

Recipes and Economic Growth: A Combinatorial March Down an Exponential Tail

Chad Jones

NBER Growth Meeting, July 2022

Combinatorics and Pareto

- Weitzman (1998) and Romer (1993) suggest combinatorics important for growth.
 - Ideas are combinations of ingredients
 - The number of possible combinations from a child's chemistry set exceeds the number of atoms in the universe
 - But absent from state-of-the-art growth models?
- Kortum (1997) and Gabaix (1999) on Pareto distributions
 - $\circ~$ Kortum: Draw productivities from a distribution \Rightarrow Pareto tail is essential
 - Gabaix: Pareto distribution (cities, firms, income) results from exponential growth

Do we really need the fundamental idea distribution to be Pareto?

Two Contributions

- · A simple but useful theorem about extreme values
 - The increase of the max extreme value depends on
 - (1) the way the number of draws rises, and
 - (2) the shape of the upper tail
 - Applies to any continuous distribution
- Combinatorics and growth theory
 - Combinatorial growth: Cookbook of 2^N recipes from N ingredients, with N growing exponentially (population growth)

Combinatorial growth with draws from thin-tailed distributions (e.g. the normal distribution) yields exponential growth

Pareto distributions are not required — draw faster from a thinner tail

Theorem (A Simple Extreme Value Result)

Let Z_K denote the maximum value from K i.i.d. draws from a continuous distribution F(x), with $\overline{F}(x) \equiv 1 - F(x)$ strictly decreasing on its support. Then for $m \ge 0$

$$\lim_{K\to\infty} \Pr\left[K\bar{F}(Z_K) \ge m \right] = e^{-m}$$

As *K* increases, the max Z_K rises so as to stabilize $K\overline{F}(Z_K)$.

The shape of the tail of $\overline{F}(\cdot)$ and the way K increases determines the rise in Z_K

$$K\bar{F}(Z_K) = \varepsilon + o_p(1)$$

$$\Rightarrow \bar{F}(Z_K) = \Pr[\text{ Next draw } > Z_K] \sim \frac{1}{K}$$

• Theory of records: Suppose *K* i.i.d. draws for temperatures.

- Unconditional probability that tomorrow is a new record high = 1/K
- o This result is similar, but conditional instead of unconditional
- Apart from randomness from conditioning, $\overline{F}(Z_K)$ falls like 1/K for any distribution!

Proof of Theorem 1

• Given that Z_K is the max over K i.i.d. draws, we have

$$\Pr\left[Z_K \le x\right] = \Pr\left[z_1 \le x, z_2 \le x, \dots, z_K \le x\right]$$
$$= (1 - \overline{F}(x))^K$$

• Let $M_K \equiv K \overline{F}(Z_K)$ denote a new random variable. Then for 0 < m < K

$$\Pr[M_K \ge m] = \Pr[K\bar{F}(Z_K) \ge m]$$

$$= \Pr[\bar{F}(Z_K) \ge \frac{m}{K}]$$

$$= \Pr[Z_K \le \bar{F}^{-1}\left(\frac{m}{K}\right)]$$

$$= \left(1 - \frac{m}{K}\right)^K \to e^{-m} \quad \text{QED}.$$

Example: Kortum (1997)

- Pareto: $\overline{F}(x) = x^{-\beta}$
- Apply Theorem 1:

$$\begin{split} & K\bar{F}(Z_K) = \varepsilon + o_p(1) \\ & KZ_K^{-\beta} = \varepsilon + o_p(1) \\ & \frac{K}{Z_K^{\beta}} = \varepsilon + o_p(1) \\ & \frac{Z_K}{K^{1/\beta}} = (\varepsilon + o_p(1))^{-1/\beta} \end{split}$$

• Exponential growth in K leads to exponential growth in Z_K

$$g_Z = g_K / \beta$$

 β = how thin is the tail = rate at which ideas become harder to find

Example: Drawing from a Weibull Distribution

• Weibull: $\overline{F}(x) = e^{-x^{\beta}}$ (notice $\beta = 1$ is just exponential)

$$\begin{split} K\bar{F}(Z_K) &= \varepsilon + o_p(1) \\ Ke^{-Z_K^\beta} &= \varepsilon + o_p(1) \\ \Rightarrow & \log K - Z_K^\beta = \log(\varepsilon + o_p(1)) \\ \Rightarrow & Z_K = \left(\log K - \log(\varepsilon + o_p(1))\right)^{1/\beta} \\ \Rightarrow & \frac{Z_K}{(\log K)^{1/\beta}} = \left(1 - \frac{\log(\varepsilon + o_p(1))}{\log K}\right)^{1/\beta} \end{split}$$

$$\frac{Z_K}{(\log K)^{1/\beta}} \xrightarrow{p} \text{Constant}$$

Drawing from a Weibull (continued)

$$\frac{Z_K}{(\log K)^{1/\beta}} \xrightarrow{p} \text{Constant}$$

• Z_K grows with $(\log K)^{1/\beta}$

• If *K* grows exponentially and $\beta = 1$, then Z_K grows linearly

 $\circ\,$ More generally, growth rate falls to zero for any $\beta\,$

• Definition of combinatorial growth: $K_t = 2^{N_t}$ with $N_t = N_0 e^{g_N t}$

$$g_Z = \frac{g_{\log K}}{\beta} = \frac{g_N}{\beta}$$

Combinatorial growth with draws from a thin-tailed distribution delivers exponential growth!

Theorem (A general condition for combinatorial growth)

Consider the full growth model (skipped in these slides) but with $z_i \sim F(z)$ as a general continuous and unbounded distribution, where $F(\cdot)$ is monotone and differentiable. Let $\eta(x)$ denote the elasticity of the tail cdf $\overline{F}(x)$; that is, $\eta(x) \equiv -\frac{d \log \overline{F}(x)}{d \log x}$. Then

$$\lim_{t \to \infty} \frac{\dot{Z}_{Kt}}{Z_{Kt}} = \frac{g_N}{\alpha}$$

if and only if

$$\lim_{x \to \infty} rac{\eta(x)}{x^{lpha}} = ext{Constant} > 0$$

for some $\alpha > 0$.

Remarks

$$rac{\dot{Z}_{Kt}}{Z_{Kt}}
ightarrow rac{g_N}{lpha} \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm} \lim_{x
ightarrow \infty} rac{\eta(x)}{x^{lpha}} = \hspace{0.2cm} ext{Constant} > 0$$

- Thinner tails require faster draws but still require power functions:
 - o It's just that the elasticity itself is now a power function!
- Examples

• Weibull:
$$\overline{F}(x) = e^{-x^{\beta}} \Rightarrow \eta(x) = x^{\beta}$$

• Normal:
$$\overline{F}(x) = 1 - \int_{-\infty}^{x} e^{-u^2/2} du \Rightarrow \eta(x) \sim x^2$$
 – like Weibull with $\beta = 2$

Intuition

• Kortum (1997):
$$\overline{F}(x) = x^{-\beta} \Rightarrow \eta(x) = \beta$$
 so $K_t = e^{nt}$ is enough

• Here: $\bar{F}(x) = e^{-x^{\beta}}$ so must march down tail exponentially faster, $K_t = 2^{e^{nt}}$

For what distributions do combinatorial draws \Rightarrow exponential growth?

- Combinatorial draws lead to exponential growth for many familiar distributions:
 - Normal, Exponential, Weibull, Gumbel
 - Gamma, Logistic, Benktander Type I and Type II
 - Generalized Weibull: $\overline{F}(x) = x^{\alpha}e^{-x^{\beta}}$ or $\overline{F}(x) = e^{-(x^{\beta}+x^{\alpha})}$
 - Tail is dominated by "exponential of a power function"
- When does it not work?
 - lognormal: If it works for normal, then log x ~ Normal means percentage increments are normal, so tail will be too thick!
 - logexponential = Pareto
 - Surprise: Does *not* work for all distributions in the Gumbel domain of attraction (not parallel to Kortum/Frechet).

Scaling of *Z_K* **for Various Distributions**

Growth rate of Z_K

Distribution	cdf	Z_K behaves like	for $K = 2^N$
Exponential	$1-e^{-\theta x}$	$\log K$	8N
Gumbel	$e^{-e^{-x}}$	$\log K$	g_N
Weibull	$1 - e^{-x^{eta}}$	$(\log K)^{1/eta}$	$\frac{g_N}{\beta}$
Normal	$\frac{1}{\sqrt{2\pi}}\int e^{-x^2/2}dx$	$(\log K)^{1/2}$	$\frac{g_N}{2}$
Lognormal	$\frac{1}{\sqrt{2\pi}}\int e^{-(\log x)^2/2}dx$	$\exp(\sqrt{\log K})$	$rac{g_N}{2}\cdot\sqrt{N}$
Gompertz	$1 - \exp(-(e^{\beta x} - 1))$	$rac{1}{eta}\log(\log K)$	Arithmetic
Log-Pareto	$1 - \frac{1}{(\log x)^{\alpha}}$	$\exp(K^{1/lpha})$	Romer!

Evidence from Patents

Combinatorial growth matches the patent data

Rate of Innovation?

- Kortum (1997) was designed to match a key "fact": that the flow of patents was stationary
 - Never clear this fact was true (see below)
- Flow of patents in the model?
 - Theory of record-breaking: p(K) = 1/K is the fraction of ideas that are improvements [cf Theorem 1: $\overline{F}(Z_K) = \frac{1}{K}(\varepsilon + o_p(1))$]
 - $\circ\,$ Since there are \dot{K} recipes added to the cookbook every instant, the flow of patents is

$$p(K)\dot{K} = \frac{\dot{K}_t}{K_t}$$

• This is constant in Kortum (1997) \Rightarrow constant flow of patents

Flow of Patents in Combinatorial Growth Model?

• Simple case:
$$N_t = \alpha R_t$$
 (i.e. $\lambda = 1$ and $\phi = 0$).

• Then

$$K_t = 2^{N_t}$$

$$\Rightarrow \frac{\dot{K}_t}{K_t} = \log 2 \cdot \dot{N}_t$$

$$= \log 2 \cdot \alpha R_t$$

$$= \log 2 \cdot \alpha \bar{s} L_0 e^{g_L t}$$

- That is, the combinatorial growth model predicts that the number of new patents should grow exponentially over time
 - When ideas are small, it takes a growing number to generate exponential growth

Annual Patent Grants by the U.S. Patent and Trademark Office

Conclusion

- $K\bar{F}(Z_K) \sim \varepsilon$ links *K* and the shape of the tail cdf to how the max increases
- Weitzman meets Kortum: Combinatorial growth in recipes whose productivities are draws from a thin-tailed distribution gives rise to exponential growth
- Other applications: wherever Pareto has been assumed in the literature, perhaps we can use thin tails?
 - Many literatures: technology diffusion, trade, search, productivity
 - If ideas are "small," need enhanced theory of markups and heterogeneity

The Past and Future of Economic Growth: A Semi-Endogenous Perspective

Chad Jones

March 2023

Outline: The Past and Future of Economic Growth

- A simple semi-endogenous growth model
- Historical growth accounting
- Why future growth could slowdown
- Why future growth might not slow and could speed up

A Simple Model of Semi-Endogenous Growth

PER CAPITA GDP (RATIO SCALE, 2022 DOLLARS)

The "Infinite Usability" of Ideas (Paul Romer, 1990)

- Objects: Almost everything in the world
 - Examples: iphones, airplane seats, and surgeons
 - Rival: If I'm using it, you cannot at the same time
 - The fundamental scarcity at the heart of most economics
- Ideas: They are different nonrival = infinitely useable
 - Can be used by any number of people simultaneously
 - Examples: calculus, HTML, chemical formula of new drug

The Essence of Romer's Insight

• **Question:** In generalizing from the neoclassical model to incorporate ideas (*A*), why do we write the PF as

$$Y = AK^{\alpha}L^{1-\alpha} \tag{(*)}$$

instead of

 $Y = A^{\alpha} K^{\beta} L^{1-\alpha-\beta}$

- Does A go inside the CRS or outside?
 - The "default" (*) is sometimes used, e.g. 1960s
 - 1980s: Griliches et al. put knowledge capital inside CRS

The Nonrivalry of Ideas \Rightarrow Increasing Returns

• Familiar notation, but now let A_t denote the "stock of knowledge" or ideas:

$$Y_t = F(K_t, L_t, A_t) = A_t K_t^{\alpha} L_t^{1-\alpha}$$

Constant returns to scale in K and L holding knowledge fixed. Why?

$$F(\lambda K, \lambda L, A) = \lambda \times F(K, L, A)$$

• But therefore increasing returns in *K*, *L*, and *A* together!

 $F(\lambda K, \lambda L, \lambda A) > F(\lambda K, \lambda L, A)$

- $\circ~$ Replication argument + Nonrivalry \Rightarrow CRS to objects
- Therefore there must be IRS to objects and ideas

Final good

$$Y_t = A_t^{\sigma} L_{yt}$$

Ideas

$$\dot{A}_t = R_t A_t^{\phi} \Rightarrow \frac{\dot{A}_t}{A_t} = R_t A_t^{-\beta}$$

Resource constraint R_t

$$+L_{yt}=L_t=L_0e^{nt}$$

Allocation

$$R_t = \bar{s}L_t, \quad 0 < \bar{s} < 1$$

 ϕ captures knowledge spillovers. $\beta \equiv 1-\phi > 0$

Final good

 $Y_t = A_t^{\sigma} L_{yt}$

Ideas

$$\dot{A}_t = R_t A_t^{\phi} \Rightarrow \dot{A}_t = R_t A_t^{-\beta}$$

Resource constraint
$$R_t + L_{yt} = L_t = L_0 e^{nt}$$

Allocation

$$R_t = \bar{s}L_t, \quad 0 < \bar{s} < 1$$

 ϕ captures knowledge spillovers. $\beta \equiv 1 - \phi > 0$

$$y_t \equiv \frac{Y_t}{L_t} = A_t^{\sigma} (1 - \bar{s})$$

Final good

 $Y_t = A_t^{\sigma} L_{yt}$

Ideas

$$\dot{A}_t = R_t A_t^{\phi} \Rightarrow \frac{A_t}{A_t} = R_t A_t^{-\beta}$$

.

$$y_t \equiv \frac{Y_t}{L_t} = A_t^{\sigma} (1 - \bar{s})$$

On BGP, $\dot{A}/A = \text{Constant} \Rightarrow$

$$A_t^* = \operatorname{Constant} \cdot R_t^{\frac{1}{\beta}}$$

Resource constraint
$$R_t + L_{yt} = L_t = L_0 e^{nt}$$

Allocation

$$R_t = \bar{s}L_t, \quad 0 < \bar{s} < 1$$

 ϕ captures knowledge spillovers. $\beta \equiv 1 - \phi > 0$

Final good

 $Y_t = A_t^{\sigma} L_{vt}$

Ideas

$$\dot{A}_t = R_t A_t^{\phi} \Rightarrow \frac{A_t}{A_t} = R_t A_t^{-\beta}$$

.

On BGP,
$$\dot{A}/A = \text{Constant} \Rightarrow$$

$$A_t^* = ext{Constant} \cdot R_t^{\frac{1}{eta}}$$

 $u_t \equiv \frac{Y_t}{T} = A_t^{\sigma} (1 - \bar{s})$

Combine these two equations...

Resource constraint
$$R_t + L_{yt} = L_t = L_0 e^{nt}$$

Allocation

 $R_t = \bar{s}L_t, \quad 0 < \bar{s} < 1$

 ϕ captures knowledge spillovers. $\beta \equiv 1 - \phi > 0$

Steady State of the Simple Model

• Level of income on the BGP (where $\gamma \equiv \frac{\sigma}{\beta}$)

$$y_t^* = \operatorname{Constant} \cdot R_t^{\gamma}$$

 \Rightarrow BGP growth rate:

$$g_y = \frac{\partial n}{\beta} = \gamma n$$

-11

 $\begin{array}{ccc} {\rm Long-Run} \\ {\rm Growth} \end{array} = \begin{array}{ccc} {\rm Degree \ of \ IRS,} \\ \gamma \equiv \frac{\sigma}{\beta} \end{array} \times \begin{array}{ccc} {\rm Rate \ at \ which} \\ {\rm scale \ grows} \end{array}$

What's the difference between these two equations?

Hint: It's not the exponent: $\sigma = \alpha = 1/3$ is possible

What's the difference between these two equations?

Hint: It's not the exponent: $\sigma = \alpha = 1/3$ is possible

 A_t is an aggregate, while k_t is per capita But easy to make aggregates grow: population growth! Objects: Add 1 computer ⇒ make 1 worker more productive; for a million workers, need 1 million computers

Output per worker \sim # of computers per worker

- Ideas: Add 1 new idea ⇒ make unlimited # more productive or better off.
 - E.g. cure for lung cancer, drought-resistant seeds, spreadsheet

Income per person \sim the aggregate stock of knowledge, not on the number of ideas per person.

But it is easy to make aggregates grow: population growth! $IRS \Rightarrow bigger$ is better.

More people \Rightarrow more ideas \Rightarrow higher income / person

That's IRS associated with the nonrivalry of ideas

Evidence for Semi-Endogenous Growth (Bloom et al 2020)

Document a new stylized fact:

Exponential growth is getting harder to achieve.

 $\begin{array}{c} \text{Economic} \\ \text{growth} \end{array} = \begin{array}{c} \text{Research} \\ \text{productivity} \end{array} \times \begin{array}{c} \text{Number of} \\ \text{researchers} \\ \text{e.g. 2\% or 5\%} \end{array} \\ \downarrow \ (\text{falling}) \qquad \uparrow \ (\text{rising}) \end{array}$

• Consistent with the SEG model:

$$\frac{\dot{A}_t}{A_t} = R_t A_t^{-\beta}$$

 $\beta > 0 \Rightarrow$ ideas are getting harder to find

Evidence: Aggregate U.S. Economy

Bloom, Jones, Van Reenen, and Webb (2020)
The Steady Exponential Growth of Moore's Law

Evidence: Moore's Law

Bloom, Jones, Van Reenen, and Webb (2020)

- Moore's Law
 - 18x harder today to generate the doubling of chip density
 - Have to double research input every decade!
- Qualitatively similar findings in rest of the economy
 - Agricultural innovation (yield per acre of corn and soybeans)
 - Medical innovations (new drugs or mortality from cancer/heart disease)
 - Publicly-traded firms
 - Aggregate economy

New ideas are getting harder to find!

Breakthrough Patents from Kelly, Papanikolaou, Seru, Taddy (2021)

Literature Review

- Early Semi-Endogenous Growth Models
 - Arrow (1962), Phelps (1966), Nordhaus (1969), Judd (1985)
 - Jones (1995), Kortum (1997), Segerstrom (1998)
- Broader Literature: Models with IRS are SEG models!
 - Trade models: Krugman (1979), Eaton-Kortum (2002), Ramondo et al (2016)
 - Firm dynamics: Melitz (2003), Atkeson-Burstein (2019), Peters-Walsh (2021)
 - Sectoral heterogeneity: Ngai-Samaniego ('11), Bloom etc ('20), Sampson ('20)
 - Technology diffusion: Klenow-Rodriguez (2005), Buera-Oberfield (2020)
 - Economic geography: Redding-RossiHansberg (2017)

Historical Growth Accounting

In LR, all growth from population growth. But historically ...?

Extended Model

• Include physical capital K, human capital per person h, and misallocation M

$$Y_t = K_t^{\alpha} (Z_t h_t L_{Yt})^{1-\alpha}$$
$$Z_t \equiv A_t M_t$$
$$A_t^* = R_t^{\gamma} = (s_t L_t)^{\gamma}$$

• Write in terms of output per person and rearrange:

$$y_t = \left(rac{K_t}{Y_t}
ight)^{rac{lpha}{1-lpha}} A_t M_t h_t \ell_t (1-s_t)$$

In LR, all growth from population growth. But historically...?

Growth Accounting Equations

where

All terms are zero in the long run, other than γn . Assume $\gamma = 1/3$

Historical Growth Accounting in the U.S., 1950s to Today

Components of 2% Growth in GDP per Person

Historical Growth Accounting in the U.S., 1950s to Today

Components of 2% Growth in GDP per Person

Components of 1.3% TFP Growth

Summary of Growth Accounting

- Even in a semi-endogenous growth framework where all LR growth is γn ,
 - Other factors explain more than 80% of historical growth
- Transitory factors have been very important, but all must end:
 - rising educational attainment
 - rising LF participation
 - declining misallocation
 - increasing research intensity
- Implication: Unless something changes, growth must slow down!
 - $\,\circ\,$ The long-run growth rate is \approx 0.3%, not 2%

Why Future Growth might be Slower

Why Future Growth might be Slower

- Growth accounting exercise just presented: $\gamma n \approx 0.3\%$
- Slowdown in the growth rate of research
- Slowing population growth

Research Employment in the U.S., OECD, and World

The Total Fertility Rate (Live Births per Woman)

What happens if future population growth is negative?

- Suppose population *declines* exponentially at rate η : $R_t = R_0 e^{-\eta t}$
- Production of ideas

$$\frac{A_t}{A_t} = R_t A_t^{-\beta} = R_0 A_t^{-\beta} e^{-\eta t}$$

• Integrating reveals that *A_t* asymptotes to a constant!

$$A^{*} = \begin{cases} A_{0} \left(1 + \frac{\beta g_{A0}}{\eta}\right)^{1/\beta} & \text{if } \beta > 0\\ A_{0} \exp\left(\frac{g_{A0}}{\eta}\right) & \text{if } \beta = 0 \end{cases}$$

Source: Jones (2022) "The End of Economic Growth ... "

The Empty Planet Result

- Fertility has trended down: 5, 4, 3, 2, and less in rich countries
 - For a family, nothing special about "above 2" vs "below 2"
 - · But macroeconomics makes this distinction critical!
- Standard result shown earlier: $n > 0 \Rightarrow$ **Expanding Cosmos**
 - Exponential growth in income and population
- Negative population growth ⇒ much more pessimistic Empty Planet
 - Stagnating living standards for a population that vanishes
 - o Could this be our future?

Why Future Growth might be Faster?

(Or at least not as slow as the preceding section implies!)

- 1. Finding Lost Einsteins
- 2. Automation and artificial intelligence

- How many Edisons and Doudnas have we missed out on historically?
 - The rise of China, India, and other emerging countries
 - China and India each have as many people as U.S.+Europe+Japan
 - Brouillette (2022): Only 3% of inventors were women in 1976; only 12% in 2016
 - Bell et al (2019): Poor people missing opportunities
- Increase global research by a factor of 3 or 7?
 - $\circ~$ For $\gamma=1/3:$ Increase incomes by $~~3^{\gamma}-1=40\%~$ and $~7^{\gamma}-1=90\%$
 - $\circ~$ Could easily raise growth by 0.2pp to 0.4pp for a century

Automation and A.I.

• Suppose research involves many tasks X_i that can be done by people or by machines

$$\dot{A}_t = A_t^{1-\beta} X_1^{\alpha_1} X_2^{\alpha_2} \cdot \dots \cdot X_n^{\alpha_n}, \quad \sum \alpha_i = 1$$
$$= A_t^{1-\beta} K_t^{\alpha} R_t^{1-\alpha}$$

 $\boldsymbol{\alpha}$ is the fraction of research tasks that have been automated

• Long-run growth rate:

$$g_A = \frac{n}{\beta - \alpha}$$

- Rising automation could raise economic growth
 - Singularity if $\alpha = \beta$ (or at least all possible ideas get discovered quickly)
 - Labs, computers, WWW: recent automation has not offset slowing growth

Conclusion: Key Outstanding Questions

Important Questions for Future Research

- How large is the degree of IRS associated with ideas, γ?
- What is the social rate of return to research?
 - Are we underinvesting in basic research?
- Better growth accounting: contributions from DARPA, NIH, migration of European scientists during WWII, migration more generally
- Automation ongoing for 150 years, but growth slowing not rising: why?

How I Work and Other Random Points

Chad Jones Stanford GSB

NBER Innovation Bootcamp, July 2024

As for myself, I only like basic problems and could characterize my own research by telling you that when I settled in Woods Hole and took up fishing, I always used an enormous hook. I was convinced that I would catch nothing anyway, and I thought it much more exciting not to catch a big fish than not to catch a small one.

— Albert Szent-Gyorgi, 1893-1986

Nobel Prize, 1937 (discovered Vitamin C)

How I Work

- Find a question that excites you (and others)
- Document the basic facts
- Build a model to try to generate those facts (Lucas, Feynman)
- See what else pops out

If we understand the process of economic growth — or of anything else — we ought to be capable of demonstrating this knowledge by creating it in these pen and paper (and computer-equipped) laboratories of ours. If we know what an economic miracle is, we ought to be able to make one.

— Robert E. Lucas, Jr.

What I cannot create, I do not understand.

— Richard P. Feynman

- PPF for economics (macro vs. micro)
- Motivate research by simple, indisputable facts. (cf estimation)
- Build models to explain the facts.
- Keep a "notebook"
- On reading papers
- Try to have research be the thing you think about when sleeping/bathing/etc.

On Writing Papers with Models

- Start as simple as possible (or at least get there eventually!)
- Show entire economic environment (preferences + technology) in one slide and in Table 1 of paper
- Allocating resources: always count equations and unknowns
 - Rule of thumb easiest (Solow)
 - Optimal allocation / social planner: pretty easy and where we'd like to begin
 - Equilibrium: most complicated, and details matter (is there an NSF?). Define it fully and carefully.

Research Questions

- How do we understand economic growth?
- Why is health spending / GDP rising everywhere?
- A Schumpeterian Model of Top Income Inequality
- The Allocation of Talent and U.S. Economic Growth
- Artificial Intelligence and Economic Growth
- Taxing Top Incomes in a World of Ideas

Other Specific Points

Shanghai 1987

Shanghai 2013

Growth Theory

• Conclusion of any growth theory:

$$\frac{\dot{y_t}}{y_t} = g$$
 and a story about g

• Key to this result is (essentially) a linear differential equation somewhere in the model:

$$\dot{X}_t = _ X_t$$

• Growth models differ according to what they call the *X_t* variable and how they fill in the blank.

Catalog of Growth Models: What is X_t?

Solow	$\dot{k}_t = sk_t^{lpha}$
Solow	$\dot{A}_t = \bar{g}A_t$
AK model	$\dot{K}_t = sAK_t$
Lucas	$\dot{h}_t = uh_t$
Romer/AH	$\dot{A}_t = RA_t$
Semi-endogenous growth	$\dot{L}_t = nL_t$

Why did I write "Are Ideas Getting Harder to Find?" (BJVW 2020 AER)

- In response to the "scale effects" critique:
 - Howitt (1999), Peretto (1998), Young (1998) and others
 - Composition bias: perhaps research productivity within every quality ladder is constant, e.g. if number of products N_t grows at the right rate:

$$\frac{\dot{A}_{it}}{A_{it}} = \alpha \, S_{it} \tag{*}$$

- $\Rightarrow S_{it} = \frac{S_t}{N_t}$ invariant to scale, but responds to subsidies
 - Aggregate evidence would then be misleading
 - Permanent subsidies would still have growth effects.
- Key to addressing this concern:

Study (*) directly \Rightarrow research productivity within a variety!

Alternative Futures?

The shape of the idea production function, f(A)

The stock of ideas, A
Taxing Top Incomes in a World of Ideas (JPE 2022)

- Large literature but interaction with ideas underappreciated.
- Consider raising the top marginal income tax rate from 50% to 75%
 - $\circ~\approx 10\%$ of GDP faces the top rate, so mechanically +2.5% GDP in revenue
 - $\circ~$ Halving the "keep rate" from 50% to 25% \Rightarrow entrepreneurs may create fewer ideas
 - $\circ\,$ Akcigit et al (2022 QJE) suggest a behavioral elasticity η of ideas wrt $1- au\geq 0.2$
 - $\circ~$ Suppose degree of IRS is $\gamma=1/2$
 - $\circ~$ Then lower effort reduces GDP by a factor of $2^{\gamma\eta}=2^{0.5\times0.2}=2^{0.1}\approx1.07$
- Everyone's income falls by 7%, while tax raises 2.5% of GDP in revenue. Not worth it!
- Question: Is the 7% number large or small?

What is graphed here?

INDEX (1.0 IN INITIAL YEAR) 45 r YEAR

Population and Per Capita GDP: the Very Long Run

Growth over the Very Long Run

- Malthus: $c = y = AL^{\alpha}$, $\alpha < 1$
 - Fixed supply of land: $\uparrow L \Rightarrow \downarrow c$ holding A fixed
- Story:
 - $\circ~$ 100,000 BC: small population \Rightarrow ideas come very slowly
 - \circ New ideas \Rightarrow temporary blip in consumption, but permanently higher population
 - This means ideas come more frequently
 - Eventually, ideas arrive faster than Malthus can reduce consumption!
- People produce ideas and Ideas produce people
 - $\,\circ\,$ If nonrivarly > Malthus, this leads to the hockey stick

What is this?

North versus South Korea: Institutions Matter!

Misallocation and TFP: A Simple Example

Production: $X_{steel} = L_{steel}, \quad X_{latte} = L_{latte}$

Resource constraint:
$$L_{steel} + L_{latte} = \bar{L}$$

GDP (aggregation): $Y = X_{steel}^{1/2} X_{latte}^{1/2}$

 $x \equiv L_{steel}/\bar{L}$ denotes the allocation (markets, distortions, central planner, etc).

Then GDP and TFP are

 $Y = A(x)\overline{L}$

 $A(x) = \sqrt{x \left(1 - x\right)}$

Misallocation Reduces TFP

Total factor productivity, A(x)

- Sandra Day O'Connor, Supreme Court Justice (1981–2006)
 - Graduated 3rd in her class at Stanford Law School, 1952
 - Only job offer in the private sector: legal secretary

- Sandra Day O'Connor, Supreme Court Justice (1981–2006)
 - Graduated 3rd in her class at Stanford Law School, 1952
 - Only job offer in the private sector: legal secretary
- Consider white men in U.S. business:

1960: 94% of doctors, lawyers, and managers2010: 60% of doctors, lawyers, and managers

- Sandra Day O'Connor, Supreme Court Justice (1981–2006)
 - Graduated 3rd in her class at Stanford Law School, 1952
 - Only job offer in the private sector: legal secretary
- Consider white men in U.S. business:

1960: **94%** of doctors, lawyers, and managers 2010: **60%** of doctors, lawyers, and managers

- Over the past 50 years, the U.S. allocation of talent has improved! Accounts for
 - 40% of growth in GDP per person, and
 - 20% of growth in GDP per worker