ≤ j < γt (machine tasks),

H lt(j), 0 ≤ j ≤ 1 (human tasks).

(2)

where xt(j) is the quantity of capital applied to a given machine task and lt(j) is the

quantity of labor applied to a given human task. The measure γt is the share of tasks that

can currently be automated - i.e., the share that can be done by AI or other machines. This

measure allows us to study the implications of AI as it takes over more research tasks. The

terms mt(j) and H represent the productivity of machines and humans at specific tasks.

For simplicity, we let research labor have the same productivity at all tasks. Meanwhile,

machine inputs have task-specific productivities. These productivity parameters allow us to

study the implications of AI as it becomes better at research tasks and potentially greatly

exceeds human capacities at many tasks.

In addition to task productivities, we also have input costs. Research labor will have a

wage, wt. Capital inputs will have a cost, µt. These are measured relative to a numeraire

good, and where relevant we will take the numeraire good as GDP with a price of 1.

Finally, it will be helpful to define a machine-task productivity index, as follows.

Mt =

[
1

γt

∫ γt

0
mt(j)

θ
1−θ dj

] 1−θ
θ

(3)

This index will prove a useful summary statistic for “how good AI is at the tasks it per-

forms,” which will be central to several applications below. Note that this index is the

generalized mean function, so that Mt is an average of all the underlying machine produc-

tivities, mt(j), where the type of average depends on the parameter θ.3

In sum, we have a set up that can flexibly engage key technology features for under-

standing the potential impact of AI. These three features are:

• γt, informing the share of research tasks that AI may perform;

• Mt, informing how good AI is at these tasks;

• θ, informing the strength of bottlenecks.
3The generalized mean is a function that takes various means from a list of numbers, where the type of

mean depends on the value of θ. These include the arithmetic (θ = 1), geometric (θ = 0), and harmonic

means (θ = −1) as well as the Leontief or min function (θ = −∞).
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3.1 Optimization

We consider knowledge production given a fixed research budget. We assume that the

firm, research institution, or single laboratory seeks to maximize the rate of progress at

some outcome. Their choice problem is how to allocate research dollars, given capital and

labor prices, their budget, and the available set of technologies. Thus research institutions

or research teams can increasingly shift spending toward AI depending on how successfully

it evolves. If Zt is measured in the same scale as R&D expenditure (i.e., in dollars, say

by applying value-of-life or value-added output measures to Zt), the optimization results

inform the average return per dollar spent on R&D, as well as the marginal return to an

additional R&D dollar and the effects of technological advance on these returns.

3.2 Technology Adoption Condition

Before turning to the broader problem of allocating capital and labor to research tasks,

we first consider a technology adoption condition at the individual task level. That is,

since research labor can do any task, for machines to actually be deployed to a task j, the

machine must be the cost effective option. From (2), we therefore require that the task

output per dollar spent on the machine (i.e., mt(j)/µt) exceed the task output per dollar

spent on human labor (i.e., H/wt), if the machine is to be used. We can then define, for a

specific task, the relative cost advantage of AI to a human as

ct(j) =
mt(j)wt

Hµt
(4)

where we only adopt AI for a given task when ct(j) ≥ 1. This also implies a minimum value

of mt(j), which is mmin
t = Hµt/wt. Below this threshold, a machine approach is not worth

deploying - one would rather use labor instead. Therefore, in what follows, we assume that

automation technologies satisfy the following requirement.

Assumption 1 (Technology Adoption Condition) mt(j) ≥ Hµt/wt for all j ∈ [0, γt].

We can further develop a related technology metric, which represents the relative cost

efficiency of machines over labor overall. This metric will appear repeatedly in our analysis

below. Specifically, define

Ct =
Mtwt

Hµt
(5)
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to represent a relative cost advantage of machines. The minimum value mmin
t (j) in turn

implies a minimum value of the overall machine productivity index Mt. Namely, since Mt

is an average of the mt(j), it follows that Mt ≥ mmin
t (j). Thus the minimum value of the

technology index is also Mmin
t = mmin

t = Hµt/wt, and therefore we have the following

necessary technology condition,

Ct ≥ 1 (6)

As we will see, in understanding AI’s implications for R&D, the model will focus our

attention on the share of research tasks it can perform, γt, and its average productivity, Mt,

across these tasks. One can construct γt and Mt from the vector of underlying task-level

productivities and costs. We will consider such construction empirically in Section 5, when

linking the model with AI benchmarking studies.4

3.3 The Optimized Allocation Given R&D Expenditure

Now consider how research teams and institutes make use of research machines and

labor. Define the total R&D budget as Dt. The budget constraint is

Dt = µtX
r
t + wtL

r
t (7)

where Xt is total research capital and Lt is total research labor. Solving the constrained

optimization problem leads to the following result.

Proposition 1 (Fixed Total R&D Expenditure) Maximizing the rate of progress in the

outcome Zt given the R&D budget constraint (7) and given capital and labor prices, leads

4As an underlying technology process, one may imagine that the creation and implementation of AI

applications leads to an increase in γt and also shifts Mt by averaging in the new machine productivities.

See Jones and Liu (2024) for an endogenous technology process along these lines. A more parsimonious

approach might focus purely on the distribution of machine productivities, the mt(j), and how this evolves.

Namely, one can define an underlying distribution of machine productivities, Ft(m) across the entire unit

measure of research tasks. Thus machines exist in some sense for all tasks, but they may be very bad (e.g.,

m = 0) at many tasks and are not deployed. Then we view γt as an endogenous feature, which is the

measure of machine tasks for which the technology adoption condition holds, i.e., γt = 1 − Ft(m
min
t ). For

this paper, and the applications in mind, we’ll stay at a higher level of abstraction and focus on exogenous

evolutions of γt and Mt. See also the discussion by Bronwyn Hall.
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to the growth rate

Żt/Zt =
ζZφ−1

t Dt[
γt

(
µt

Mt

) θ
θ−1

+ (1− γt)
(
wt
H

) θ
θ−1

] θ−1
θ

(8)

All heterogeneity in the machine-task productivities is summarized by the single index Mt.

Proof. See Appendix.

This shows that the growth rate of Zt initially increases linearly in total investment Dt.

Thus, this equation also provides the initial marginal return to an additional dollar of R&D

expenditure, where the outcome is measured as the rate of progress. We see directly the

rate of progress will increase with the composite productivity of AI at research tasks (Mt).

The rate of progress also increases in the share of R&D tasks performed by machines (γt).
5

As outcomes of interest, and to help calibrate the exercises to follow, we can further

compute the research labor and machine expenditure shares.

Corollary 1 The labor share and capital share of R&D expenditure are

sLt =
1

1 +
γt

1− γt
C

θ
1−θ

t

, sXt =
1

1 +
1− γt
γt

C
θ

θ−1

t

(9)

where Ct =
Mtwt
Hµt

. The expenditure shares sum to 1 and are bounded in ranges sLt ∈ [1−γt, 1]

and sXt ∈ [0, γt].

Proof. See Appendix.

4 AI Applications

With Proposition 1, we can now ask what will happen to the rate of progress as AI

advances, potentially by a lot. We first consider what happens when AI becomes much

more productive at a given set of R&D tasks. Will the rate of progress at outcome Zt

greatly increase? We then consider AI’s capacity to automate a larger share of research

tasks. We then examine both of these forces together.

5To see this directly, rearrange Proposition 1 in terms of the index Ct and recall that Ct ≥ 1.
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4.1 The Return to Machine Intelligence

We’ll start by analyzing machine intelligence - i.e., Mt, representing how good AI is at

a given set of tasks. Our thought experiment is that AI intelligence surges ahead. Perhaps

AI becomes very powerful at a given set of tasks. To what extent will the rate of progress

increase?

Our first result considers short-run gains from a small increase in machine intelligence.

By short run, we mean the instantaneous increase in the rate of progress holding the initial

level of the outcome fixed. The distinction between short-run and longer-run effects is

discussed in Section 4.4.

Corollary 2 (Small increase in machine intelligence) The short run elasticity of the rate

of progress to a small increase in machine intelligence is

d log Żt

d logMt
= sXt (10)

where sXt ≤ 1 is the machine expenditure share in R&D, as given in terms of exogenous

parameters in (9). This elasticity declines with greater machine intelligence (↑ Mt) and

rises with a greater share of automated tasks (↑ γt).

Proof. See Appendix.

Corollary 2 provides a simple answer to the question of “how will a small increase in

machine intelligence affect the rate of progress?” by pointing to a single observable measure:

the capital expenditure share. To get a sense of this measure, note that U.S. and OECD

sources report labor shares of R&D expenditure of around 2/3, which suggests that we

might take sXt ≈ 1/3.6 That said, much of the non-labor expenditure includes structures

and material inputs, not simply “machines”, and a large portion of these non-labor R&D

inputs are not obviously amenable to being substituted for by AI. Thus, while we will often

use sXt ≈ 1/3 in what follows, we will also consider the case where only a portion of these

non-labor inputs can be substituted with AI. In a companion discussion, Bronwyn Hall

further examines measures of expenditure shares and their implications.

One related interpretation of Corollary 2 is that machine intelligence has fundamentally

limited effects on the rate of progress. In particular, the elasticity of the rate of progress

6See, for example, U.S. Census BRDIS data Table 25 (National Science Foundation (2019) and also

Besiroglu et al. 2024.
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to machine intelligence can be no greater than 1 (i.e., sXt can be no greater than 1 in any

eventuality). However, this “small changes” result also appears too optimistic, as it will

overstate the acceleration in progress from larger changes in machine intelligence, even in

the short run. This is because the elasticity falls as Mt rises. Our second result therefore

directly considers the immediate effects of a large change in Mt.

Specifically, let’s imagine that machine intelligence suddenly increases by a multiple λ,

so that Mt → λMt. This advance in AI can be arbitrarily large. We ask what multiple will

occur in the rate of progress.

Corollary 3 (Large increase in machine intelligence) Let machine intelligence increase by

a multiple λ. The rate of progress, Żt, will initially increase by a multiple

η =
(
1− (1− λ−b)sXt

)−1/b
(11)

where sXt is the machine expenditure share in R&D, as given in terms of underlying tech-

nology measures in (9), and b = θ
θ−1 . In the limit where Mt → ∞, the rate of progress

increases by a multiple η∞ = (1− sXt )−1/b for θ < 0.

Proof. See Appendix.

These results help reveal the potential impact of extraordinarily smart machines using

straightforward measures. Figure 1 implements (11) given an initial expenditure share

(sX = 1/3) and various views of the bottleneck parameter, θ. We see that θ is powerful in

governing returns to machine intelligence. It sets a fundamental “speed limit” of sorts, per

the last result of the corollary. For example, consider θ = −1, so that progress depends on

the harmonic average of the task outputs. If the initial capital expenditure share is 1/3,

then an infinite increase in machine intelligence causes the rate of progress to increase by

a factor of 2
3

−2
= 2.25. That is, the rate of progress would a bit more than double with

infinite productivity across the entire current set of non-labor tasks.

The role of bottlenecks may be even stronger, however, as it would also operate among

the non-labor inputs. The above thought experiment imagines that Mt, the overall index of

machine productivity, increases by large multiples. But AI – machine-embodied intelligence

– is only one type of non-labor input or research machine. More generally, R&D uses a wide

range of machinery beyond computing power. These can be tools of observation, including
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laboratory staples such as microscopes, centrifuges, and PCR machines, to extremely large

detectors such as space and land-based telescopes, particle accelerators, nuclear reactors,

and gravitational wave detectors. Buildings are also an important capital cost for R&D,

to hold laboratories and their machines. Given these other expenses, we might edit our

thought experiment to consider what happens when some fraction of current non-labor

tasks are those that can be performed by AI. Call this fraction ν. Bottlenecks then appear

additionally in mapping from large gains in intelligence to the overall machine productivity

index, Mt.

Corollary 4 (Large increase in machine intelligence for relevant sub-tasks) Let AI perform

a fraction ν of the non-labor tasks. Let the distribution of machine productivity initially be

the same for non-AI tasks and for AI tasks, and let the AI’s productivity at all AI tasks

increase by a multiple κ. The overall machine productivity index, Mt, will increase by a

multiple

λν =
(
νκ−b + (1− ν)

)−1/b
(12)

where b = θ
θ−1 . In the case of infinite machine intelligence, this multiple limits to limκ→∞ λν =

(1− ν)−1/b for θ < 0. The rate of progress, Żt, will increase by a multiple

ην =
(
1− ν(1− κ−b)sXt

)−1/b
(13)

which in the case of infinite machine intelligence limits to limκ→∞ ην =
(
1− νsXt

)−1/b
for

θ < 0.

Consider again the example where θ = −1, so that progress depends on the harmonic

average of the task outputs. Let the initial non-labor expenditure share be 1/3 and let

AI perform 1/2 of these non-labor tasks. Then an infinite increase in machine intelligence

causes the rate of progress to increase by a factor of 5
6

−2
= 1.44. That is, taking economic

growth, this would say that the growth rate would increase by 44% with infinite productivity

across the set of AI tasks. This upward shift in the rate of progress is much smaller than

when infinite productivity advances occur for all non-labor inputs. In Corollary 3, we

are imagining labor tasks remain a substantial share of tasks and thus provide the key

constraints. In Corollary 4 the remaining bottleneck tasks are both labor and half of the

non-labor inputs (i.e, experimental machines like particle accelerators, telescopes, PCR

13



Figure 1: How Progress Accelerates with Large Multiples in Machine Intelligence. The “bottleneck”

parameter, θ, governs the returns to intelligence. Even with infinite intelligence, accelerations in

progress can be severely constrained.

machines; material inputs like electricity; structures, etc.). Intuitively, the greater share of

tasks that AI does not perform, the less effect it will have - and these constraints can be

evidently severe.

4.2 The Return to Machine Automation

Our next analysis considers progress in AI of a different form: taking over a greater

range of tasks from human researchers. We’ll consider (potentially large) increases in the

share of R&D tasks that AI can perform and ask what this will do to the rate of progress.

More formally, whereas the last section focused on increases in Mt (how good AI is at the

research tasks it performs), now we focus on increases in γt (what fraction of research tasks

AI will do).

Corollary 5 (Large increase in automation share) Let human researchers initially perform

a fraction 1− γt of all R&D tasks. Let AI advance to take over more tasks, so that humans

now do a smaller fraction ρ(1− γt) of tasks, where ρ ∈ [0, 1]. To isolate the role of automa-

tion, hold machine productivity, Mt, fixed. The rate of progress will initially increase by a
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Figure 2: AI as a Subset of Machine Tasks. Here we consider how the machine productivity index,

Mt, increases with large advances in AI (top panel) and what this means for the rate of progress

(bottom panel). The figure plots cases where 1/2 of all machine tasks become more productive by a

multiple κ. Even with κ→ ∞, increases in overall machine productivity can be severely constrained,

resulting in relatively modest accelerations in the rate of progress.
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multiple

ψ =
(
ρ+ 1−ρ

γt
sXt

)−1/b
(14)

where b = θ
θ−1 and sXt is the capital share of R&D expenditure as given in (9). This

multiple has a lower bound of 1 and an upper bound of ρ−1/b. In the limit where ρ→ 0 and

AI machines take over all R&D tasks, the rate of progress will increase by a multiple

ψ∞ =

(
γt

sXt

)1/b

(15)

Proof. See Appendix.

As a simple example, take the cases where the initial machine share of R&D expenditure

is sXt = 1/3. Let the initial share of machine tasks be γt = 1/2. Now let automation proceed

to an extreme degree, where ρ → 0, so that machines take over all tasks.7 Then the rate

of progress will increase by 3
2

2
= 2.25. Thus, fully automated R&D tasks would a bit more

than double the rate of progress.

To gain further intuition, recall that we must have sXt ≤ γt (Corollary 1). The case

sXt = γt occurs when machines aren’t very good at what they do; more precisely, when Mt

is at the lowest possible value that machines are still worth adopting. In this case, machines

are expensive and the machine expenditure share rises to its task share. Extending machines

with similar (low) productivity to all remaining research tasks and holding factor prices

constant, R&D expenditure would then shift fully to machines but there would no gain in

the rate of progress (ψ∞ = (1)1/b = 1). This helps us see that the advantage of further

automation relies critically on how good machines are at what they do. In practice, machines

need to be substantially cost effective compared to labor for there to be an advantage in their

use; this is equivalent to saying that the expenditure share on machines is low compared to

the share of tasks machines perform.

4.3 The Return to Machine Intelligence and Automation

Finally, we consider the case where an AI advances both in the range of tasks that it can

perform (γt) and its productivity at those tasks (Mt). Indeed, the above analyses suggest

7Note that we are imagining theMt remains at its initial condition; that is, the average machine advantage

for the newly automated tasks is the same as its existing advantage over labor in tasks machines currently

perform.
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Figure 3: How Progress Accelerates with Large Increases in Machine Automation. Further automa-

tion can replace bottleneck labor tasks with more productive machine tasks, but the bottlenecks of

remaining labor tasks remain severe. Even a small remaining measure of labor tasks strongly limit

gains in the rate of progress, depending on θ.
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that large increases in both machine productivity and automation shares are needed for AI

to create large accelerations in rates of progress.

Corollary 6 (Large increase in machine intelligence and automation share) Let machine

intelligence increase by a multiple λ. Further, let AI take over many more tasks, so humans

now do only a share ρ(1 − γt) of tasks, where ρ ∈ [0, 1]. The rate of progress will initially

increase by a multiple

ϑ =

(
λ−b 1− ρ(1− γt)

γt
sXt + ρ

(
1− sXt

))−1/b

(16)

where sXt is the capital share of R&D expenditure as given in (9). In the limit of a

super-intelligence where Mt → ∞, the rate of progress increases by a multiple ϑ∞ =(
ρ
(
1− sXt

))−1/b
for θ < 0.

Proof. See Appendix.

Now it is possible, with sufficient advances on both the intelligence and automation

margins, for the rate of progress to greatly accelerate. Figure 4 presents examples where

the initial expenditure share is sX = 1/3, the initial share of machine tasks is γt = 1/2, and

there is substantial task complementarity, taking θ = −1. We consider multiples in the rate

of progress as a function of multiples of machine productivity, plotting separate curves for

different shares of task automation.

We see that the effect of extreme intelligence depends substantially on the breadth with

which it can be applied. For example, in the limit of infinite intelligence, the rate of progress

limits to ϑ = (23ρ)
−2. Thus if, say, 90% of all current human research tasks are automated

and conducted by super-intelligence, then rates of progress could maximally increase by

225 times. If only 25% of all current human research tasks can be automated, then rates of

progress would maximally increase by only 4 times, per unit of R&D expenditure. These

upper bounds occur when AI is infinitely good at its tasks. To the extent that AI conducts

only a share of machine tasks (whereas telescopes, microscopes, centrifuges and other ex-

perimental machines remain an important component of the machine tasks), such multiples

via Mt would be further out of reach.

This is also where it is useful to apply the model in a field-specific way. For example,

in areas where cognition represents nearly all tasks (say, in pure math or software design),
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Figure 4: How Progress Accelerates with Large Multiples in Both Machine Intelligence and Automa-

tion Shares. In a given research area, large advances in machine intelligence coupled with AI taking

over the majority of human research tasks create large increases in rates of progress.

then a super-intelligence can seemingly multiply progress enormously. But in areas where

experimentation is a large share of tasks (say, in drug development or particle physics),

then rates of progress may accelerate modestly despite super-intelligence. Assessing AI’s

implications will then be field-specific and assessments will depend on taking field-specific

stands on particular technology measures. It seems realistic that the relevant measures can

be estimated for specific fields, as discussed in Section 6.

4.4 Longer Run Gains

The analyses above focus on short-run increases in progress. We treat the outcome of

interest, Zt, as fixed at a point in time and ask how a surge in AI capabilities accelerates

progress initially. For longer-run progress, the key, further question is how rising Zt affects

ongoing gains, governed by the parameter φ (see (8)). If φ < 0, then higher Zt slows the rate

Żt. Longer-run gains from a burst in AI capabilities may then be smaller than short-run

ones, consistent with the “fishing out” of ideas in knowledge creation where the progress

gets innately harder the more progress we have made. If φ > 0, rising Zt boosts progress,
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so long-run gains may exceed initial ones, consistent with progress acting to expand future

creative possibilities.

For some outcomes, progress is exponential, i.e., Żt/Zt is the key object.8 Examples

include Moore’s Law, Swanson’s Law, and progress in key economic outcomes like GDP

per capita. In these cases, long-run AI effects are dampened compared to short-run effects

so long as φ < 1 (see (8)). Evidence suggests φ < 1 for both macroeconomic growth and

Moore’s Law (e.g., Bloom et al. 2020). Thus, for such outcomes, a surge in AI capabilities

will likely have larger initial than longer-run effects.

5 The Potential for Transformative Artificial Intelligence

The above framework characterizes key forces that govern AI’s effects on R&D. For

“transformative artificial intelligence” (TAI), the model can further clarify what one must

believe for AI not simply to be impressive, but to radically transform outcomes. In this

section, we consider definitions of transformative AI and how the model can quantitatively

engage them.

5.1 Defining TAI

Transformative AI has various definitions. It orients on a large, step-function increase

in rates of economic growth. Karnofsky (2016) defined TAI as: “AI that precipitates a

transition comparable to (or more significant than) the agricultural or industrial revolution.”

That is, AI becomes TAI when it creates a break in human history of similar magnitude to

these prior revolutions.9

The industrial revolution led to an approximately 10-20 times increase in the growth

rate compared to pre-1700 history; TAI can thus be viewed as AI that will cause such

an acceleration again (see e.g., Davidson 2021; Trammell and Korinek 2023). To provide

8The corollaries examine multiples of Żt, but since Zt is fixed, they equivalently describe the initial

multiple in the growth rate, Żt/Zt.
9Note also a related, second definition from Karnofsky (2016) that is more specific to R&D. He further

describes TAI as “capable of fulfilling all the necessary functions of human scientists, unaided by humans, in

developing another technology (or set of technologies) that ultimately becomes widely credited with being the

most significant driver of a transition comparable to (or more significant than) the agricultural or industrial

revolution.” An interesting feature of the following analysis is to tie these definitions together quantitatively,

where a “step function” in rates of progress becomes tied to high shares of R&D automation.
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Figure 5: From AI to Transformative AI. Here we consider how much AI must improve to create a

10-fold increase in the rate of progress. The y-axis considers multiples in the machine productivity

index. The x-axis considers multiples in automation, measured as the share of current human

research tasks that humans continue to do. We assume an initial capital expenditure share of 1/3

and that humans currently perform half of research tasks.

a quantitative target for analysis, and given these views, I will therefore define TAI as

achieving a factor of 10 increase in the rate of progress at an outcome variable Zt.
10 The

discussion will further consider the implications of achieving a 10x acceleration in progress

for some outcomes but not others, especially when considering economy-wide trajectories.

5.2 Model Parameters and TAI

With this definition (or another per the reader’s choosing), we can ask what kinds of

capabilities AI must gain to become TAI. Specifically, consider equation (16). Further,

set ϑ = 10, representing an order of magnitude increase in the rate of progress. Given

the initial conditions, this acceleration can be achieved for various combinations of (1) the

share of human research tasks AI takes over (via ρ); (2) the average productivity multiple

AI achieves across the tasks it performs (via λ), and (3) the strength of bottlenecks (via θ).

Figure 5 presents two examples. We plot the combinations of the AI technology multiples

{λ, ρ} that would result in TAI for the given outcome Zt. The left panel assumes θ = −1

and the right panel considers weaker but still significant bottlenecks with θ = −1/2. The

10This target was also suggested to me by the volume editors.
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figure demarcates the boundary at which TAI is achieved, and shades the area for which

even more exceptional progress rates would be achieved.

We can make several observations. First, substantial automation is necessary for TAI.

For example, with θ = −1, AI needs to take over approximately 50% of human research tasks

before TAI becomes possible, regardless of how good AI is at the tasks it performs. Second,

beyond this threshold, further automation greatly reduces the need for super intelligent

machines in achieving TAI. For example, with θ = −1 , moving from ρ = 0.5 to ρ = 0.4

reduces the required machine productivity multiple from infinity to 100. Achieving ρ =

0.2 (where AI takes over 80% of human research tasks) reduces the machine productivity

multiple from 100 to 10. A simple conclusion here is that TAI will critically depend on

the share of human research tasks AI can replace. For TAI, we need substantial but not

complete automation of human research tasks.

In light of this, consider Dario Amodei (2024), who defines a related concept of “Powerful

AI.” He describes a “country of geniuses in a datacenter”, where there are millions of

instances of these synthetic geniuses running in parallel and at 10-100x human speed, and

wonders about the implications for progress. Note that while TAI is defined in terms of

AI outcomes, this concept of Powerful AI is based on the potential AI input. The model

shows how to link these concepts. In particular, with low values of θ, endless millions of

cheap geniuses (i.e. extraordinarily high λ) delivers TAI only if we reach certain automation

thresholds in research tasks. If, say, θ = −1, and more than half of human research tasks

cannot be done in silico, then Powerful AI does not produce TAI.

5.3 The Power of Bottlenecks

Clearly, bottlenecks matter, and they can defeat the power of genius. Strong bottlenecks

act to direct attention away from super-intelligence and towards the automation share -

because automation overcomes the remaining bottlenecks. The intuition comes from how

we take averages. In an arithmetic average (θ = 1), all inputs matter the same and there

are no bottlenecks. If some share of inputs become highly productive (say via cognitive

genius) then the productivity of the whole system is pulled strongly upwards. But for other

averaging procedures – those with lower θ – the smaller input values dominate. With the

geometric mean (θ = 0) or harmonic mean (θ = −1) we are “averaging down”. For example,
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if θ ≤ 0 and some share of inputs is zero, then the whole system has zero productivity

regardless of how much we provide of the other inputs - i.e. we have strong bottlenecks.

Given the power of this force, what can we say in practice about the value of θ? A direct

way to estimate θ is from the production function itself. Namely, one observes variation

in task inputs and sees what happens to the output, allowing one to identify θ through

maximum likelihood or other estimation methods. An example of production function

estimation along these lines is Ahmadpoor and Jones (2019). They write down a R&D

production function like (1), observe variation in the inputs, and estimate θ. Analyzing

separately hundreds of different scientific and technological fields, they conclude that θ < 0

appears universally. For the median field, estimates suggest that θ ≈ −1.11

In some contexts, we may also have conceptual guidance on θ. For example, Amdahl’s

Law in computer science governs how the overall system speed relates to the underlying

parts. In Amdahl’s Law, the system speed combines the component speeds as a weighted

harmonic mean (i.e., θ = −1).

More general conceptual arguments may also help place bounds on θ in other fields.

One simple test is to ask how sensitive the outcome is to mistakes. In many contexts,

failure at any one critical sub-task leads to overall failure (Kremer 1993). In these cases, we

have θ ≤ 0.12 A second thought experiment is this: do progress rates explode when some

important research task is performed vastly better than before? If the answer is no, then

we have low θ, likely towards the harmonic mean.13

For example, consider that in some research contexts we have already experienced many-

order-of-magnitude improvements over human capabilities for important research tasks.

The most obvious example is floating point operations and their widespread use in key

research activities. Take economics, where regression analysis is an important activity. It

would take my entire lifetime to invert a single, big-data regression coefficient matrix by

11That study varies the people inputs to identify θ, as opposed to the variation in machine capabilities,

but the same analytic principles apply.
12Recall that, with θ ≤ 0, zero output on any sub-task means zero overall output.
13Imagine two equally weighted inputs that both start with the value 1. Then the average is 1 regardless

of the type of average you take. Now let one input value explode by many orders of magnitude. With a

geometric mean, the output will rise without bound. With a harmonic mean the value of the output limits

to 2.
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hand, which my computer does in a minute. But the rate of progress in understanding

economics has not improved in such a dramatic way. This strongly points at low θ, where

there are other bottlenecks to our understanding. Similarly, Bronwyn Hall’s discussion

examines how compute radically advanced key tasks in particle physics, but the share of

important research tasks performed by humans has remained high.14 Similar arguments

apply to many research tools, including telescopes, microscopes, and spectrometers, which

provide virtually infinite improvements over human senses of observation. Viewed within

the broader problem of drug design, the Nobel-Prize winning AlphaFold, which applies to

protein folding, is another example where radical productivity gains at a narrow set of

important tasks do not alone accelerate progress at the wider problem very much. All of

this reinforces the point above (and see Figure 5) that the automation share - how widely

AI can take over research tasks and thus overcome bottlenecks – is more critical for TAI

than massive productivity gains at smaller measures of tasks.

A final observation, especially with regard to TAI, is that bottlenecks are likely nested.

The fruit of each R&D process - solar cell efficiency, drug design, a new space vehicle - is a

particular Zt. When conceiving of 10x type acceleration in productivity growth overall, we

must consider how we combine the Zt for each area into an economy-wide productivity gain.

Baumol’s cost disease, and related estimates of production functions in macroeconomics,

point to further bottlenecks in the real economy - that the overall productivity gain will be

determined more heavily by the areas where Zt advances slowly than by where it advances

quickly (Baumol 1967, Aghion et al. 2019, Jones and Liu 2024).15 This “double bottleneck”

problem, which we could also call a “double averaging down” problem, may further challenge

the potential for TAI. It suggests that TAI will depend on overcoming bottlenecks not just

in a given R&D process, but in a large share of all research processes, as we will otherwise

average down a second time in the real economy. This also suggests that we need to pay

14New tools may also call forth new human tasks, which can limit the overall share of research tasks

performed by the machines - see Hall’s discussion.
15Health appears similar. We depend on many different organ systems, and the failure of any system can

result in poor health status or death. To greatly extend longevity and maintain a high quality of life, we

thus need to successfully overcome a wide variety of diseases – cancers, heart disease and stroke, dementia,

diabetes, chronic lung diseases – as well as other challenges like mental health in its many forms, sensory

loss, chronic pain, and an array of other health issues.

24



attention to how AI can affect a wide variety of different research processes. We turn to

this empirical agenda in Section 6.

5.4 TAI versus Economically Meaningful AI

The framework points to bottlenecks as a key challenge for AI to overcome. Should

bottlenecks remain substantial in key research areas, TAI becomes further from reach – or

possibly out of reach. On the other hand, TAI sets a high bar. Accelerations of progress

far short of TAI would still have profound effects. To the extent that 10x accelerations in

growth rates are difficult, much more modest accelerations - say 1.2x or 1.5x - may be much

more feasible and would, in the long-run, still have enormous implications.

Consider that, with 1.8% per annum total factor productivity growth, standards of

living were radically transformed since the Industrial Revolution, relying on a wide array of

technologies that people in 1870 would struggle even to imagine. If AI accelerated growth

to 2.6% per annum, the next 150 years would equate to 3 Industrial Revolutions in terms of

multiplying the standard of living - 50 times the standard of living today. History would say

that AI made a huge difference. We might therefore define “Economically Meaningful AI”

(or EAI) as an alternative scenario, characterizing such relatively modest but nonetheless

extremely impactful growth accelerations.

6 Specific Research Applications & AI Benchmarks

AI may have substantially different effects in different research areas – from pure mathe-

matics to material science to drug design. To estimate its effect for a given research context,

the model suggests that we focus attention on three key objects: {Ct, γt, θ}.16 This requires

articulating the set of tasks in a given research area, the performance of AI relative to

humans at the AI-relevant tasks, and the strength of the bottlenecks parameter in that

specific area. Here we discuss how to estimate each of these parameters. This is greatly

facilitated by the AI community’s focus on “benchmarking.”

16The above discussion of TAI examined multiples of Ct and γt that would drive large accelerations in

rates of progress. Here we are focusing on estimating the underlying productivity and task share measures

themselves, from which any such multiples will ultimately be determined.
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6.1 AI Benchmarking

Benchmarking is an essential tool for artificial intelligence. Different AI models are

ranked according to explicit performance benchmarks, and AI models are trained to suc-

ceed at these benchmarks. Examples include benchmarks for solving math questions (e.g.,

MATH Level 5), performing software engineering tasks (e.g., SWE-Lancer), undertaking

machine learning research (e.g., PaperBench), and very many others. The following discus-

sion considers how benchmark studies may reveal key model measures.

Consider first the relationship between benchmarks and ct(j). Recall that ct(j) captures

the relevant cost efficiency of AI compared to humans at a particular task.

ct(j) =
mt(j)/µt
H/wt

(4)

For example, let’s say the task is to solve a specific type of math problem.17 One

could measure the machine’s productivity at the task as correct solutions per unit of time

(providing mt(j)) divided by the machine’s cost in dollars per unit of time (providing µt).

Thus mt(j)/µt is correct solutions by the machine per unit of expenditure. Similarly, we

can calculate H/wt as solutions per dollar spent when using human labor. We can thus

calculate ct(j).

But this is only for one task (taken here as one particular type of math question). What

the model directs attention to is Ct, capturing the advantage of AI over a set of tasks.

Ct =
Mtwt

Hµt
(5)

The difference is in how the task-specific productivities average together into an overall

machine productivity,Mt. And the appropriate averaging depends on the outcome measure,

Zt, of interest and its corresponding task set.

To continue the math example, math benchmarks typically report the percentage of

questions an AI gets right across a wide set of different types of questions. In that case

we are taking an arithmetic average (θ = 1) of correct answers. If the objective is to score

the highest grade on an exam, that is a reasonable benchmarking metric. However, in

17For example, top AI models can now answer the MATH Level 5 questions, which are very difficult,

with high accuracy. See Epoch AI’s Benchmarking Hub for comparisons of top AI models on various math

benchmarks, including MATH Level 5, GPQA, and FrontierMath.
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many R&D contexts – creating software, designing a rocket, engineering a new building

that won’t collapse – we are often highly sensitive to mistakes. Then we imagine θ is low,

and the appropriate benchmark should be calculated accordingly.18

For real-world R&D contexts, we therefore need to specify the relevant outcome and

its set of tasks and then, from that granular level, move to the key measures {Ct, γt, θ}.

AI researchers are now producing benchmarks that allow such analyses. One example is

PaperBench (Starace et al. 2025). In this benchmarking approach, the goal is to replicate 20

real-world machine learning papers. The authors encoded a scaffold of 8,316 individually

gradable tasks. The study further measures both AI and human success at replicating

specific tasks, as well as AI and human time to complete these tasks. By observing what

tasks the AI can do reliably and at lower cost (in practice, the top AI performer could

replicate 21% of the ML research tasks), we can assign γt as the share of replication tasks

that AI can take over and determine ct(j) for each of these tasks. Finally, conditional on θ,

we can calculate Ct. One could then compare how using an AI versus not using AI changes

the overall rate of progress (here, successful replication analyses) per dollar spent.

Finally, one can estimate θ. As discussed above, the direct way to estimate θ is from the

production function – by varying the task inputs and seeing what happens to the outcome

(e.g., Jones and Ahmadpoor 2019). With benchmarking studies, researchers could use

experimental variation to identify θ for specific contexts. This would start by defining the

benchmark (based on the specific R&D outcome of interest, Zt) and the relevant task set. In

addition to measuring AI and human performance on each task, one could experimentally

vary the task inputs to estimate θ.

In sum, with suitably designed AI benchmarks, the model can be applied to specific

research areas. They key is to first define the research outcome of interest and the set of

tasks that are conducted in pursuit of the outcome. Then, measuring AI versus human

performance at the individual sub-tasks, calculating the share of tasks where AI has the

advantage, and using experimental variation to determine the bottleneck parameter, as

described above, can reveal the degree to which AI can accelerate progress. This seems like

18In practice, with low θ, we will allocate tasks very carefully to those who can successfully perform them.

And we will naturally introduce verification tasks, which some mix of humans and AI may perform. Recent

advances in self-verification by an AI may then be critical for allowing AI to be used over a greater share of

tasks and to reduce the need for costly human verification.
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a potentially useful way to design benchmarks in pursuit of deeper understanding of AI’s

true potential.

7 Conclusion

This paper presents a framework for assessing AI’s role in R&D. The model considers

the mapping between AI capabilities and resulting rates of progress. It focuses attention

on three key features: the share of research tasks AI performs; the average productivity

advantage of AI over humans at the AI-performed tasks; and the strength of bottlenecks.

The framework can be applied to any given research area, where the balance of forces

may be context-contingent. Concepts like Transformative AI, which imagines an order of

magnitude acceleration in growth rates, or Powerful AI, which imagines millions of genius-

level AIs running in parallel, can also be assessed and quantified. The framework shows

that bottlenecks severely mute the effect of extremely productive AI. While much remains

to be learned, existing evidence and observations suggest that bottlenecks are common in

R&D (and in the real economy). This means that taking over a large share of research

tasks – which is how AI can overcome bottlenecks – is likely much more important than

radical improvements at a narrower set of tasks. Powerful AI is then unlikely to lead to

Transformative AI unless these synthetic geniuses can do most research tasks. Put another

way, the “marginal returns to intelligence” and even extreme intelligence appears strongly

limited when the intelligence operates on only a minority of tasks.

Estimates of the model’s measures will clarify what is possible in different research

areas. AI benchmarking studies can provide key information. The paper shows the specific

measures AI benchmarking studies can engage, pinning down the model and informing the

accelerations AI can achieve for various research outcomes. This is an important area for

future work.
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Appendix

Proposition 1: The equilibrium rate of progress

Proof.

1. Set-up of the optimization problem

The idea production function is

Ż = ζZφ
[∫ 1

0 r(j)
θdj
]1/θ

as given by (1). Note that, for notational simplicity, we drop time subscripts here and

throughout this proof.

Given the task level production functions (2) and prices (the wage w and capital price

µ), the unit cost of producing one unit of task output is

c(j) =


µ/m(j), j < γ (machine task),

w/H, j ≥ γ (human task).

The budget constraint (7) can thus equivalently be written

D =

∫ 1

0
c(j) r(j) dj.

The goal is to maximize the rate of progress, Ż, subject to the budget constraint and

the task specific costs.

2 The Lagrangian and the first-order conditions

Because ζZφ is a positive multiplicative constant, maximizing Ż is equivalent to maxi-

mizing

R ≡
[∫ 1

0 r(j)
θdj
]1/θ

.

We therefore solve the Lagrangian

max
{r(j)}

L =
[∫

r(j)θdj
]1/θ

+ λ
(
D −

∫
c(j)r(j) dj

)
.

Taking the first order condition for any task, r(j), we have:

R1−θr(j)θ−1 = λc(j)
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which we can rearrange as:

r(j) = λ
1

θ−1 c(j)
1

θ−1R. (17)

3. Impose the budget constraint at the optimum r(j)

Plugging the r(j) into the budget constraint and simplifying we have:

D =
R

λ
1

1−θ

∫ 1

0
c(j)

θ
θ−1dj (18)

Define the cost index (a weighted mean of the task-level unit costs) as

J ≡
∫ 1

0
c(j)

θ
θ−1dj (19)

4. Evaluate the objective function at the optimum r(j)

Plugging the r(j) into the objective function, R, and simplifying we have:

1 = λ
1

θ−1J1/θ (20)

It then follows from (18), (19), and (20) that λ = R/D and

R =
D

J (θ−1)/θ
. (21)

5. Compute the cost index J

Split the integral into the machine and human parts:

J =

∫ γ

0

(
µ

m(j)

) θ
θ−1

dj +

∫ 1

γ

(
w
H

) θ
θ−1

dj

= γ µ
θ

θ−1

[
1

γ

∫ γ

0
m(j)

θ
θ−1dj

]
+ (1− γ)

(
w
H

) θ
θ−1

.

(22)

Now recall the definition of the machine-productivity index, M

M =
[1
γ

∫ γ

0
m(j)

θ
1−θ dj

] 1−θ
θ

Substituting this above we then have:

J = γ
( µ
M

) θ
θ−1

+ (1− γ)
(w
H

) θ
θ−1

. (23)

Thus, all micro-level heterogeneity {m(j)} collapses to the single scalar M .
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6. Optimal rate of progress

The rate of progress is Ż = ζZφR. Insert R from (21). Then plug in J from (23).

Divide by Z, and bring back the time subscript. We have

Żt

Zt
=

ζ Zφ−1
t Dt[

γt
( µt

Mt

) θ
θ−1 + (1− γt)

(
wt
H

) θ
θ−1

] θ−1
θ

which is exactly equation (8) in Proposition 1.

Corollary 1: Capital and labor shares

Proof.

Total R&D expenditure is

D =

∫ 1

0
c(j)r(j) dj

Note that we will suppress time subscripts for notational simplicity. The expenditure share

on capital inputs is then

sX =
1

D

∫ γ

0
c(j)r(j) dj

For any input, given the first-order condition (17), we have

c(j)r(j) = Rλ
1

θ−1 c(j)
θ

θ−1

The unit cost for a capital input is given by c(j) = µ/m(j), and from the proof of

Proposition 1, λ = R/D. Using these expressions, we can rewrite the capital expenditure

share as:

sX =

(
R

D

) θ
θ−1

µ
θ

θ−1

∫ γ

0
m(j)

θ
1−θ dj (24)

Recalling the definition of the technology index, M (see (3)), we can thus rewrite the

above as:

sX = γ

(
µR

MD

) θ
θ−1

(25)

From Proposition 1, we have proved that:

R

D
=

[
γ
( µ
M

) θ
θ−1

+ (1− γ)
(w
H

) θ
θ−1

] 1−θ
θ
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Thus we can write the capital share in terms of exogenous parameters as:

sX = γ

 µ

M

[
γ
( µ
M

) θ
θ−1

+ (1− γ)
(w
H

) θ
θ−1

] 1−θ
θ

 θ
θ−1

Simplifying, and adding back the time subscripts, this is equivalently:

sXt =
1

1 +
(
1−γt
γt

)(
Mtwt
Htµt

) θ
θ−1

as was to be shown.

The labor share can easily be confirmed, noting that:

sLt = 1− sXt

Corollary 2: Small increase in machine intelligence

Proof.

Consider equation (8), the result of Proposition 1. Multiply both sides by Zt and take

logs. We have:

log Żt = log
(
ξZϕ

t Dt

)
− θ − 1

θ
log Jt (26)

where we have used the definition of J from (23).

Now differentiate with respect to the technology index Mt. We seek the instantaneous

increase in the rate of progress, Żt, holding the initial level of the outcome, Zt, fixed. We

have:

∂ log Żt

∂ logMt
=

1− θ

θ

∂ log Jt
∂ logMt

(27)

=
1− θ

θ

1

Jt

θ

θ − 1
γ

(
µt
Mt

) 1
θ−1
(
− µt
M2

t

)
∂Mt

∂ logMt
(28)

Simplifying, we have:
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∂ log Żt

∂ logMt
=

1

Jt
γ

(
µt
Mt

) θ
θ−1

(29)

Substituting back in for the definition of Jt and simplifying, we obtain:

∂ log Żt

∂ logMt
=

[
1 +

(
1− γt
γt

)(
Mtwt

Htµt

) θ
θ−1

]−1

(30)

which we recognize from (9) as sXt .

Corollary 3, Corollary 5, and Corollary 6:

Discrete Jumps in Machine Intelligence, Automation, or Both

Proof.

Corollaries 3, 5, and 6 are presented in the text in that order for expositional clarity.

Corollaries 3 and 5 can of course be nested within Corollary 6, so the following proof will

focus on the general case, Corollary 6, and then prove the others as special cases.

1. Start with the rate of progress and rewrite it in a cost share form

Specifically, write the equilibrium rate of progress, (8), in the form:

Ż =
ξZϕD

γ1/b
( µ
M

) [
1 +

(
1−γ
γ

)(
wM
µH

)b]1/b (31)

where we define b = θ
θ−1 and suppress time subscripts for simplicity. Noting from (9) that

1 +

(
1− γ

γ

)(
wM

µH

)b

=
1

sX
(32)

where sX is the capital share of R&D expenditure, we can write the rate of progress as

Ż = ξZϕD · M
µ

(
sX

γ

)1/b

(33)

2. Consider instantaneous shifts in M and γ
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Specifically, we ask what happens when simultaneously (i) machine intelligence increases

by a multiple λ (i.e.,M ′ = λM) and (ii) the share of R&D tasks performed by labor declines

proportionally by a multiple ρ (i.e., 1− γ′ = ρ(1− γ)). Define the resulting multiple in the

rate of progress as ϑ (i.e., Ż ′ = ϑŻ). Define the resulting multiple in the expenditure share

as κ (i.e., (sX)′ = κsX). Using the rate of progress expression above, (33), and simplifying

ratios:

ϑ =
Ż ′

Ż
= λ

(
κ

γ

1− ρ(1− γ)

)1/b

(34)

Now recall that we can write the capital expenditure share as:

sX =
1

1 +
(
1−γ
γ

)
Cb

(35)

where C = wM
µH . Thus, the ratio of expenditure shares becomes:

κ =
(sX)′

sX
=

1 +
(
1−γ
γ

)
Cb

1 +
(

ρ(1−γ)
1−ρ(1−γ)

)
(λC)b

(36)

To simplify this, note that
(
1−γ
γ

)
Cb = 1−sX

sX
. Then, with some manipulation, we can

write:

κ =
1

sX + λb ·
(

ργ
1−ρ(1−γ)

)
(1− sX)

(37)

Plugging this into the rate of progress equation and simplifying, we have:

ϑ =
Ż ′

Ż
=

[
λ−b

(
1− ρ(1− γ)

γ

)
sX + ρ(1− sX)

]−1/b

(38)

which was to be shown.

Taking the limit of infinite machine intelligence, and noting that b > 0 when θ < 0, we

have:

lim
λ→∞

Ż ′

Ż
=
[
ρ(1− sX)

]−1/b
(39)

This proves Corollary 6.

3. Special Cases

For Corollary 3, we set ρ = 1. Simplifying (38), the multiple becomes:

Ż ′

Ż
=
(
λ−bsX + 1− sX

)−1/b
(40)

37



Taking the limit for large λ and noting b > 0, we obtain:

lim
λ→∞

Ż ′

Ż
= (1− sX)−1/b (41)

This proves Corollary 3.

For Corollary 5, we set λ = 1. Simplifying (38), the multiple becomes:

Ż ′

Ż
=

[(
1− ρ(1− γ)

γ

)
sX + ρ(1− sX)

]−1/b

(42)

=

(
ρ+

1− ρ

γ
sX
)−1/b

(43)

Next, note that the multiple is decreasing in sX (since b > 0). Recall:

sX =
1

1 +
(
1−γ
γ

)
Cb

(44)

and that sX ∈ [0, γ]. It follows by inspection that the lower bound of the multiple (when

sX = γ) is: (
ρ+

1− ρ

γ
γ

)−1/b

= 1 (45)

And the upper bound of the multiple (when sX = 0) is:

ρ−1/b (46)

Finally, taking the limit in (43) for small ρ, we directly find:

lim
ρ→0

Ż ′

Ż
=

(
sX

γ

)−1/b

(47)

This proves Corollary 5.

Corollary 4: Large increase in machine intelligence for a share of machine tasks

Proof.

1. The Change in Machine Intelligence
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First focus on the multiple in overall machine productivity. Recall the definition:

M =

(
1

γ

∫ γ

0
m(j)

θ
1−θ dj

) 1−θ
θ

(48)

which is the generalized mean of the machine productivities (and for simplicity we have

suppressed time subscripts).

Let’s assume that the distributions of them(j) are initially the same for both AI-machine

tasks and other capital input tasks. Then we equivalently have the same generalized means

for these subsets of tasks,

M =

(
1

νγ

∫ νγ

0
m(a)

θ
1−θ da

) 1−θ
θ

=

(
1

(1− ν)γ

∫ (1−ν)γ

0
m(b)

θ
1−θ db

) 1−θ
θ

(49)

Now let’s have all the m(a) in the first set jump up by a multiple κ. The resulting

average for this set is κM . Averaging these increased productivities together with the

productivities at the other machine tasks, we have

M ′ =

(
1

γ

(∫ νγ

0
[κm(a)]

θ
1−θ da+

∫ (1−ν)γ

0
m(b)

θ
1−θ db

)) 1−θ
θ

This is equivalently

M ′ =
(
νκ

θ
1−θM

θ
1−θ + (1− ν)M

θ
1−θ

) 1−θ
θ

(50)

or,

λν =
M ′

M
=
(
νκ

θ
1−θ + (1− ν)

) 1−θ
θ

(51)

as was to be shown.

If κ→ ∞, then we have:

lim
κ→∞

(
νκ

θ
1−θ + (1− ν)

) 1−θ
θ

= (1− ν)
1−θ
θ (52)

where we note that θ
1−θ < 0, as was to be shown.

2. Implication for the Rate of Progress

From Corollary 3, we know that a given multiple, λ, in the machine productivity index

Mt, causes the rate of progress to go up according to:

η =
(
λ

θ
1−θ sX + 1− sX

) 1−θ
θ

(53)
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The relevant multiple in machine intelligence is now λν as given in (51). We therefore have:

η =

((
νκ

θ
1−θ + (1− ν)

) 1−θ
θ

· θ
1−θ

sX + 1− sX
) 1−θ

θ

=
(
νκ

θ
1−θ sX + 1− νsX

) 1−θ
θ

(54)

as was to be shown.

Taking the limit as κ→ ∞, and noting that θ
1−θ < 0 for θ < 0, we see directly that

lim
κ→∞

η = (1− νsX)
1−θ
θ (55)

as was to be shown.
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