

# Artificial Intelligence and Economic Growth

Chad Jones Stanford GSB

NBER Innovation Bootcamp – July 2025

1

#### What are the implications of A.I. for economic growth?

- Build some growth models with A.I.
  - o A.I. helps to make goods
  - A.I. helps to make ideas
- Implications
  - Long-run growth
  - Share of GDP paid to labor vs capital
- Catastrophic risks from A.I.?

#### Talk based on material from several papers

- Aghion, B. Jones, and C. Jones (2019) "Artificial Intelligence and Economic Growth"
- Jones (2024 AER Insights) "The A.I. Dilemma: Growth versus Existential Risk"
- Jones (2025) "How much should we spend to reduce A.I.'s existential risk?"

#### Two Main Themes (Aghion, B. Jones, and C. Jones, 2019)

- A.I. modeled as a continuation of automation
  - Automation = replace labor in particular tasks with machines and algorithms
  - Past: textile looms, steam engines, electric power, computers
  - Future: driverless cars, paralegals, pathologists, maybe researchers, maybe everyone?
- A.I. may be limited by Baumol's cost disease
  - Baumol: growth constrained not by what we do well but rather by what is essential and yet hard to improve



The Zeira 1998 Model

#### Simple Model of Automation (Zeira 1998)

• Production uses *n* tasks/goods:

$$Y = AX_1^{\alpha_1}X_2^{\alpha_2} \cdot \ldots \cdot X_n^{\alpha_n},$$

where 
$$\sum_{i=1}^{n} \alpha_i = 1$$
 and

$$X_{it} = egin{cases} L_{it} & ext{if not automated} \ K_{it} & ext{if automated} \end{cases}$$

Substituting gives

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

- Comments:
  - $\circ$   $\alpha$  reflects the *fraction* of tasks that are automated
  - $\circ$  Embed in neoclassical growth model  $\Rightarrow$

$$g_y = \frac{g_A}{1 - \alpha}$$
 where  $y_t \equiv Y_t/L_t$ 

- Automation:  $\uparrow \alpha$  raises both capital share and LR growth
  - Hard to reconcile with 20th century
  - Substantial automation but stable growth and capital shares

#### Average income per person in the U.S.



#### **Recent papers**

- Acemoglu and Restrepo (2017, 2018, 2019, 2020, 2021, 2022, 2023)
  - Foundational work in this literature
  - Old tasks are gradually automated as new (labor) tasks are created
  - Fraction automated can then be steady
  - Rich framework, with endogenous innovation and automation
  - Acemoglu-Restrepo (2022 ECMA): Rising automation can explain 60% of changes in the U.S. wage distribution since 1980
- Hemous and Olson (2016, 2025)
- B. Jones and Liu (2024)



# Automation and Baumol's Cost Disease

#### **AJJ Economic Environment**

Final good 
$$Y_t = \left(\int_0^1 y_{it}^{\frac{\sigma-1}{\sigma}} \, di\right)^{\frac{\sigma}{\sigma-1}} \quad \text{where} \quad \sigma < 1 \quad \text{(Baumol effect)}$$
 
$$Tasks \qquad y_{it} = \begin{cases} K_{it} & \text{if automated} \quad i \in [0,\beta_t] \\ L_{it} & \text{if not automated} \quad i \in [\beta_t,1] \end{cases}$$
 Capital accumulation 
$$\dot{K}_t = I_t - \delta K_t$$
 Resource constraint (K) 
$$\int_0^1 K_{it} di = K_t$$
 Resource constraint (L) 
$$\int_0^1 L_{it} di = L$$
 Resource constraint (Y) 
$$Y_t = C_t + I_t$$
 Allocation 
$$I = \bar{s}_K Y$$

#### **Automation and growth**

Combining equations

$$Y_t = \left[ \beta_t \left( \frac{K_t}{\beta_t} \right)^{\frac{\sigma - 1}{\sigma}} + (1 - \beta_t) \left( \frac{L}{1 - \beta_t} \right)^{\frac{\sigma - 1}{\sigma}} \right]^{\frac{\sigma}{\sigma - 1}}$$

- How  $\beta$  interacts with K: two effects
  - $\circ$   $\beta$ : what fraction of tasks have been automated
  - ∘  $\beta$ : Dilution as  $K/\beta \Rightarrow K$  spread over more tasks
- Same for labor:  $L/(1-\beta_t)$  means given L concentrated on fewer tasks, raising "effective labor"

#### Rewriting in classic CES form

• Collecting the  $\beta$  terms into factor-augmenting form:

$$Y_t = F(B_t K_t, A_t L_t)$$

where

$$B_t = \left(rac{1}{eta_t}
ight)^{rac{1}{1-\sigma}} \; ext{ and } \; A_t = \left(rac{1}{1-eta_t}
ight)^{rac{1}{1-\sigma}}$$

• Effect of automation:  $\uparrow \beta_t \Rightarrow \downarrow B_t$  and  $\uparrow A_t$ 

Intuition: dilution effects just get magnified since  $\sigma < 1$ 

#### **Automation**

Suppose a constant fraction of non-automated tasks get automated every period:

$$\dot{\beta}_t = \theta(1 - \beta_t)$$

$$\Rightarrow \beta_t \to 1$$

• What happens to  $1 - \beta_t =: m_t$ ?

$$\frac{\dot{m}_t}{m_t} = -\theta$$

The fraction of labor-tasks falls at a constant exponential rate

#### Putting it all together

$$Y_t = F(B_t K_t, A_t L_t)$$
 where  $B_t = \left(rac{1}{eta_t}
ight)^{rac{1}{1-\sigma}}$  and  $A_t = \left(rac{1}{1-eta_t}
ight)^{rac{1}{1-\sigma}}$ 

- $\beta_t \to 1 \Rightarrow B_t \to 1$
- But  $A_t$  grows at a constant exponential rate!

$$\frac{\dot{A}_t}{A_t} = -\frac{1}{1-\sigma} \frac{\dot{m}_t}{m_t} = \frac{\theta}{1-\sigma}$$

• When a constant fraction of remaining goods get automated and  $\sigma < 1$ , the automation model features an asymptotic BGP that satisfies Uzawa

$$\alpha_{Kt} \equiv \frac{F_K K}{Y} = \beta_t^{\frac{1}{\sigma}} \left(\frac{K_t}{Y_t}\right)^{\frac{\sigma - 1}{\sigma}} \to \left(\frac{\bar{s}_K}{g_Y + \delta}\right)^{\frac{\sigma - 1}{\sigma}} < 1$$

#### **Intuition for AJJ result**

- Why does automation lead to balanced growth and satisfy Uzawa?
  - $\circ$   $\beta_t \to 1$  so the KATC piece "ends" eventually
  - $\circ$  Labor per task:  $L/(1-\beta_t)$  rises exponentially over time!
  - Constant population, but concentrated on an exponentially shrinking set of goods
     exponential growth in "effective" labor
- Labor earns 2/3 of GDP even though labor tasks are vanishing
  - Baumol: these are the tasks that are scarce and essential, so they demand a high share of GDP
- Limitation
  - An asymptotic result
  - $\circ$  Only occurs as  $\beta_t \to 1$ , so unclear if relevant for U.S. or other modern economies

#### B. Jones and Liu (AER 2024)

- BGP can occur "today" with  $\beta_t < 1$ , not asymptotically
  - $\circ$  Adds capital-augmenting technical change ("faster computers") =  $Z_t$
  - $\circ$  Capital share is  $\alpha_{Kt} = \beta_t / Z_t$
  - Might describe modern economies
- Automation and KATC coexist along the BGP with stable factor shares
  - $\circ$  If  $\beta_t$  and  $Z_t$  rise at the same rate.
- But notice that as  $\beta_t \to 1$ , if  $\uparrow Z_t$  continues, then the capital share falls to zero!
  - $\circ$  With  $\sigma < 1$ , the ever declining price of computers drives its factor share to zero

#### **New project with Chris Tonetti (in progress)**

- Generalize the basic model shown so far and quantify it
  - How much of historical growth in Agriculture, Motor Vehicles, and other key sectors is due to automation?
- Idea production functions?
  - o How much of growth in software is due to automation?
  - Other idea PFs (harder since need to measure output of ideas)
- Speculate on what growth over the next decade due to A.I. might look like using the previous quantifications as a guide

#### **Share of Factor Payments: Information Technology (Jones and Tonetti)**





## A.I. and Ideas

#### A.I. in the Idea Production Function

- Let production of goods and services be  $Y_t = A_t L_t$
- Let idea production be:

$$\dot{A}_t = A_t^{\phi} \left( \int_0^1 X_{it}^{\frac{\sigma-1}{\sigma}} di \right)^{\frac{\sigma}{\sigma-1}}, \ \sigma < 1$$

• Assume fraction  $\beta_t$  of tasks are automated by date t. Then:

$$\dot{A}_t = A_t^\phi F(B_t K_t, C_t S_t)$$
 where  $B_t = \left(\frac{1}{eta_t}\right)^{\frac{1}{1-\sigma}}$  and  $C_t = \left(\frac{1}{1-eta_t}\right)^{\frac{1}{1-\sigma}}$ 

This is like before...

#### A.I. in the Idea Production Function

• Intuition: with  $\sigma < 1$  the scarce factor comes to dominate

$$F(B_t K_t, C_t S_t) = C_t S_t F\left(\frac{B_t K_t}{C_t S_t}, 1\right) \to \text{Constant} \cdot C_t S_t$$

So, with continuous automation

$$\dot{A}_t \to A_t^{\phi} C_t S_t$$

And asymptotic balanced growth path becomes

$$g_A = \frac{g_C + g_S}{1 - \phi}$$

We get a "boost" from continued automation (g<sub>C</sub>)

#### Theory: A.I. can raise growth

- Automation (computers, internet, etc.) has been ongoing for decades
  - Recall  $g_C = \frac{1}{1-\sigma} \cdot \theta$
  - $\circ~$  where  $\theta$  is the fraction of remaining labor tasks that get automated each year
    - ⇒ continued automation by itself may not raise growth
- However, an increase in the rate of automation via A.I.  $\uparrow \theta$  could raise growth
  - Rapid advances in reasoning models (OpenAl's o1-pro, o3) suggest possible!
- Extreme version: If all research tasks are automated, then

$$\dot{A}_t = K_t A_t^{\phi}$$

and a growth explosion is possible (e.g. if  $\phi > 0$ )

#### What would A.I. accelerating economic growth look like?

- Near-term productivity boosts from A.I.
  - Software: 25% productivity improvements already
  - In the next decade: A.I. agents that can automate most coding?
  - Virtuous circle: code up even better A.I. agents
- With Moore's Law price decreases ⇒ millions(↑) of virtual research assistants
  - Automate cognitive tasks ⇒ invent new ideas
  - E.g. better chips, better robots, medical technologies, etc.
  - A.I. + robots for physical tasks
- Potential to raise growth rates substantially over the next two decades?

#### **Bottlenecks and Baumol Effects**

- Economic history ⇒ may take longer than we expect
  - Electricity and computers changed the economy over 50 years
- Automation has been going on for 150 years with no speed up in growth
  - Electricity, engines, semiconductors, the internet, smartphones
  - Yet growth always 2% per year
- Maybe those great ideas are what \*kept\* growth from slowing
  - Perhaps A.I. = latest great idea letting us maintain 2% growth for a while longer.
     (pessimistic view, but possible)

#### The Labor Market, Jobs, and Meaningful Work

- The world where A.I. "changes everything" is a world where GDP is incredibly high
  - The size of the pie available for redistribution is enormous
  - Transition could be hard
- As we get richer, we naturally work less
  - Rising leisure, lower retirement ages. This is a good thing!
  - "Work" is a bad in most of our models
- But there is also good work, meaningful work
  - Chess more popular than ever despite iPhone > Magnus Carlsen
  - We may choose to value experiences involving people (arts, music, sports)
     Keeps labor share high?



# Catastrophic Risks?

Can we use economic analysis to think about the serious risks?

#### **Two Versions of Existential Risk**

- Bad actors:
  - Could use Claude/GPT-6 to cause harm
  - E.g. design a new virus that is extremely lethal and takes 3 weeks for symptoms
  - Nuclear weapons mangeable because so rare; if every person had them...
- Alien intelligence:
  - o How would we react to a spaceship near Saturn on the way to Earth?
  - "How do we have power over entities more powerful than us, forever?"
     (Stuart Russell)

#### A Thought Experiment (Jones, 2024 AERI)

- AGI more important than electricity, but more dangerous than nuclear weapons?
- The Oppenheimer Question:
  - o If nothing goes wrong, AGI accelerates growth to 10% per year
  - But a one-time small chance that A.I. kills everyone
  - Develop or not? What risk are you willing to take: 1%? 10%?

What does standard economic analysis imply?

#### Findings:

- Log utility: Willing to take a 33% risk!
   (Maybe entrepreneurs are not very risk averse?)
- More risk averse ( $\gamma = 2$  or 3), risk cutoff plummets to 2% or less
  - Diminishing returns to consumption
  - We do not need a 4th flat screen TV or a 3rd iphone.
     Need more years of life to enjoy already high living standards.
- But 10% growth  $\Rightarrow$  cure cancer, heart disease
  - $\circ$  Even  $\gamma = 3$  willing to take large risks (25%) to cut mortality rates in half
  - Each person dies from cancer or dies from A.I. Just total risk that matters...
  - True even if the social discount rate falls to zero

- Covid pandemic: "spent" 4% of GDP to mitigate a mortality risk of 0.3%
  - A.I. risk is at least this large survey of experts: 5% median
    - $\Rightarrow$  spend at least this much?
  - Are we massively underinvesting in mitigating this risk?

- Covid pandemic: "spent" 4% of GDP to mitigate a mortality risk of 0.3%
  - A.I. risk is at least this large survey of experts: 5% median
     spend at least this much?
  - Are we massively underinvesting in mitigating this risk?
- Better intuition
  - VSL = \$10 million
  - $\circ$  To avoid a mortality risk of 1%  $\Rightarrow$  WTP = 1%  $\times$  \$10 million = \$100,000
  - This is more than 100% of a year's per capita GDP
  - Xrisk over two decades ⇒ annual investment of 5% of GDP
- Large investments worthwhile, even with no value on future generations

- Covid pandemic: "spent" 4% of GDP to mitigate a mortality risk of 0.3%
  - A.I. risk is at least this large survey of experts: 5% median
     ⇒ spend at least this much?
  - Are we massively underinvesting in mitigating this risk?
- Better intuition
  - VSL = \$10 million
  - $\circ$  To avoid a mortality risk of 1%  $\Rightarrow$  WTP = 1%  $\times$  \$10 million = \$100,000
  - This is more than 100% of a year's per capita GDP
  - Xrisk over two decades ⇒ annual investment of 5% of GDP
- Large investments worthwhile, even with no value on future generations

Incomplete so far: how effective is mitigation?

#### Model

- Setup
  - $\circ$  One-time existential risk at probability  $\delta(x)$
  - One-time investment x to mitigate the risk ( $\delta'(x) < 0$ )
  - $\circ$  Exogenous endowment  $y_t$  (grows rapidly via A.I.)
- Optimal mitigation:

$$\max_{x_t} u(c_t) + (1 - \delta(x_t)) \beta V_{t+1}$$
 
$$s.t. \ c_t + x_t = y_t$$
 
$$V_{t+1} = \sum_{\tau=0}^{\infty} \beta^{\tau} u(y_{t+1+\tau}) \quad \text{(consume } y_t \text{ in future)}$$

#### **Optimal Mitigation**

• FOC:

$$u'(c_t) = -\delta'(x_t)\beta V_{t+1}$$

• Let  $\eta_{\delta,x} \equiv -rac{\delta'(x_t)x_t}{\delta(x_t)}$  and  $s_t \equiv x_t/y_t$ 

$$\frac{s_t}{1-s_t} = \eta_{\delta,x} \times \delta(x_t) \times \beta \frac{V_{t+1}}{u'(c_t)\,c_t}$$
 effectiveness of spending of spending nitigated spending spending

• Taking the smallest numbers:

$$\frac{s}{1-s} \ge 0.01 \times 1\% \times 180 = 1.8\%$$

#### **Functional forms**

Existential risk:

$$\delta(x) = (1 - \phi)\delta_0 + \phi\delta_0 e^{-\alpha Nx}$$

- $\circ$   $\delta_0$  is the risk without mitigation
- $\circ \phi$  is the share of the risk that can be eliminated by spending
- $\circ \ \alpha$  is the effectiveness of spending
- $\circ$  *N* is the number of people each spending *x*
- $\circ$  With infinite spending, risk falls to  $(1-\phi)\delta_0$
- To calibrate  $\alpha$ :

$$\alpha N = -T \log(1 - \xi) \approx \xi T$$

 $\xi$  is the share of the risk that can be eliminated by spending 100% of GDP for one year T is "time of perils" = years until risk gets realized (period length)

#### **Calibration**

$$\delta(x) = (1 - \phi)\delta_0 + \phi\delta_0 e^{-\alpha Nx}$$

|                                | Parameter         | Value      | Distribution               |
|--------------------------------|-------------------|------------|----------------------------|
| Extinction risk, no mitigation | $\delta_0$        | 1%         | Uniform (0%, 2%)           |
| Share that can be eliminated   | $\phi$            | 0.5        | Uniform (0, 1)             |
| Effectiveness of spending      | ξ                 | 0.5        | Uniform (0, 0.99)          |
| Value of life                  | $V_{t+1}/u'(y_t)$ | 180        | Uniform (0.5*180, 1.5*180) |
| Time of perils (period length) | T                 | 10 years   | Uniform (5, 20)            |
| CRRA                           | heta              | 2          | •••                        |
| Discount factor                | eta               | $0.99^{T}$ | •••                        |
| Value of future generations    |                   | 0          | purely selfish for now     |

Baseline case: Spending a year's GDP reduces risk from 1% to 0.75%

#### **Optimal Spending to Reduce Existential Risk**



#### When should we not invest in mitigation?

- From FOC: Do not invest if  $u'(y_0) > -\delta'(0)\beta V_{t+1}$
- Using functional forms and approximations:

$$1 > \alpha N \cdot \phi \delta_0 \beta \frac{V_{t+1}}{u'(y_0)} \approx \begin{cases} \xi T & \cdot & \phi \delta_0 \beta \frac{V_{t+1}}{u'(y_0)} \\ \text{effectiveness} & \text{WTP} \\ \text{of spending} & \text{lost to x-risk} \end{cases}$$

$$\implies \xi T \cdot \mathsf{WTP} < 1$$

- $\xi = 1/2$ , T = 10, and WTP = 60% of GDP, LHS = 3
  - But  $\phi$  or  $\xi$  or  $\delta_0 \Rightarrow 5x$  smaller  $\Rightarrow$  invest zero (Little risk, or not much can be done)



### Monte Carlo Results

10 million simulations

#### **Optimal Mitigation: Monte Carlo Simulation**

6.4%

33.1%

0%



.95%

40%

**SHARE OF GDP** 

Mean = 8%. 65% of runs have  $s \ge 1\%$ 

20%

### **Summary Statistics for Monte Carlo Simulations**

|                              | Selfish baseline                    |                 |                                         |
|------------------------------|-------------------------------------|-----------------|-----------------------------------------|
|                              | (=0)                                | Modest altruism | (=0)                                    |
|                              | $\delta_0 \sim 	ext{Uniform[0,2%]}$ | (= 1)           | $\delta_0 \sim \text{Uniform}[0, 10\%]$ |
| Optimal share, mean          | 8.1%                                | 18.4%           | 20.7%                                   |
| Fraction with $s_t = 0$      | 33.1%                               | 15.0%           | 12.8%                                   |
| Fraction with $s_t \geq 1\%$ | 65.1%                               | 84.2%           | 86.5%                                   |



# Final Thoughts

#### **Concluding Questions**

- Case for investing 1/2% of GDP  $\approx$  \$100b seems compelling
- How large is the catastrophic risk from A.I.?
  - How much are we currently spending to mitigate A.I. risk?
  - Effectiveness of mitigation spending?
    - Slow down and invest in safety research?
    - Focus on narrow A.I.? E.g. medical research
- How should we think about A.I. competition and race dynamics?
- How can we get A.I. labs to internalize the x-risk externalities?
  - Should we tax GPUs and use the revenue to fund safety research?