Designing Complex Experiments: Some Recent Developments

SUSAN ATHEY AND GUIDO IMBENS
STANFORD UNIVERSITY & NBER
1. What are the **goals** and **context** for the use of experimental data and results?
2. What are **challenges** in achieving goals?
3. How can we **design experiments** to better achieve goals?
Overview

- Inspiration from Tech
- Working backwards from post-experiment
- Challenges
- Design strategies
- Staggered rollout experiments
- Adaptive experiments
- Interference
Experiments in tech firms
Widespread adoption & research
Integral to innovation, business ops
Many open methodological ?s
Short term, partial eqm focus

Tech changing economics and experiments
Digitization: business, gov’t, society
Economist as foundational innovator: idea generation, architect, product designer
Economist as incremental innovator: embedded in the build, refine, & optimize cycle

Economic frameworks changing tech and experiments
Economics of outcomes, eqm, impact
Theory of data-driven decision-making for orgs/policy-makers
Applied econometrics in analysis
Resource allocation problem for scarce experimental units
Optimize design to achieve objectives

Reimagining Experimentation Analysis at Netflix

Toby Mao, Sri Sri Perangur, Colin McFarland
Another day, another custom script to analyze an A/B test. Maybe you’ve done this before and have an old script lying around. If it’s new, it’s probably going to take some time to set up, right? Not at Netflix.
Analysis of Historical Obs/Exp Data

- Off-policy (counterfactual) evaluation
- Heterogeneous treatment effects (HTE) of prior policies
- Combine with “foundation models” and/or external data

Refine Interventions

- Informed by theory and analysis
- Policies/algorithms: targeted treatment assignment, recommendation systems
- Pilot experiment, possibly recruited subjects

Experimental Design

- Select and validate outcome measures
- Formulate hypotheses and goals
- Design: unit, timing, measures, size, analysis plan
- Advanced experiments: adaptive, staggered rollout, dynamic treatments

Analysis & Decisions

- Revisit outcome measure properties
- “On-policy” evaluation, HTE
- Estimate optimal targeted policies
- Generalizable & tactical insights
- Deployment & decisions
- More experiments?
Analysis of Historical Obs/Exp Data

- Off-policy (counterfactual) evaluation
- Heterogeneous treatment effects (HTE) of prior policies
- Combine w/ “foundation models” and/or external data

Refine Interventions

- Informed by theory and analysis
- Policies/algos: targeted treatment assignment, rec systems
- Pilot experiment, poss. recruited subjects

Experimental Design

- Select and validate outcome measures
- Formulate hypotheses and goals
- Design: unit, timing, measures, size, analysis plan
- Adv. experiments: adaptive, staggered rollout, dynamic treatments

Analysis & Decisions

- Revisit outcome measure properties
- “On-policy” evaluation, HTE
- Estimate optimal targeted policies
- Generalizable & tactical insights
- Deployment & decisions
- More experiments?

Foundational Innovation

- Theory of Impact
 - Goals & mechanisms
 - Institutional context
 - Economic, behavioral, social theories
 - Dynamics, equilibrium, spillovers
 - Informed by related obs. studies & experiments
 - Proposed outcomes based on economic frameworks

- Scope of Intervention
 - Regulation or market shaping
 - Firm, org., or locality
 - Service provider vs. consumer in marketplaces

Incremental Innovation
Potential Goals

- **Demonstration** of impact for further development
 - Is there anything in this category of interventions that does anything for anyone?
- **Insight** for future foundational innovation
 - ATE, HTE
 - Which arms hurt, help, or neither
 - Which outcomes are affected, and identify tradeoffs in outcomes
- **Deployment** decisions (possibly targeted)
 - What is best on average?
 - For whom should we deploy, given resource constraints?
- Welfare of **those in the experiment** vs. use of learning afterwards

Examples of Challenges & Tradeoffs in Meeting Goals

Internal and external validity for relevant hypotheses

What to pre-specify vs. post-hoc
- Pre-specified vs. comprehensive w/ multiple hypothesis testing vs. data-driven hypothesis generation & sample splitting
- Outcome selection, transformation and modeling

Multiple arms, multiple subgroups
- Lack of overlap of collected data with post-experiment policy evaluation & optimization leads to high variance for policy evaluation and optimization
- Recommendation system: Algorithms that prioritize items for each individual. Two levels of “treatment,” algorithm and item. Overlap especially challenging.
- Number of arms to test
 - Eggs in baskets: better precision on fewer arms vs. diversified portfolio of arms

Generic versus tailored intervention design
- Find something that works ok for most people vs.
- Interventions that work well for some and poorly for others (amenable to finding HTE & targeted policies)

Exploration vs. Exploitation – experimental subject outcomes

Tradeoffs in outcome selection/collection/modeling (cost, response rate, timing)

Design process to evaluate tradeoffs & optimize may use pilots, semi-synthetic simulations, scenario planning
Working Backwards: How Will Analyst Evaluate Policies?

On-policy evaluation:
Compare outcomes across treatment arms

Common challenges
Low signal-to-noise for key outcomes, e.g. fat tails
How to transform or combine outcomes
Selective attrition/non-response (e.g. Lee Bounds)
Interference
Adaptively collected data

Approaches to reduce variance & refine outcomes
- Change the question/outcome
 - Redefine functional form for outcome
 - Combine outcomes into a surrogate index (Athey, Chetty, Imbens, Kang, 2019)
 - Study combination outcomes (e.g. product of two binary outcomes, for ex. Agrawal, Athey, Kanodia, Palikot (2023)) or conditional outcomes
- Model outcomes/adjust for covariates or lagged outcomes
 - Predictive model from historical cross-section or experimental data
 - E.g. study $Y_i - \mu_0(X_i)$ or $Y_i/\mu_0(X_i)$
 - Panel data methods
 - Attentive to staggered rollout issues, recent econometrics literature
 - TWFE, Synthetic Control, Matrix Completion, SDID
- Model/restrict treatment effects
 - How they vary with covariates/predicted baseline (e.g. additive vs. multiplicative)
 - How they shift distribution of outcomes
 $$\tau(u) = F_1^{-1}(u) - F_0^{-1}(u) = h(F_0^{-1}(u), \theta) - F_0^{-1}(u).$$
 - Model h as, e.g. linear or multiplicative, without functional form of F
 - Athey et al (JRSS-B 2023) propose semi-parametric efficient estimation approach, demonstrate benefits with fat tails (see R:parTreat)
- Issues for pre-analysis plans
 - How to spell out plans for model selection, e.g. cross-validated predictive model in control group
 - How many variations of outcomes to pre-specify

On-policy evaluation:
Compare outcomes across treatment arms

Common challenges
Low signal-to-noise for key outcomes, e.g. fat tails
How to transform or combine outcomes
Selective attrition/non-response (e.g. Lee Bounds)
Interference
Adaptively collected data

Approaches to reduce variance & refine outcomes
- Change the question/outcome
 - Redefine functional form for outcome
 - Combine outcomes into a surrogate index (Athey, Chetty, Imbens, Kang, 2019)
 - Study combination outcomes (e.g. product of two binary outcomes, for ex. Agrawal, Athey, Kanodia, Palikot (2023)) or conditional outcomes
- Model outcomes/adjust for covariates or lagged outcomes
 - Predictive model from historical cross-section or experimental data
 - E.g. study $Y_i - \mu_0(X_i)$ or $Y_i/\mu_0(X_i)$
 - Panel data methods
 - Attentive to staggered rollout issues, recent econometrics literature
 - TWFE, Synthetic Control, Matrix Completion, SDID
- Model/restrict treatment effects
 - How they vary with covariates/predicted baseline (e.g. additive vs. multiplicative)
 - How they shift distribution of outcomes
 $$\tau(u) = F_1^{-1}(u) - F_0^{-1}(u) = h(F_0^{-1}(u), \theta) - F_0^{-1}(u).$$
 - Model h as, e.g. linear or multiplicative, without functional form of F
 - Athey et al (JRSS-B 2023) propose semi-parametric efficient estimation approach, demonstrate benefits with fat tails (see R:parTreat)
- Issues for pre-analysis plans
 - How to spell out plans for model selection, e.g. cross-validated predictive model in control group
 - How many variations of outcomes to pre-specify
Working Backwards: Staggered Rollout Designs

Here: focus on Xiong, Athey, Bayati & Imbens (Mgmt Science, 2023)

Planned Analysis: Estimate ATE using matrix completion w/ staggered rollout design, e.g. Athey, Bayati, Doudchenko, Imbens, Khosravi (Mgmt Science, 2021)

Optimization: Minimize var of ATE

Synthetic control design
Selects units for (simultaneous) treatment, anticipating synthetic control estimation
Doudchenko et al. 2021a,b, Abadie and Zhao 2021

Stepped wedge designs (clinical trials)
Hussey and Hughes 2007, Hemming et al. 2015, Li, Turner, and Preisser 2018
No time-varying carryover effects

Estimation of carryover effects
Minimax temporal experimental design (Basse, Ding, and Toulis 2019)
Switchback design (Bojinov, Simchi-Levi, and Zhao 2020)

Note: another example of multi-dimensional outcomes
Working Backward: Staggered Rollout Experiments

Multiple outcomes aggregated into weighted average for purposes of experiment optimization
Characterizing the Solution to the (non-adaptive) Experimental Design Optimization Problem

Non-adaptive experiments: N and T are set, and treatment decisions are made, pre-experiment

- Assume after experiment will use GLS to estimate instantaneous and lagged treatment effects from nonstationary observed outcomes
- Analytical optimality conditions for the designs that maximize linearly combined precisions of estimated instantaneous and lagged effects
- Propose an algorithm to choose a treatment design based on the optimality conditions. The design has two features
 - Fraction of treated units per period takes an S-shaped curve: Treatment rollouts slowly at the beginning and end, and quickly in the middle
 - Bigger ℓ leads to more pronounced S
 - This rollout pattern is imposed for each stratum of units with the same observed and estimated latent covariate values
Adaptive Experimental Design for Staggered Rollouts

Goal: Most precisely estimate average treatment effects (i.e., increase $\text{Prec}(\hat{r}_0; Z)$) with valid inference, while using the least sample size.

Two adaptive decisions:

- **Stop the experiment early** if the desired precision is achieved (i.e., max duration is T_{max}, and duration $\tilde{T} \in [T_{\text{max}}]$ is a random variable).
- **Speed of treatment rollout** for the next time period is determined after each period’s outcomes are collected.
Designing the Adaptive Experiment

Design choices

1. Treatment design (rollout speed)
 - Adaptively choose as we gather more information about σ^2 during the experiment

2. Termination rule
 Design in order to enable efficient estimation and valid inference for treatment effect after experiment
 - Use as many observations as possible

Propose the Precision-Guided Adaptive Experiment (PGAE) algorithm
 - Simultaneously achieves more efficient rollout and stopping, with efficient post-experiment estimation
 - Uses sample splitting and dynamic programming
- **NTU**: Treatment design set pre-experiment (a small set)
 - Set as $\omega_{bm,s} = \frac{(2s - 1)}{2T_{\text{max}}}$ (optimal solution for T_{max})
- **ATU**: Treatment design chosen adaptively

```
data
      ┌─────┐
      │     │
      │   t │
      │     │
      └─────┘
        ┌─────┐
        │     │
        │ t+1 │
        └─────┘
          ┌─────┐
          │     │
          │ ATU₁ │
          └─────┘
            ┌─────┐
            │     │
            │     │
            └─────┘
              ┌─────┐
              │     │
              │ ATU₂ │
              └─────┘
```
At time t, optimize ω_{t+1} for ATU$_1$ and ATU$_2$ through dynamic programming (DP)

- In the DP, no intermediate cost and terminal cost is the precision at termination, i.e., $\text{Prec}(\tilde{\tau}_0; Z_{:,1:}\tilde{\tau}) = (N\tilde{\tau}/\sigma^2) \cdot g_{\tau}(\omega, \tilde{\tau})$
- Solve ω_{t+1} from DP based on the belief about $\tilde{\tau}$
• The adaptivity of the design, with the termination time depending on early values of the outcomes, comes at no cost in the estimation of τ_0.

 • Compare with a series of experiments with the same distribution of termination times, the average variance of \hat{r}_{all}, \bar{r} is the same.

 • Adaptive treatment decisions improve the estimation precision of τ_0.
Semi-synthetic application: Adaptive staggered rollouts

Imaginary experiment: city-level vaccine campaign to fight influenza

Data: month-city observations on influenza aggregated from MarketScan insurance data; DGP based on data from October to April from 2007-2017
- Artificially assumes flu season lasts longer when analyzing longer potential experiment lengths

Results: Adaptive design lowers estimation error by 20% at lower experiment cost
- Leads to **substantial early stopping**
 - When max possible # months is greater than 7, stop at less than half the max # months.
 - Adaptive rollout speeds up as algorithm predicts an early finish

Note: This exact method has not been implemented in practice to my knowledge.
- Industry just beginning to move from ad-hoc midstream decisions, simulation-based planning or heuristics
- Illustrates the ideas of experimental design as a formal optimization problem.
Working Backwards: Takeaways

Experimental Design as an Optimization Problem

Adaptivity improves performance but must be carefully designed to avoid costs

Non-adaptive approach

- Challenge:
 - Power; heterogeneous units & time shocks
- Analysis at the end:
 - ATE using post-experiment outcome modeling of latent time and unit effects
- Design choices:
 - (Stratified) rollout of treatment, length of experiment
- Optimization:
 - Algorithm for rollout design, characterization of solution (manually compare lengths of exp.)

Adaptive approach:

- Design choices:
 - Stopping time (since data-driven, becomes stochastic)
 - Rollout of treatment
- Optimization:
 - Structure algorithm so that data can be re-used for estimating treatment effects; adaptive based on estimates of variance, NOT estimates of outcomes
 - Algorithm optimizes rollout & stopping based on current beliefs about variance

Adaptivity tradeoff:

- Optimizing DURING the exp. potentially sacrifices ability to analyze AFTER
 - Xiong et al shows careful sample splitting and design can ameliorate tradeoff- no eff. loss!
 - Xiong et al is adaptive based on learned variance, not learned treatment effect
- Outcomes in early periods correlated w/ assignment in later periods
- Later, we discuss statistical issues with analyzing adaptively collected data, see e.g.:
Goal: Estimate & Deploy Targeted Treatment Assignment Policy
Heterogeneous Treatment Effects

1. Pre-specified or hypothesis driven
2. Comprehensive with MHT corrections
 - See e.g. List, Shaikh, Xu 2017
3. Data-driven hypothesis generation
 - E.g. Causal trees (Athey & Imbens, 2016), causal forests (Wager & Athey, 2018)

Can also consider het. in outcomes (e.g. Ludwig, Mullainathan & Spiess 2017)

Athey & Palikot (2023) created & implemented Challenges program in collaboration with DareIT to help women transition sectors into IT in Poland

2 programs, 2 distinct randomized experiments, 2 control group baselines. Whiskers show standard errors for CATEs.
Off-policy evaluation

1. Policy assigns an arm based on covariates and overall capacity $\pi: \mathcal{X} \times \mathcal{Q} \rightarrow \mathcal{A}$

 Potential outcome: $Y(a)$, Expected value of policy: $V(\pi) = \mathbb{E}_{X}[Y(\pi(X,q))]$

2. Off-Policy Estimators

 $\hat{V}(\pi)$ can be estimated using sample means for overlapping observations (simple RCT)

 Our application blends 2 RCTs, samples; outcome modeling, propensity weighting, or AIPW (w/cross-fitting)
Estimating and Evaluating Treatment Assignment Prioritization Rules

Estimate optimal policy
- For each program \(a \) and cov. \(x \), estimate \(\hat{\tau}_a(x) \)
- Optimization algorithm:
 - Prioritize the program and indiv characteristics that are most effective given capacity

Evaluate using test set

For more on methods, see also:
- Sverdrup, Wu, Athey & Wager (2023) & software in R:grf
- Yadlowsky, Fleming, Shah, Brunskill, and Wager (2021)
Off Policy Evaluation & Estimation: Important Points from Design Perspective

Overlap in historical data critical for variance of estimates:

\[
Var(\hat{E}_{X_i}[Y_i(\pi(X_i))] = \frac{\sigma^2}{N} \frac{1}{Pr(A_i=\pi(X_i))}
\]

- Historical deterministic targeted policy -> lack overlap

Policy estimation \(\hat{\pi} \): by evaluating many policies (Athey & Wager, 2021; Zhou, Athey & Wager, 2023; grf, policyTree in R)

- Quality of the policy estimate is worse if you optimize over a larger/more complex policy set \(\Pi \)
- Is proportional to the largest variance in set of considered policies:
 \[
 \sup_{\pi \in \Pi} Var(\hat{E}_{X_i}[Y_i(\pi(X_i))])
 \]

Working backward:

- Adaptive design/iterative exp assigns treatments based on covariates to manage overlap for (uncertain) future
- Policy learning during & after may restrict policy class, e.g. drop arms or use tree policies (Athey et al, 2022)
- Theory: Krishnamurthy, Zhan, Athey, Brunskill, 2023; Krishnamurthy, Propp, Athey, 2023;

Allowable Policies

Nonparametric, e.g. causal forest (Wager & Athey 2018; Athey, Tibshirani & Wager 2019), based on \(\hat{t}_i(X_i) > 0 \)

- Theoretically higher value
- Overfitting, hard to describe, non-monotone
- See eg Manski (2004), Hirano & Porter (2009), Stoye (2009), Kitagawa & Tetenov (2018)

Tree policy

- Athey & Wager, 2021; policyTree
- May do better in practice (regularize)
- Easy to describe, track segments
Tradeoffs between multiple outcomes

Targeting to improve one outcome might improve or hurt a different outcome

- May be tradeoff at individual level
- May be that you treat different people to maximize different outcomes

One option: maximize weighted sum of outcomes

- Constrain avg. of each outcome? For subgroups?
- Upweight vulnerable subgroups?

Signal-to-noise affects tradeoff

- May be much better for some outcomes than others, often better for short-term/simple engagement outcomes like clicks

Experiment randomizing the buttons for charitable donations for hundreds of thousands of PayPal donors, removing intermediate $75 button and replacing with either $10 or $200

Athey, Koutout, and Nath, 2024 WP
Iterative Experimentation to Develop Targeted Treatment Assignment Policies
Iterative experimentation and policy estimation

Evaluate Previous Deployed Policy

\[V(\pi_t) = \mathbb{E}_{X_t}[Y_t(\pi_t(X))] \]

Compare Alternative Counterfactual Policies \(\pi \in \Pi \)

Recall: policies map characteristics to treatment arms \(\pi: \mathcal{X} \to \mathcal{A} \)

IDEALLY: Randomization of Policies

\(\pi_{t+1} \) vs. \(\pi' \) vs. \(\pi^{rand} \)

Select & Deploy New Policy \(\pi_{t+1} \)

Collect data via randomization to do off-policy evaluation of alternative targeted policies
- See e.g. Hitsch et al., 2024; Simester et al., 2020a; Yoganarasimhan et al., 2023

Deploy and test performance
- Hitsch et al. (2024)
- Simester et al., 2020a
- Yang et al., 2023
Goal: Deploy algorithm assigning call times to farmers based on engagement history; bandwidth constrained

Algorithm: Input: past data. Output: estimated policy assigning call times to each farmer, $\pi: \mathcal{X} \rightarrow \mathcal{A}$

Design: Sequence of experiments with 2 levels of randomization.

Benefits of design: Data from Week t enables evaluation of deployed policy, and estimation/evaluation of alternative/new policies

Caution: Pool data with care; assignments in week t depend on past data

Athey, Cole, Nath, and Zhu (2023 WP)
Impact of Personalization in Call Times

Value of Targeting
- Estimate targeted policy under capacity constraints (new methods)
- 8% gain in engagement.
- Potential to reach 26,000-33,000 additional farmers with educational content.

Tradeoffs between Outcomes
- Scarce bandwidth per hour
- Female farmers lower average engagement. Can re-optimize giving them greater weight
- Can improve engagement from women by 9% if we reduce men’s engagement by 1.7%

Shocks/external validity
- On-policy estimates worse than off-policy predictions
- Show: Pref./Tech. Shocks.
- Distribution Shifts.
- Weight more recent data for better perf. (tradeoff w/ variance)

Athey, Cole, Nath, and Zhu (2023 WP)
Adaptive Experiments: Bandits & Contextual Bandits
Bandits: Goals
1. Regret
2. Learn good policy
3. Hypothesis testing/precise estimation

Key Tradeoffs
- Exploration vs. Exploitation
- Exploitation targets optimal policy but risks low overlap with it
- Overlap w/ optimal policy vs. overlap with all policies to be evaluated

Low “Regret” – DURING Experiment
- Dropping harmful arms (e.g. medical)
- Expected outcomes of subjects DURING experiment

Policy Learning - AFTER Experiment
- “Policy Learning” (Kasy & Sautmann) or “Simple Regret” (ML)
- Very little theory for contextual bandit (Qin and Russo, 2022, Krishnamurthy, Zhan, Athey & Brunskill, NeurIPS 2023)
- When does it help? Pure RCT puts lower bound on overlap

Tight standard errors, specific hypothesis tests at END
- Best arm/policy vs. control?
- Policy learning and pure RCT keep exploring forever—always some benefit to more learning
- Real world policy learning often doesn’t converge in time
- Policy makers are going to pick one choice and want to know how good it is, compare to baseline, do budgeting/planning etc.
- To optimize need to be aware what happens after experiment ends
- Adaptivity requires special treatment for hypothesis at end

Tradeoffs: bandits can be designed to manage
Goal: Adaptive pilot to inform email design for nudge

Want to find the best arms at the end

Practitioner’s guide: https://www.gsb.stanford.edu/faculty-research/publications/practitioners-guide-designing-adaptive-experiments

Prototype B: No personalization in 1st sentence
Suboptimal design: Ten-armed RCT
- Requires large sample size.
- Some arms may be bad enough that precise estimates are not useful.
- Some arms may be good but similar, irrelevant which is chosen.
Step 1: At the beginning of the experiment, assign treatments uniformly at random.

Multi-armed bandits
An example of adaptive design
Step 2: Once some data has been collected, increase the probability of assignment to more promising arms.
Step k: Repeat this procedure in batches, increasing probabilities of assignment as we become more certain about which treatments are good.
1. Start with a prior distribution on arm values.

2. Collect first batch of data by assigning treatments uniformly at random.

3. Observe outcomes and update the posterior distribution.

4. Next batch, assign treatments according to their posterior probability of being optimal. (Repeat)

The Thompson Sampling heuristic dictates these assignment probabilities.

Has good properties balancing exploration & exploitation.

P(arm 1 is optimal) = \(\frac{1}{3} \)

P(arm 2 is optimal) = \(\frac{1}{3} \)

P(arm 3 is optimal) = \(\frac{1}{3} \)
Adaptive experimentation
Pilot experiment result for email nudge

- Data was collected via an adaptive experiment, where more units assigned to the treatments that were doing better
 - Modified Thompson sampling algorithm (ensuring a minimum # of obs allocated to control).
 - Better: “Exploration sampling” to target policy learning. Here little difference (didn’t converge).

- Experiment allowed us to learn that
 - Control is indeed suboptimal; three prototypes “in the lead”.

[Left] Snapshots of posterior distributions of the probability that a participant will engage with each email prototype after initial phase of experiment and at the end of the experiment.
Experiments in practice: Email nudges for NY Dept of Finance
Results from main experiment

Pilot experiment informed selection of two prototypes (note: due to organizational constraints, these ended up being slightly different from pilot winners).

Main experiment was an RCT with ~22k actual NYC drivers.

[Left] Main experiment results, showing average outcome (defined as indicator of payment or dispute within two weeks of receiving the email).
Check out our shiny app!

You can try different arm means, and different algorithms

https://gclab.shinyapps.io/bernoulli-bandit/
Instability is often a problem

Bandit may not have converged before you run out of money/experimental units

Heuristics for stopping can be used if you have sufficient budget (but creates an additional form of adaptivity to address in analysis)

Recall earlier discussion of adaptivity after experiment, e.g., Hadad, Hirschberg, Zhan, Wager & Athey, PNAS 2021 & references therein

Case of equally good arms
Testing Hypotheses After Bandit

- Simple mean is biased estimator of true arm mean, and estimator is often multi-modal
 - If an arm does badly initially, receives lower assignment probability later, upweighting initial bad outcomes—low mean, low sample size go together
- Weighting by inverse of assignment probability (IPW) restores “equal weighting of each batch,” eliminates bias
- IPW is not asymptotically normal (variance & mean pf estimates are still related)

Solution: adaptively weight data to stabilize variance, retain consistency, restore normality (Hadad et al, 2021 PNAS)

Introduce *evaluation weights* $h_t(w)$.

\[
\hat{Q}^{AW}_T(w) := \sum_{t=1}^{T} \frac{h_t(w)}{\sum_{s=1}^{T} h_s(w)} \left\{ \frac{\mathbb{I}\{W_t = w\}}{e_t(w)} Y_t + \left(1 - \frac{\mathbb{I}\{W_t = w\}}{e_t(w)} \right) \hat{\mu}_t \right\}
\]

See also Andrews, Kitagawa, McCloskey (2019), Zhan, Ren, Athey & Zhou (KDD, 2021, Mgmt Sci 2023), Deshpande, Mackey, Syrgkanis, Taddy (2019), Howard, Ramdas, McAuliffe, Sekhon (2021), etc.

Adaptively-Weighted Augmented Inverse Propensity Score Estimator

More details in Appendix to this Presentation
Adaptive Experiments and Targeted Treatments

System interacts with its environment, taking actions or assigning treatments

Outcomes for different arms depend on contexts

Contextual bandits:

- Learn a targeted treatment assignment policy mapping from individual characteristics to treatments

\[\pi: \mathcal{X} \rightarrow \mathcal{A} \]

- Consider batches of subjects

- **Outcome modeling** approach: After each batch, estimate a model mapping characteristics to (counterfactual) outcomes for each treatment \(f_k(x, a) \)

- Then apply bandit heuristics as each \(x \) in next batch arrives
Real-World Applications of Contextual Bandits
Contextual Bandits in a Survey Experiment on Charitable Giving: Within-Experiment Outcomes versus Policy Learning

Athey et al 2022

Design a “contextual bandit” - an adaptive experiment with multiple arms

Tension arises between

- Cumulative regret (within-experiment outcomes), and
- Finding best policy to use AFTER experiment (“policy learning”)

Propose a heuristic algorithm that balances the two goals.

Implement in charitable giving field experiment.

Compare with other existing contextual bandit algorithms using semi-synthetic data based on our experimental data.
Contextual bandit over time
Targeted policy vs. best non-targeted policy

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Std.err</th>
<th>Diff</th>
<th>Std.err</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best non-targeted policy</td>
<td>4.687</td>
<td>0.208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Greenpeace)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Targeted policy</td>
<td>5.653</td>
<td>0.216</td>
<td>0.966</td>
<td>0.300</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Please drag the slider to indicate your estimate, with -10 being extremely dissatisfied, and 10 being extremely satisfied.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Views on immigration: The US government needs to get tougher on immigration
Views on global warming: The US government should do more to prevent global warming
Views on right to bear arms: The right to bear arms should be limited

1- Strongly disagree, 2 - Somewhat disagree, 3 - Neither agree nor disagree, 4 - Somewhat agree, 5 - Strongly agree
Simulations based on semi-synthetic data

Contextual bandits algorithms guide data collection ⇒
 ◦ Not straightforward to reanalyze historically collected data to compare algorithms
 ◦ For a given x, a different algorithm would assign a different treatment than what was observed

Running many parallel experiments to compare algorithms can be costly ⇒
 ◦ Rely on simulations based on semi-synthetic data
 ◦ See Athey et al 2021 for more realistic simulations based on GANs
 ◦ Here we change complexity of treatment effect heterogeneity across simulation designs
Uniform Randomization does better than CB algorithms at **Policy Learning** without aggressive lower bounds.

Compare performance of different algorithms in semi-synthetic experiments.

Plot show average value of learned policy with varying tuning parameters.

Takes significant hyperparameter tuning to SLOW DOWN exploitation in order for variants of TS to beat **uniform randomization**.

Goals: First, to narrow treatments, and second, to estimate and evaluate a targeted treatment assignment policy

Design: Contextual Adaptive Experiment to narrow down treatments and learn a targeted treatment assignment policy, with an evaluation phase to gather more data to precisely estimate the benefits to the policy (and test null of no benefits to targeting)

Respondents: Facebook users in Kenya and Nigeria (WHO priority)

Treatments: Interventions to combat the spread of COVID misinformation

Outcomes: Sharing intentions and behaviors (aggregated)
Treatments

Respondent-Level Treatment: Pledge

- Do you want to help keep your family, friends, and community safe from COVID-19?
 - Yes
- Did you know that false information about ways to prevent or cure COVID-19 threaten the health and wellbeing of everyone around us?
 - Yes
- Are you committed to keeping your family, friends, and community safe from COVID-19 misinformation?
 - Yes

I pledge to **Spot it & Speak out** to help keep my family and friends safe from the spread of COVID-19 misinformation!

#SpotItSpeakOut

Headline-Level Treatment: Real Info

According to the WHO, there is currently no proven cure for COVID-19.

Palm oil is simple solution to Corona
Facebook user

Would you like to share this post on your timeline?

[Reminder: don't share it now, you will be able to share it at the end of the survey]

Yes No
Treatments

<table>
<thead>
<tr>
<th>Shorthand Name</th>
<th>Treatment Level</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Facebook tips</td>
<td>Respondent</td>
<td>Facebook’s “Tips to Spot False News”</td>
</tr>
<tr>
<td>2. AfricaCheck tips</td>
<td>Respondent</td>
<td>Africacheck.org’s guide: “How to vet information during a pandemic”</td>
</tr>
<tr>
<td>3. Video training</td>
<td>Respondent</td>
<td>BBC Video training</td>
</tr>
<tr>
<td>4. Emotion suppression</td>
<td>Respondent</td>
<td>Prompt: “As you view and read the headlines, if you have any feelings, please try your best not to let those feelings show. Read all of the headlines carefully, but try to behave so that someone watching you would not know that you are feeling anything at all” (Gross, 1998).</td>
</tr>
<tr>
<td>5. Pledge</td>
<td>Respondent</td>
<td>Prompt: Respondents will be asked if they want to keep their family and friends safe from COVID-19, if they knew COVID-19 misinformation can be dangerous, and if they’re willing to take either a private or public pledge to help identify and call out COVID-19 misinformation online</td>
</tr>
<tr>
<td>6. Accuracy nudge</td>
<td>Respondent</td>
<td>Placebo headline: “To the best of your knowledge, is this headline accurate?” (Pennycook et al., 2020, 2019).</td>
</tr>
<tr>
<td>7. Deliberation nudge</td>
<td>Respondent</td>
<td>Placebo headline: “In a few words, please say why you would like to share or why you would not like to share this headline.” [open text response]</td>
</tr>
<tr>
<td>8. Related articles</td>
<td>Headline</td>
<td>Facebook-style related stories: below story, show one other story which corrects a false news story</td>
</tr>
<tr>
<td>9. Factcheck</td>
<td>Headline</td>
<td>Fact checking flag from third party (e.g., Facebook, AFP, AfricaCheck, etc)</td>
</tr>
<tr>
<td>10. More information</td>
<td>Headline</td>
<td>Provides a link to “Get the facts about COVID-19” as per Twitter flags</td>
</tr>
<tr>
<td>11. Real information</td>
<td>Headline</td>
<td>Provides a true statement: “According to the WHO, there is currently no proven cure for COVID-19.</td>
</tr>
<tr>
<td>12. Control</td>
<td>N/A</td>
<td>Control condition</td>
</tr>
</tbody>
</table>
Response measurement

Outcomes:
- Would you like to share this post on your timeline?
- Would you like to send this post to a friend on Messenger?

\[M_i = \text{Sum of misinformation outcomes} \]
\[T_i = \text{Sum of true information outcomes} \]

Response function (weighted sum):
\[Y_i = -M_i + 0.5T_i \]
Review of experiment design

Data collection:
- 4.5k in adaptive learning (Feb/March 21)
- 12.1k in evaluation split (July 21)
 - 1,451 simple balanced random assignment
 - 10,681 on-policy targeted assignment

Analysis:
- Response function: Weighted sum of sharing intentions,
 \[Y_i = -M_i + 0.5T_i \]

Evaluation arms:
- Pure control
- Headline only:
 - Factcheck
 - Related Articles
- Respondent only:
 - Accuracy
 - Facebook Tips
 - Optimal contextual (accuracy/Facebook tips/video/emotion 83/15/1/1)
Design Discussion

- **Adaptive phase/contextual bandit**
 - Ideally, collect more data about treatment arms that are more effective for each type of subject
 - Challenge: instability can increase variance when estimating optimal policies
 - Post-hoc analysis (informed by econometric theory): estimate a policy where only options are the best-performing arms. That policy appears to perform better when evaluated in test data.

- **Evaluation phase**
 - Gather purely randomized data across smaller number of arms
 - Enables off-policy evaluation of variety of targeted policies, with sufficient overlap between data collection and policy evaluated
 - Gather additional data on learned targeted policy
 - Enables hypothesis testing after the experiment,
Assignment Probabilities in Adaptive Phase

Steep slope = high assignment/posterior

Frequent problem with moderate size experiments: convergence is not achieved, environment is changing
Outcomes in Evaluation Phase & Mechanisms

Learned targeted policy is estimate of best policy at the end of adaptive phase (and deployed in evaluation phase).

Restricted targeted policy is targeted policy restricted to the top two individual arms (also uses adaptive phase data). Since greater signal on the false sharing outcome, it is optimized on the latter outcome.

The Restricted Targeted Policy has greater discernment than the control, $\text{TE}=0.029$, s.e. = 0.013.

It also achieves a decrease in false intentions sharing relative to control of -3.3 pp (s.e. = 1.0).

Subjects appear to discern true vs. false posts.
Restricted Contextual Policy: Average Characteristics of Users Assigned to Each Arm

The diagram illustrates the average characteristics of users assigned to each arm of the policy, comparing optimal policy accuracy (n = 8,309) with optimal policy for Facebook tips (n = 2,222). The differences in characteristics are highlighted with statistical significance measures.

- **Digital literacy index**: The difference in digital literacy index is -1.436 (0.103), with a Z-score of -14.427 and p-value < 0.001, indicating a statistically significant difference.

- **Age**: The difference in age is 1.757 (0.188), with a Z-score of 9.346 and p-value < 0.001, also indicating a statistically significant difference.

- **Supports governing party**: The difference in supporting the governing party is 0.038 (0.011), with a Z-score of 3.455 and p-value < 0.001, showing a statistically significant difference.

- **Male**: The difference in gender (male) is -0.027 (0.012), with a Z-score of -2.250 and p-value = 0.024, indicating a statistically significant difference.

- **Scientific knowledge index**: The difference in scientific knowledge index is 0.007 (0.016), with a Z-score of 0.438 and p-value = 0.662, showing no statistically significant difference.

The standard deviation on the normalized distribution is shown with a color gradient, ranging from -0.2 to 0.2.
Outcomes in Evaluation Phase

Plot shows differences in average outcomes between two scenarios for prioritizing accuracy nudge assignment:
- X% randomly chosen vs.
- X% prioritized by treatment effect

False sharing outcome (.44 baseline average)

Priority from causal forest treatment effects (grf) Athey, Tibshirani & Wager (2019)

TOC (grf) from Yadlowsky, Fleming, Shah, Brunskill, and Wager (2021)
Mean outcomes $\mu_d(x)$ for different arms depend on contexts

Doubly robust contextual bandit learns the optimal treatment assignment policy: Dimakopoulou, Zhou, Athey & Imbens 2019

Estimation at each batch plagued by adaptivity of assignment process. Weighting creates variance due to lack of overlap as assignment probabilities get more concentrated
Contextual bandits algorithm issues – policy learning and regret

Recall problems encountered:

- Selecting functional form complexity
- Uncertainty quantification needed to do data-driven experimental design (guide exploration)
- Instability & poor overlap with optimal policies implies hard to beat RCT for policy learning

Goal tradeoff:

- Post-experiment policy learning vs. in-experiment outcomes

Solutions make heavy use of tools from semi-parametric approaches for causal inf w/ unconfoundedness

- See eg Carranza, Krishnamurthy & Athey (AISTATS 2023)
- But also very different issues around uncertainty quantification and bandit heuristics: need algorithm to choose how to explore arms

Challenge: Functional forms for outcomes

- Need func. form to extrapolate to make decisions for new context
- Early, func. Form too complex for data size and later, too simple for reality
- Solution: data-driven model selection using cross-validation, together with specification test to show that uncertainty quantification based on outcome model is reliable to use for exploration rate
 - Func. Form increases in complexity as more data collected
 - Specification test compares policy evaluation using (known) propensity weighting and outcome modeling approach (Krishnamurthy, Athey & Brunskill, arxiv 2024)
 - Result (Krishnamurthy, Propp, & Athey AISTATS 2024): can use resulting uncertainty to guide exploration rate, “costless model selection”

Challenge: Controlling overlap for policy learning

- Algo with tuning parameter that traces frontier for regret vs. policy learning
- New algorithms that directly target risk of excluding potentially optimal arms
- Krishnamurthy, Athey & Brunskill (NeurIPS 2023)

\[
Var(\mathbb{E}_{X_i} [Y_i(\pi(X_i))]) = \frac{\sigma^2}{N} \frac{1}{Pr(A_i = \pi(X_i))}
\]
Takeaways

Economics toolkit applied for high-level design of intervention, experiment structure, and outcomes

Experimentation cycle is part of operation of digital systems

Detailed design choices solve an optimization problem
 - **Work backwards**
 - Goal: what will you do with the results & how?
 - E.g. Insight, deploy once, deploy as part of experimentation cycle
 - What outcomes are you measuring to achieve goal?
 - Solve optimization problem for experiment design
 - Formally or informally, theoretically or with simulations
 - One-time/in advance, series of iterative experiments, or fully adaptive
 - Full adaptive issues
 - Fully adaptive is “AI replacement” for experimental design who is solving a causal inference problem with unconf. at each step
 - Needed a lot of refinement to automate solutions to common problems
 - Getting closer to working reliably, but still cumbersome to implement
Appendices
Details on Hypothesis Testing With Bandit (Adaptively Collected) Data
Caveats
Statistics under adaptivity

In an adaptive experiment, collected data are **not independent**.

Usual methods for inference will often give the wrong answer. More sophisticated methods are needed.

Hadad, Hirshberg, Zhan, Wager, Athey (2021, PNAS)

This is an area of active research:
- Luedtke and van der Laan (2016)
- Deshpande, Mackey, Syrgkanis, Taddy (2017)
- Howard, Ramdas, McAuliffe, Sekhon (2019ab)
- Zhang, Janson, Murphy (2020)

Example: distribution of the sample mean after an adaptive experiment. Estimates are biased and do not have a normal distribution (usual t-tests are not valid!).
Let’s consider a simple experiment.

- There are two arms.
- Both arms have the same expected value of zero.
- Data is collected **adaptive**, in two batches:

<table>
<thead>
<tr>
<th>Periods $t = 1$ to $T/2$</th>
<th>Period $t = T/2$</th>
<th>Periods $t = T/2 + 1$ to T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign each arm with 50% probability</td>
<td>Estimate sample means</td>
<td>Assign arm with highest estimated mean 90% of the time</td>
</tr>
</tbody>
</table>

Goals:

- Estimate the **value** of the arm $Q(w) := E[Y(w)]$.
- Produce a valid confidence interval for it.
Idea 1: Use the sample mean:

\[\hat{Q}_{W,T}^{AVG} := \frac{1}{n_{W,T}} \sum_{t : W_t = w} Y_t \]

The sample mean is **biased** and **not Normal**!
Why is the sample mean **biased**?

When we get a low estimate of the average after the first batch (by chance!), we collect less data in future batches, which has the effect of overweighting the batches with (spuriously) lower outcomes.

Why is it not **normal**?

Because it’s a mixture of two distributions:
Idea 2: Use the inverse-propensity weighted (IPW) mean:

$$\hat{Q}_{w,T}^{IPW} := \frac{1}{T} \sum_{t=1}^{T} \frac{Y_t 1\{W_t = w\}}{e_t(w)}$$

$e_t(w)$ assignment prob.

The IPW mean is **unbiased**, but it's still **not Normal**!
It can also exhibit **high-variance** due to small propensity weights.

Interpretation with batches:

- First, take average outcome for an arm within each batch.
- Then, equally weight the batches.
What’s the problem with IPW averages?

\[
\hat{Q}_{w,T}^{IPW} = \frac{1}{T} \sum_{t=1}^{T} \hat{\Gamma}_t^{IPW}(w) \quad \text{with} \quad \hat{\Gamma}_t^{IPW}(w) = \frac{1(\{W_t = w\})}{e_t(w)} Y_i
\]

It’s an average of unbiased terms: \(\hat{\Gamma}_t^{IPW}(w) = E[Y_t(w)] \).

But in a bandit experiment, \(e_t(w) \to 0 \) for bad arms.

For bad arms, variance is small at the beginning of the experiment, but very large at the end.

In spite of that, we’re giving them the same weight \(1/T \)!

Idea: average using non-uniform weights.

Let’s see how to apply this insight next.
Testing Hypotheses After Bandit

- **Simple mean** is **biased** estimator of true arm mean (initial bad outcomes upweighted)
- **Weighting** by inverse of assignment probability restores “equal weighting of each batch,” eliminates bias
- IPW is not asymptotically normal

Solution: adaptively weight data to stabilize variance, retain consistency, restore normality (Hadad et al, PNAS 2021)

IPW Estimator

Simple Mean

Weighted IPW

Introduce **evaluation weights** $h_t(w)$.

Adaptively-Weighted Augmented Inverse Propensity Score Estimator

$$
\hat{Q}^{AW}_T(w) := \sum_{t=1}^T \frac{h_t(w)}{\sum_{s=1}^T h_s(w)} \left\{ \frac{\mathbb{I}\{W_t = w\}}{e_t(w)} Y_t + \left(1 - \frac{\mathbb{I}\{W_t = w\}}{e_t(w)} \right) \hat{\mu}_t \right\}
$$
We started with the IPW estimator:

\[
\hat{Q}_{w,T}^{IPW} = \sum_{t=1}^{T} \frac{1}{T} \hat{\Gamma}_t^{IPW}(w) \quad \text{with} \quad \hat{\Gamma}_t^{IPW}(w) = \frac{1(\{W_t = w\})}{e_t(w)} Y_i
\]

Identified major flaw: variance depends on (time-varying, adaptive) $1/e_t(w)$, but averaged with (static) $1/T$.

Proposed the **adaptively-weighted estimator**

\[
\hat{Q}_{w,T}^{h} = \sum_{t=1}^{T} \frac{h_t(w)}{\sum_{t=1}^{T} h_t(w)} \hat{\Gamma}_t^{AIPW}(w) \quad \text{with}
\]

\[
\hat{\Gamma}_t^{AIPW}(w) = \frac{1(\{W_t = w\})}{e_t(w)} Y_i + \left(1 - \frac{1(\{W_t = w\})}{e_t(w)}\right) \hat{m}_t(w)
\]

Next question: which weights h_t should we use?
Central limit theorem for adaptively-weighted estimates

Evaluation weights h_t and assignment mechanism e_t satisfy:

A1. Infinite sampling

$$\left(\sum_{t=1}^{T} h_t \right)^2 / \mathbb{E} \left[\sum_{t=1}^{T} \frac{h_t^2}{e_t} \right] \xrightarrow{T \to \infty} \frac{p}{\infty}.$$

A2. Variance convergence

$$\sum_{t=1}^{T} \frac{h_t^2}{e_t} / \mathbb{E} \left[\sum_{t=1}^{T} \frac{h_t^2}{e_t} \right] \xrightarrow{T \to \infty} 1.$$

A3. Bounded moments

$$\sum_{t=1}^{T} \frac{h_t^{2+\delta}}{e_t^{1+\delta}} / \mathbb{E} \left[\sum_{t=1}^{T} \frac{h_t^2}{e_t} \right]^{1+\delta/2} \xrightarrow{T \to \infty} 0.$$
Central limit theorem for adaptively-weighted estimates

Theorem. (Intuitive version) Suppose assumptions A1-A3 are satisfied, and suppose that either \hat{m}_t is consistent or e_t has an almost-sure limit. Then,

\[
\frac{\hat{Q}_T^h(w)}{\hat{V}_T(w)^{1/2}} \xrightarrow{T \to \infty} \mathcal{N}(0, 1) \quad \text{[Asymptotic Normality]}
\]

\[
\frac{\hat{Q}_T^h(w) - Q(w)}{\hat{V}_T(w)^{1/2}} \xrightarrow{T \to \infty} \mathcal{N}(0, 1) \quad \text{[Asymptotic Normality]}
\]

[Consistency]

Notes:

- $\hat{V}_T(w)$ is a simple estimate of the variance (see paper).
- Our general theory also covers many other estimands, including the difference in value $E[Y(w) - Y(w')]$.

Weights that satisfy this recursive condition allow for our CLT:

\[
\frac{h_t^2}{e_t} = \left(1 - \sum_{s=1}^{t-1} \frac{h_s^2}{e_s}\right) \lambda_t \quad \lambda_t \in [0, 1], \lambda_T = 1
\]

- Observation \(t \) has variance proportional to \(h_t^2/e_t \).
- Recursive construction forces \(\sum_{t=1}^{T} h_t^2/e_t = 1 \), so that the variance convergence condition (A2) is satisfied (prevents issues with bandits in the no-signal case).
- Allocation rate \(\lambda_t \) governs the weight observation \(t \) receives.
- We can do more than just satisfying CLT conditions.
- Make \(\lambda_t \) adaptive – get lower variance!
Susan Athey’s Public Resources

ONLY INCLUDES MY OWN PAPERS, NOT A COMPREHENSIVE BIBLIOGRAPHY
Resources: Tutorials & User Guides

MACHINE LEARNING & CAUSAL INFERENCE
TEACHING MATERIAL & TUTORIALS

Videos and slides for ML & Causal Inference:
2018 AEA 2-day Course: https://bit.ly/MLCI2018

Bookdown tutorials can be downloaded and run on public or private data. Covers prediction and cross-validation, ATE, HTE, policy estimation, causal panel data: https://bookdown.org/stanfordgsbsilab/ml-ci-tutorial/

Public report on Paypal Giving Experiments:

Computational Applications to Behavioral Science report with ideas42 (gentle introduction to machine learning):
https://gsbdbi.github.io/ml_for_behavioral_science/index.html

RESOURCES FOR EXPERIMENT PLANNING
AND TEACHING

Shiny app for simulating and teaching about bandits:
https://www.gsb.stanford.edu/faculty-research/labs-initiatives/sil/research/bandit-experiment-application

Practitioner’s Guide for Designing Adaptive Experiments:

Repository with many datasets from economic field experiments:
https://github.com/gsbDBI/ExperimentData
Statistical Software Packages

AVERAGE TREATMENT EFFECTS: CROSS-SECTIONAL AND PANEL DATA

- **BalanceHD**: Residual balancing algorithms for average treatment effects or policy evaluation under unconfoundedness
- **Grf**: Implementation of an AIPW method for ATE using causal forests for nuisance parameters
- **DS-WGAN**: Generative adversarial networks to design data-driven simulations to compare methods
- **ParTreat**: Software for estimating treatment effects in experiments where the outcome distributions may have “fat tails”

Tutorial for average treatment effects, with R code: https://bookdown.org/stanfordgsbsilab/ml-ci-tutorial/ate-i-binary-treatment.html

Panel data

- **Torch Choice**: A Library for flexible, fast discrete choice modeling designed for both estimation and prediction
- **MCPPanel**: Matrix completion for causal panel data models simulations for benchmarking causal estimators
- **Synthdid** in R and in **Stata**: Synthetic difference-in-differences (software paper here https://dx.doi.org/10.2139/ssrn.4346540)

HETEROGENEOUS TREATMENT EFFECTS AND POLICY EVALUATION/ESTIMATION

- **Grf package + tutorials**: https://grf-labs.github.io/grf/
 Honest random forests
 Causal forest under unconfoundedness or with IV
 Causal forest with many outcomes/treatments
 Causal survival forest
 Quantify/test for HTE
 Average treatment effects with unconfoundedness, including with covariate shift
 Qini curves
 Sufficient representations of categorical variables

- **PolicyTree** for estimating tree-based policies: https://grf-labs.github.io/policytree/
- **CausalTree**: Heterogeneous treatment effects with causal trees
Methods: HTE & Policy Evaluation

HETEROREGEOUS TREATMENT EFFECTS

COUNTERFACTUAL EVALUATION OF POLICIES AND METHODS FOR AVERAGE EFFECTS

Methods: Targeted Treatment Assignment Policies

POLICY ESTIMATION/LEARNING

APPLICATIONS OF HTE/POLICY ESTIMATION

Methods: Adaptive Experiments & Bandits

HYPOTHESIS TESTING & POLICY EVALUATION/ESTIMATION WITH ADAPTIVE DATA

HYPOTHESIS TESTING & POLICY EVALUATION/ESTIMATION WITH ADAPTIVE DATA: CONTEXTUAL

Zhan, Ruohan, Vitor Hadad, David Hirschberg, and Susan Athey. “Off-Policy Evaluation via Adaptive Weighting with Data from Contextual Bandits.” *SIGKDD (Association for Computing Machinery’s Special Interest Group on Knowledge Discovery and Data Mining)* (2021): 2125-2135. https://doi.org/10.1145/3447548.3467456
Methods: Adaptive Experiments with Targeting (“Contextual Bandits”)
Methods: Contextual Bandit Applications

ADAPTIVE EXPERIMENT/CONTEXTUAL BANDIT APPLICATIONS

Methods: Causal Panel Data Analysis, Experimental Design for Staggered Rollouts

ANALYSIS OF TREATMENT EFFECTS WITH PANEL DATA

DESIGN OF STAGGERED ROLLOUT EXPERIMENTS
Methods: Federated Causal Inference

ESTIMATING CAUSAL EFFECTS WITHOUT COMBINING DATA (FEDERATED CAUSAL INFERENC)

Methods: Prediction and Causal Inference

PREDICTION VS. CAUSAL INFERENCE

STABLE PREDICTION

Methods: Combining Experimental and Observational Data

COMBINING EXPERIMENTAL AND OBSERVATIONAL DATA: SURROGATE METHODS

SURROGATE APPLICATIONS

Methods: Treatment Effects in Networks

ANALYSIS OF EXPERIMENTS IN NETWORKS

Applications: Implementation of Digital Interventions for Social Impact

Additional Applications

META-ANALYSIS OF DIGITAL INTERVENTIONS