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Summary of Discussion

@ Global Warming and Health is Hot!

© Key Findings from Carleton et al. (2022)
(a) Welfare Impacts of Climate Change are Evident in Mortality and
Expenditures on Adaptation
(b) Temperature Impacts Vary Based on Local Climate and Income
(c) Temperature Impacts are Global and Heterogeneous
(d) Adaptation is Costly
(e) Future Impacts of Climate Change are Heterogeneous and Uncertain

© Future Directions for Research



Summary of Discussion

@ Global Warming and Health is Hot!



Historical and Projected Greenhouse Gas Emissions and
Predicted Temperature Change

Global Emission Path

-~
o

(o2}
o

a1
o

N
o

w
o

N
o

Net emissions (billion metric tons CO2e)

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Year

67% CI 90% CI Historical —— Projected Mean
Larsen et al. (2024)

Michael Greenstone University of Chicago January 10, 2025



Historical and Projected Greenhouse Gas Emissions and
Predicted Temperature Change

67% CI
90% CI

Mean
Prediction

> o pa i s = a
Temperature Rise by 2100

Larsen et al. (2024)
Michael Greenstone University of Chicago January 10, 2025



Historical and Projected Greenhouse Gas Emissions and
Predicted Temperature Change
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Global Warming and Health is Hot

The number of PubMed articles with the phrases " climate change” and
"health” increased sharply
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Summary of Discussion

© Key Findings from Carleton et al. (2022)



More Details in Carleton et al. (2022)

Valuing the Global Mortality Consequences
of Climate Change Accounting for Adaptation
Costs and Benefits' @

Tamma Carleton, Amir Jina, Michael Delgado, Michael Greenstone,
Trevor Houser, Solomon Hsiang, Andrew Hultgren, Robert E Kopp,
Kelly E McCusker, Ishan Nath, James Rising, Ashwin Rode, Hee Kwon Seo,

Arvid Viaene, Jiacan Yuan, Alice Tianbo Zhang

The Quarterly Journal of Economics, Volume 137, Issue 4, November 2022,
Pages 2037-2105, https://doi.org/10.1093/gje/gjac020
Published: 21 April 2022

Abstract

Using 40 countries’ subnational data, we estimate age-specific mortality-
temperature relationships and extrapolate them to countries without data today
and intoa future with climate change. We uncover a U-shaped relationship
where extre6me cold and hot temperatures increase mortality rates, especially
for the elderly. Critically, this relationship is flattened by higher incomes and
adaptation to local climate. Using a revealed-preference approach to recover
unobserved adaptation costs, we estimate that the mean global increase in
mortality risk due to climate change, accounting for adaptation benefits and
costs, is valued at roughly 3.2% of global GDP in 2100 under a high-emissions
scenario. Notably, today’s cold locations are projected to benefit, while today’s
poor and hot locations have large projected damages. Finally, our central
estimates indicate that the release of an additional ton of CO, today will cause
mortality-related damages of $36.6 under a high-emissions scenario, with an

range ing for both ic and climate uncertainty of
(-$7.8,$73.0). These empirically grounded estimates exceed the previous
literature’s estimates by an order of magnitude.

JEL: H23 - Externalities; Redistributive Effects; Environmental Taxes and Subsidies,
H41 - Public Goods, 114 - Health and Inequality, Q51 - Valuation of Environmental
Effects, Q54 - Climate; Natural Disasters; Global Warming

Issue Section: Article
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Original Policy Models for Climate Damage
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Empirical Publications Informing These Models
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Empirical Publications Informing These Models
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60 Climate Impact Lab Literature Review
10 50
I = FUND
» 04— ."! I'! map M=, . 40
@ 1986 1990 1994 1998 2002 2006 2010 2014 2016 2020
©
g
s 10 30
9] DICE
Qo
g 0 T T T T T T T T T — 20
= 1986 1990 1994 1998 2002 2006 2010 2014 2016 2020
10 10+
== PAGE
O |
U T

n
T T T T T T T T 0 T T T T T T T T
1986 1990 1994 1998 2002 2006 2010 2014 2016 2020 1986 1991 1996 2001 2006 201 2016 2021

Michael Greenstone University of Chicago January 10, 2025 10



Three Principles for Estimating Climate Damages

@ Best Available Evidence: Damage functions should be informed by
best available empirical estimates
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@ Best Available Evidence: Damage functions should be informed by
best available empirical estimates

@ Reflect Damage from Around the World: Should use data
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Three Principles for Estimating Climate Damages

@ Best Available Evidence: Damage functions should be informed by
best available empirical estimates

@ Reflect Damage from Around the World: Should use data
representing the global population (not just rich countries)

© Reflect Adaptation and its Costs: Should reflect that agents adapt
given income & climate, include these costs

Michael Greenstone University of Chicago January 10, 2025 11



Summary of Discussion

© Key Findings from Carleton et al. (2022)
(a) Welfare Impacts of Climate Change are Evident in Mortality and
Expenditures on Adaptation



Adapting to Climate Change

A typical temperature mortality relationship shows responses to both cold
and hot temperatures.
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Adapting to Climate Change

A typical temperature mortality relationship shows responses to both cold
and hot temperatures.
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Adapting to Climate Change

As agents become more adapted to their climate, we expect temperature
extremes to cause fewer deaths...
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Adapting to Climate Change

...but this only captures the benefits of those adaptive changes, it does
not capture the costs.

Deaths

v

colder hotter

Daily temperature

Michael Greenstone University of Chicago January 10, 2025 13



The “Full” Mortality Costs of Climate Change

Response function: Mortality; = [3; Tempy

Climate change: Temp; — Temp;
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The “Full” Mortality Costs of Climate Change

Response function: Mortality; = 5 Tempy

Climate change: Temp; — Temp;

No adaptation (e.g., Hsiang, Kopp, et al 2017):
mortality effects without adaptation = (51 Tempy — 31 Temp;

Including adaptation benefits (e.g., Heutel et al 2017):
mortality effects with adaptation = 32 Tempy — (31 Temp;

Accounting for adaptation benefits & costs (this study):
full value of mortality risk = (B2 Tempp, — 1 Temp1) + A(52) — A(51)

~~

~
direct mortality effect adaptation costs
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The “Full” Mortality Costs of Climate Change

Response function: Mortality; = 5 Tempy

Climate change: Temp; — Temp;

No adaptation (e.g., Hsiang, Kopp, et al 2017):
mortality effects without adaptation = (51 Tempy — 31 Temp;

Including adaptation benefits (e.g., Heutel et al 2017):
mortality effects with adaptation = 32 Tempy — (31 Temp;

Accounting for adaptation benefits & costs (this study):
full value of mortality risk = (2 Temp, — 51 Temp1) + A(B2) — A(51)

direct mortality effect adaptation costs
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Measuring the “Full” Value of Mortality Costs

full value of mortality risk = (2 Tempz — (1 Tempy) + A(52) — A(B1)

direct mortality effect adaptation costs

Measurement requires:

Tempy, Tempy — current & future temperature (global climate models)
B1, B2 — : current & future marginal damages (econometrics)

A(.) — : adaptation costs (unobserved)
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Measuring the “Full” Value of Mortality Costs

full value of mortality risk = (2 Tempz — (1 Tempy) + A(52) — A(B1)

direct mortality effect adaptation costs

Measurement requires:

Tempy, Tempy — current & future temperature (global climate models)
B1, B2 — : current & future marginal damages (econometrics)

A(.) — : adaptation costs (unobserved)

We develop a revealed preference approach to estimate A(.) using

Bs.

Michael Greenstone University of Chicago January 10, 2025 15



Summary of Discussion

© Key Findings from Carleton et al. (2022)

(b) Temperature Impacts Vary Based on Local Climate and Income



Outline

Step 1: Estimate causal relationship between climate and mortality, model
adaptation response as a function of income and climate

Step 2: Predict response functions spatially
Step 3: Develop a revealed preference approach to estimate costs of adaptation
Step 4: Project impacts into the future using high resolution climate projections

[Step 5: Estimate empirical damage function accounting for uncertainty, then
calculate a partial mortality-only Social Cost of Carbon]

Michael Greenstone University of Chicago January 10, 2025 17



Outline

Step 1: Estimate causal relationship between climate and mortality, model
response as a function of income and climate

Michael Greenstone University of Chicago January 10, 2025
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The “Full” Mortality Costs of Climate Change

No adaptation (e.g., Hsiang, Kopp, et al 2017):

mortality effects without adaptation = (51 Tempy — 1 Temp;

Including adaptation benefits (e.g., Heutel et al 2017):

mortality effects with adaptation = 3, Tempy, — B1 Temps

Accounting for adaptation benefits & costs (this study):

full value of mortality risk = (32 Tempy — (1 Tempr) + A(52) — A(S1)

direct mortality effect adaptation costs

Michael Greenstone University of Chicago January 10, 2025 19



Historical Mortality Data
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Estimating a Mortality- Temperature Relationship
Mortality _rate,;; = Z BP Temp, + (05 Precip;s + 05 Precip?]
P
+ age_by_county _fixed _effects,;

+ age_by_country_by _year_fixed _effects,ct + €jat

a = age group

i = county (“adm 2")
¢ = country

t = year

Michael Greenstone University of Chicago January 10, 2025 21



Global Mortality-Temperature Response
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Age Group Heterogeneity
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The “Full” Mortality Costs of Climate Change

No adaptation (e.g., Hsiang, Kopp, et al 2017):

mortality effects without adaptation = (51 Tempy — 31 Temp;

Including adaptation benefits (e.g., Heutel et al 2017):

mortality effects with adaptation = (3, Tempy — 1 Temps

Accounting for adaptation benefits & costs (this study):

full value of mortality risk = (32 Tempy — (1 Tempr) + A(52) — A(S1)

direct mortality effect adaptation costs
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Heterogeneity in temperature-mortality response

Concept

Allow the shape of the function describing the temperature-mortality
relationship at a location be a function of conditions at that location.

Mortality _ratej; = Z P Temp?, ... controls
p

/l\
BP(s) =5 + 7 TMEANs + ~5 log(GDPpc)s

Cross sectional covariates at “state” s (adml)
— TMEAN; = long-run avg. temperature

— log(GDPpc)s = average log income per capita

Michael Greenstone University of Chicago

January 10, 2025 25



Adaptation to Climate

Response at 35°C relative to 20C for ages 65 and over

Change in deathrate
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Effect day at 35°C relative to 20°C for ages 65 and over.
Coefficient calculated for deciles of TMEAN (red shaded area).
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Adaptation to Climate

Response at 35°C relative to 20C for ages 65 and over
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Adaptation to Climate

Response at 35°C relative to 20C for ages 65 and over
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Adaptation to Climate

Response at 35°C relative to 20C for ages 65 and over
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Adaptation to Climate

Response at 35°C relative to 20C for ages 65 and over

Change in deathrate

MH!

colder hotter
3

4 L
Average temperature

Effect day at 35°C relative to 20°C for ages 65 and over.
Coefficient calculated for deciles of TMEAN (red shaded area).

Michael Greenstone University of Chicago January 10, 2025 26



Adaptation to Climate

Response at 35°C relative to 20C for ages 65 and over
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Adaptation to Climate

Response at 35°C relative to 20C for ages 65 and over
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Adaptation to Climate

Response at 35°C relative to 20C for ages 65 and over
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Adaptation to Climate

Response at 35°C relative to 20C for ages 65 and over
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Adaptation to Income x Climate (Empirical Result)
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Adaptation to Income x Climate (Empirical Result)
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Adaptation to Income x Climate (Empirical Result)
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Adaptation to Income x Climate (Empirical Result)
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Adaptation to Income x Climate (Empirical Result)
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Summary of Discussion

© Key Findings from Carleton et al. (2022)

(c) Temperature Impacts are Global and Heterogeneous



Outline

Step 2: Predict response functions spatially

Michael Greenstone

University of Chicago
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Spatial Resolution of Early IAMs
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Re-imagining Possibilities with Distributed Computing

Climate Impact Lab (2019)

24,000 regions



Example from Our Sample: Sensitivity to 35(65-+)

Damages at 35C relative to reference temperature (deaths per 100,000)
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How to Fairly Represent the Global Population?

We use our estimated response surface to predict response
functions for all impact regions globally.

3P(s) = AP + AP TMEAN, +4P log(GDPpc)s
BP(s) =% +% A5 log(GDPpc)

observable observable

Requires we assemble data for present (and future) in each region

@ Income & populaton:
e OECD x nightlights — downscale income to subnational level
o IIASA Shared Socioeconomic Pathways (SSP) incomes to 2100
o Weather & climate:

e 33 GCMs downscaled to impact region level
o Average climate calculated as 15 year average of temperature

Michael Greenstone

University of Chicago January 10, 2025
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Sensitivity to Hot Days: Our Sample, 65+

Damages at 35C relative to reference temperature (deaths per 100,000)
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Sensitivity to Hot Days: Global, 65+

Damages at 35C relative to reference temperature (deaths per 100,000)
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Evaluating Covariate Overlap: Current Comparability
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Evaluating Covariate Overlap: Future Comparability
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Summary of Discussion

© Key Findings from Carleton et al. (2022)

(d) Adaptation is Costly



Outline

Step 3: Develop a revealed preference approach to estimate costs of adaptation
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The “Full” Mortality Costs of Climate Change

No adaptation (e.g., Hsiang, Kopp, et al 2017):

mortality effects without adaptation = (51 Tempy — 31 Temp;

Including adaptation benefits (e.g., Heutel et al 2017):

mortality effects with adaptation = 3, Tempy, — B1 Temps

Accounting for adaptation benefits & costs (this study):

full value of mortality risk = (32 Tempy — (1 Tempr) + A(52) — A(S1)

direct mortality effect adaptation costs
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The “Full” Mortality Costs of Climate Change

No adaptation (e.g., Hsiang, Kopp, et al 2017):

mortality effects without adaptation = (51 Tempy — 31 Temp;

Including adaptation benefits (e.g., Heutel et al 2017):

mortality effects with adaptation = 3, Tempy, — B1 Temps

Accounting for adaptation benefits & costs (this study):

full value of mortality risk = (2 Tempa — (1 Tempy) + A(B2) — A(B1)

-

TV
direct mortality effect adaptation costs
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Recovering Adaptation Costs via Revealed Preference

We assume people invest in adaptive behaviors and technologies until the
costs of doing so just equal the protective benefits
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Recovering Adaptation Costs via Revealed Preference

We assume people invest in adaptive behaviors and technologies until the
costs of doing so just equal the protective benefits

f* = argmax u(x)[1 — Mort(3, Temp)]

subject to a budget constraint:

A(B) +x=Y
~——
adaptation
costs
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OMort(B*, Temp) 0B" VSL OE[Mort]

—VSL ~ — —
> ap 0Temp OTMEAN

(TMEAN; — TMEAN;_,)

@ We use measures of these benefits to back out the costs
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@ This approach exploits the revealed preference of adapted populations
today
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Summary of Discussion

© Key Findings from Carleton et al. (2022)

(e) Future Impacts of Climate Change are Heterogeneous and Uncertain



Outline

Step 4: Project impacts into the future using high resolution climate projections
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Projecting Sensitivity to Temperature - 2020

Damages at 35C relative to reference temperature (deaths per 100,000)
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Projecting Sensitivity to Temperature - 2050
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Projecting Sensitivity to Temperature - 2080

Damages at 35C relative to reference temperature (deaths per 100,000)

0 5 10 15 20

Michael Greenstone University of Chicago January 10, 2025

48



Projecting Sensitivity to Temperature - 2100
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Projected Impacts for the Globe Under RCP8.5
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Projected Impacts for the Globe Under RCP8.5

200

150

Full mortality risk due
to climate change

Change in deaths per 100,000 population

100-
} Adaptation
costs
50
0
2000 2025 2050 2075 2100

Year

Michael Greenstone University of Chicago January 10, 2025 50



Projected Impacts for the Globe Under RCP8.5
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Full Damage: Mortality + Adaptation Cost
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Summary

@ Using data covering 40% of the world's population:

o We recover a within-location U-shaped effect of temp on mortality
e Sensitivity to heat is lower in richer and hotter locations

@ We condition on income and climate in a unified approach to
(1) estimate response functions where no data exist and
(2) project benefits of adaptation into the future.

© We develop a revealed preference approach to bound adaptation costs

e The full mortality costs of climate change are the direct impacts plus
the costs of adaptation

@ Benefits & costs of adaptation are critical for projections

o Costs would be ~3x too large if we ignore adaptation benefits
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Mortality's Share of Total Damages
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Summary of Discussion

© Future Directions for Research



Exciting Areas for Further Research

l. Improved Understanding of the Heterogeneous
Mortality- Temperature Relationship

a. Urban Heat Islands (Chakma et al. 2024)
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Mortality- Temperature Relationship

a. Urban Heat Islands (Chakma et al. 2024)
b. Wet Bulb vs. Dry Bulb (Wilson et al. 2024)
c. 60% of World with Missing Data

d. What OTHER (Measurable) Factors Influence the
Mortality-Temperature Relationship?
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Exciting Areas for Further Research

Il. Climate Adaptation — A(f)
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Exciting Areas for Further Research

Il. Climate Adaptation — A(f)
Definition (Climate Adaptation).

“Climate adaptation is generally defined as any
behavior, investment or other decision taken in direct
response to realized or anticipated changes in the climate.
While adaptation often refers to decisions that ameliorate
the adverse impacts of climate change, adaptive behavior
can also include actions that allow individuals to exploit
beneficial opportunities that arise with an evolving
climate.” (Carleton et al. 2024)
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Exciting Areas for Further Research

I1l. Adaptation by Individuals

= |In the absence of market failures, individuals will make
efficient adaptation decisions, optimally choosing
between life-preserving expenditures and mortality risk.
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Exciting Areas for Further Research

I1l. Adaptation by Individuals

Estimated impact of temperature (days above 90°F) on mortality by
10-year period
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Exciting Areas for Further Research

I1l. Adaptation by Individuals

Sample: 1960-2004

(1) (2) (3)
Temperature above 90°F:
Number of days above
90°F X log doctors -0.0015
per capita (0.0016)
Number of days above
90°F X share with
residential AC
Temperature in 80°F-89°F:
Number of days in
80°F-89°F X log -0.0004
doctors per capita (0.0003)

Number of days in
80°F-89°F X share
with residential AC

Barreca et al. 2016
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Exciting Areas for Further Research

I1l. Adaptation by Individuals
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Exciting Areas for Further Research

I1l. Adaptation by Individuals

= Imperfect markets. Carleton et al. (2024) write in a
recent paper:

“However, in practice, private adaptation is
constrained by many frictions, including imperfect
information and inaccurate beliefs, as well as limits to
property rights, credit markets, and insurance, which
often disproportionately affect low income individuals
and countries.”
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