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Combinatorics and Pareto

• Weitzman (1998) and Romer (1993) suggest combinatorics important for growth.

◦ Ideas are combinations of ingredients

◦ The number of possible combinations from a child’s chemistry set exceeds the

number of atoms in the universe

◦ But absent from state-of-the-art growth models?

• Kortum (1997) and Gabaix (1999) on Pareto distributions

◦ Kortum: Draw productivities from a distribution ⇒Pareto tail is essential

◦ Gabaix: Pareto distribution (cities, firms, income) results from exponential growth

Do we really need the fundamental idea distribution to be Pareto?
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Two Contributions

• A simple but useful theorem about extreme values

◦ The increase of the max extreme value depends on

(1) the way the number of draws rises, and

(2) the shape of the upper tail

◦ Applies to any continuous distribution

• Combinatorics and growth theory

◦ Combinatorial growth: Cookbook of 2
N recipes from N ingredients, with N

growing exponentially (population growth)

Combinatorial growth with draws from thin-tailed distributions

(e.g. the normal distribution) yields exponential growth

◦ Pareto distributions are not required — draw faster from a thinner tail
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Theorem (A Simple Extreme Value Result)

Let ZK denote the maximum value from K i.i.d. draws from a continuous distribution F(x),

with F̄(x) ≡ 1 − F(x) strictly decreasing on its support. Then for m ≥ 0

lim
K→∞

Pr
[

KF̄(ZK) ≥ m
]

= e−m

As K increases, the max ZK rises so as to stabilize KF̄(ZK).

The shape of the tail of F̄(·) and the way K increases

determines the rise in ZK
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Intuition

KF̄(ZK) = ε+ op(1)

⇒ F̄(ZK) = Pr [ Next draw > ZK ] ∼
1

K

• Theory of records: Suppose K i.i.d. draws for temperatures.

◦ Unconditional probability that tomorrow is a new record high = 1/K

◦ This result is similar, but conditional instead of unconditional

• Apart from randomness from conditioning, F̄(ZK) falls like 1/K for any distribution!
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Proof of Theorem 1

• Given that ZK is the max over K i.i.d. draws, we have

Pr [ZK ≤ x ] = Pr [ z1 ≤ x, z2 ≤ x, . . . , zK ≤ x ]

= (1 − F̄(x))K

• Let MK ≡ KF̄(ZK) denote a new random variable. Then for 0 < m < K

Pr [MK ≥ m ] = Pr
[

KF̄(ZK) ≥ m
]

= Pr
[

F̄(ZK) ≥
m

K

]

= Pr
[

ZK ≤ F̄−1

(m

K

) ]

=
(

1 −
m

K

)K

→ e−m QED.
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Example: Kortum (1997)

• Pareto: F̄(x) = x−β

• Apply Theorem 1: KF̄(ZK) = ε+ op(1)

KZ−β
K = ε+ op(1)

K

Zβ
K

= ε+ op(1)

ZK

K1/β
= (ε+ op(1))

−1/β

• Exponential growth in K leads to exponential growth in ZK

gZ = gK/β

β = how thin is the tail = rate at which ideas become harder to find
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Example: Drawing from a Weibull Distribution

• Weibull: F̄(x) = e−xβ (notice β = 1 is just exponential)

KF̄(ZK) = ε+ op(1)

Ke−Zβ

K = ε+ op(1)

⇒ logK − Zβ
K = log(ε+ op(1))

⇒ ZK =
(

logK − log(ε+ op(1))
)1/β

⇒
ZK

(logK)1/β
=

(

1 −
log(ε+ op(1))

logK

)1/β

ZK

(logK)1/β

p
−→ Constant
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Drawing from a Weibull (continued)

ZK

(logK)1/β

p
−→ Constant

• ZK grows with (logK)1/β

◦ If K grows exponentially and β = 1, then ZK grows linearly

◦ More generally, growth rate falls to zero for any β

• Definition of combinatorial growth: Kt = 2
Nt with Nt = N0e gNt

gZ =
glog K

β
=

gN

β

Combinatorial growth with draws from a thin-tailed distribution

delivers exponential growth!
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Theorem (A general condition for combinatorial growth)

Consider the full growth model (skipped in these slides) but with zi ∼ F(z) as a general

continuous and unbounded distribution, where F(·) is monotone and differentiable. Let

η(x) denote the elasticity of the tail cdf F̄(x); that is, η(x) ≡ − d log F̄(x)
d log x . Then

lim
t→∞

ŻKt

ZKt
=

gN

α

if and only if

lim
x→∞

η(x)

xα
= Constant > 0

for some α > 0.
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Remarks

ŻKt

ZKt
→

gN

α
⇐⇒ lim

x→∞

η(x)

xα
= Constant > 0

• Thinner tails require faster draws but still require power functions:

◦ It’s just that the elasticity itself is now a power function!

• Examples

◦ Weibull: F̄(x) = e−xβ ⇒ η(x) = xβ

◦ Normal: F̄(x) = 1 −
∫ x

−∞ e−u2/2du ⇒ η(x) ∼ x2 – like Weibull with β = 2

• Intuition

◦ Kortum (1997): F̄(x) = x−β ⇒ η(x) = β so Kt = ent is enough

◦ Here: F̄(x) = e−xβ so must march down tail exponentially faster, Kt = 2
ent
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For what distributions do combinatorial draws ⇒exponential growth?

• Combinatorial draws lead to exponential growth for many familiar distributions:

◦ Normal, Exponential, Weibull, Gumbel

◦ Gamma, Logistic, Benktander Type I and Type II

◦ Generalized Weibull: F̄(x) = xαe−xβ or F̄(x) = e−(xβ+xα)

◦ Tail is dominated by “exponential of a power function”

• When does it not work?

◦ lognormal: If it works for normal, then log x ∼ Normal means percentage

increments are normal, so tail will be too thick!

◦ logexponential = Pareto

◦ Surprise: Does not work for all distributions in the Gumbel domain of attraction

(not parallel to Kortum/Frechet).
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Scaling of ZK for Various Distributions

Growth rate of ZK

Distribution cdf ZK behaves like for K = 2
N

Exponential 1 − e−θx logK gN

Gumbel e−e−x

logK gN

Weibull 1 − e−xβ (logK)1/β gN

β

Normal 1√
2π

∫

e−x2/2dx (logK)1/2 gN

2

Lognormal 1√
2π

∫

e−(log x)2/2dx exp(
√
logK) gN

2
·
√

N

Gompertz 1 − exp(−(eβx − 1)) 1

β log(logK) Arithmetic

Log-Pareto 1 − 1

(log x)α exp(K1/α) Romer!
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Evidence from Patents

Combinatorial growth matches the patent data
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Rate of Innovation?

• Kortum (1997) was designed to match a key “fact”: that the flow of patents was

stationary

◦ Never clear this fact was true (see below)

• Flow of patents in the model?

◦ Theory of record-breaking: p(K) = 1/K is the fraction of ideas that are

improvements [cf Theorem 1: F̄(ZK) =
1

K
(ε+ op(1))]

◦ Since there are K̇ recipes added to the cookbook every instant, the flow of

patents is

p(K)K̇ =
K̇t

Kt

◦ This is constant in Kortum (1997) ⇒ constant flow of patents
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Flow of Patents in Combinatorial Growth Model?

• Simple case: Ṅt = αRt (i.e. λ = 1 and φ = 0).

• Then Kt = 2
Nt

⇒
K̇t

Kt
= log 2 · Ṅt

= log 2 · αRt

= log 2 · αs̄L0egLt

• That is, the combinatorial growth model predicts that the number of new patents

should grow exponentially over time

◦ When ideas are small, it takes a growing number to generate exponential growth
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Annual Patent Grants by the U.S. Patent and Trademark Office
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Conclusion

• KF̄(ZK) ∼ ε links K and the shape of the tail cdf to how the max increases

• Weitzman meets Kortum: Combinatorial growth in recipes whose productivities are

draws from a thin-tailed distribution gives rise to exponential growth

• Other applications: wherever Pareto has been assumed in the literature, perhaps we

can use thin tails?

◦ Many literatures: technology diffusion, trade, search, productivity

◦ If ideas are “small,” need enhanced theory of markups and heterogeneity
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The Past and Future of Economic Growth:
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Outline: The Past and Future of Economic Growth

• A simple semi-endogenous growth model

• Historical growth accounting

• Why future growth could slowdown

• Why future growth might not slow and could speed up
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A Simple Model of

Semi-Endogenous Growth
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U.S. GDP per Person

1880 1900 1920 1940 1960 1980 2000 2020
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64,000

2.0% per year

YEAR

PER CAPITA GDP (RATIO SCALE, 2022 DOLLARS)
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The “Infinite Usability” of Ideas (Paul Romer, 1990)

• Objects: Almost everything in the world

◦ Examples: iphones, airplane seats, and surgeons

◦ Rival: If I’m using it, you cannot at the same time

◦ The fundamental scarcity at the heart of most economics

• Ideas: They are different — nonrival = infinitely useable

◦ Can be used by any number of people simultaneously

◦ Examples: calculus, HTML, chemical formula of new drug
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The Essence of Romer’s Insight

• Question: In generalizing from the neoclassical model to incorporate ideas (A), why

do we write the PF as

Y = AKαL1−α (*)

instead of

Y = AαKβL1−α−β

• Does A go inside the CRS or outside?

◦ The “default” (*) is sometimes used, e.g. 1960s

◦ 1980s: Griliches et al. put knowledge capital inside CRS
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The Nonrivalry of Ideas ⇒ Increasing Returns

• Familiar notation, but now let At denote the “stock of knowledge” or ideas:

Yt = F(Kt,Lt,At) = AtK
α
t L1−α

t

• Constant returns to scale in K and L holding knowledge fixed. Why?

F(λK, λL,A) = λ× F(K,L,A)

• But therefore increasing returns in K, L, and A together!

F(λK, λL, λA) > F(λK, λL,A)

◦ Replication argument + Nonrivalry ⇒ CRS to objects

◦ Therefore there must be IRS to objects and ideas
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A Simple Model

Final good Yt = Aσ
t Lyt

Ideas Ȧt = RtA
φ
t ⇒

Ȧt

At
= RtA

−β
t

Resource constraint Rt + Lyt = Lt = L0ent

Allocation Rt = s̄Lt, 0 < s̄ < 1

φ captures knowledge spillovers.

β ≡ 1 − φ > 0
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A Simple Model

Final good Yt = Aσ
t Lyt

Ideas Ȧt = RtA
φ
t ⇒

Ȧt

At
= RtA

−β
t

Resource constraint Rt + Lyt = Lt = L0ent

Allocation Rt = s̄Lt, 0 < s̄ < 1
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A Simple Model

Final good Yt = Aσ
t Lyt

Ideas Ȧt = RtA
φ
t ⇒

Ȧt

At
= RtA

−β
t

Resource constraint Rt + Lyt = Lt = L0ent

Allocation Rt = s̄Lt, 0 < s̄ < 1

φ captures knowledge spillovers.

β ≡ 1 − φ > 0

yt ≡
Yt

Lt
= Aσ

t (1 − s̄)

On BGP, Ȧ/A = Constant ⇒

A∗

t = Constant ·R
1

β

t

Combine these two equations...
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Steady State of the Simple Model

• Level of income on the BGP (where γ ≡ σ
β )

y∗
t = Constant ·Rγ

t

⇒ BGP growth rate:

gy =
σn

β
= γ n

Long-Run

Growth
=

Degree of IRS,

γ ≡ σ
β

×
Rate at which

scale grows
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What’s the difference between these two equations?

Romer yt = Aσ

t

Solow yt = kαt

Hint: It’s not the exponent: σ = α = 1/3 is possible
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What’s the difference between these two equations?

Romer yt = Aσ

t

Solow yt = kαt

Hint: It’s not the exponent: σ = α = 1/3 is possible

At is an aggregate, while kt is per capita

But easy to make aggregates grow: population growth!
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Or put in words...

• Objects: Add 1 computer ⇒make 1 worker more productive; for a million workers,

need 1 million computers

Output per worker ∼ # of computers per worker

• Ideas: Add 1 new idea ⇒make unlimited # more productive or better off.

– E.g. cure for lung cancer, drought-resistant seeds, spreadsheet

Income per person ∼ the aggregate stock of knowledge, not on

the number of ideas per person.

But it is easy to make aggregates grow: population growth!

IRS ⇒bigger is better.
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Where does growth ultimately come from?

More people ⇒more ideas ⇒ higher income / person

That’s IRS associated with the nonrivalry of ideas
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Evidence for Semi-Endogenous Growth (Bloom et al 2020)

• Document a new stylized fact:

Exponential growth is getting harder to achieve.

Economic

growth
=

Research

productivity
× Number of

researchers

e.g. 2% or 5% ↓ (falling) ↑ (rising)

• Consistent with the SEG model:
Ȧt

At
= RtA

−β
t

β > 0 ⇒ ideas are getting harder to find
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Evidence: Aggregate U.S. Economy

1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s
0% 

5% 

10%

15%

20%

25%

U.S. TFP Growth

(left scale)

Effective number of

researchers (right scale)

 

GROWTH RATE

0 

5 

10

15

20

25
FACTOR INCREASE SINCE 1930

Bloom, Jones, Van Reenen, and Webb (2020) 13



The Steady Exponential Growth of Moore’s Law
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Evidence: Moore’s Law

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
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Summary of Evidence

• Moore’s Law

◦ 18x harder today to generate the doubling of chip density

◦ Have to double research input every decade!

• Qualitatively similar findings in rest of the economy

◦ Agricultural innovation (yield per acre of corn and soybeans)

◦ Medical innovations (new drugs or mortality from cancer/heart disease)

◦ Publicly-traded firms

◦ Aggregate economy

New ideas are getting harder to find!
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Breakthrough Patents from Kelly, Papanikolaou, Seru, Taddy (2021)
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Long and variable lags!?
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Literature Review

• Early Semi-Endogenous Growth Models

◦ Arrow (1962), Phelps (1966), Nordhaus (1969), Judd (1985)

◦ Jones (1995), Kortum (1997), Segerstrom (1998)

• Broader Literature: Models with IRS are SEG models!

◦ Trade models: Krugman (1979), Eaton-Kortum (2002), Ramondo et al (2016)

◦ Firm dynamics: Melitz (2003), Atkeson-Burstein (2019), Peters-Walsh (2021)

◦ Sectoral heterogeneity: Ngai-Samaniego (’11), Bloom etc (’20), Sampson (’20)

◦ Technology diffusion: Klenow-Rodriguez (2005), Buera-Oberfield (2020)

◦ Economic geography: Redding-RossiHansberg (2017)
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Historical Growth Accounting

In LR, all growth from population growth. But historically...?
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Extended Model

• Include physical capital K, human capital per person h, and misallocation M

Yt = Kα
t (ZthtLYt)

1−α

Zt ≡ AtMt

A∗
t = Rγ

t = (stLt)
γ

• Write in terms of output per person and rearrange:

yt =

(

Kt

Yt

)
α

1−α

AtMthtℓt(1 − st)

• In LR, all growth from population growth. But historically...?
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Growth Accounting Equations

d log yt
︸ ︷︷ ︸

GDP per person

=
α

1 − α
d log

Kt

Yt
︸ ︷︷ ︸

Capital-Output ratio

+ d log ht
︸ ︷︷ ︸

Educational att.

+ d log ℓt
︸ ︷︷ ︸

Emp-Pop ratio

+ d log(1 − st)
︸ ︷︷ ︸

Goods intensity

+ d logMt + d logAt
︸ ︷︷ ︸

TFP growth

where

TFP growth ≡ d logMt
︸ ︷︷ ︸

Misallocation

+ d logAt
︸ ︷︷ ︸

Ideas

= d logMt
︸ ︷︷ ︸

Misallocation

+ γ d log st
︸ ︷︷ ︸

Research intensity

+ γ d log Lt
︸ ︷︷ ︸

LF growth

All terms are zero in the long run, other than γn. Assume γ = 1/3
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Historical Growth Accounting in the U.S., 1950s to Today

Components of 2% Growth

in GDP per Person

K/Y: 0pp

Human capital

 per person:   

 0.5pp       

Employment-Pop 

Ratio: 0.2pp    
TFP: 1.3pp
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Historical Growth Accounting in the U.S., 1950s to Today

Components of 2% Growth

in GDP per Person

K/Y: 0pp

Human capital

 per person:   

 0.5pp       

Employment-Pop 

Ratio: 0.2pp    
TFP: 1.3pp

Research 

 intensity:

 0.7pp   

Misallocation:

       0.3pp

Population

 growth: 0.3pp

Components of 1.3% TFP Growth
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Summary of Growth Accounting

• Even in a semi-endogenous growth framework where all LR growth is γn,

◦ Other factors explain more than 80% of historical growth

• Transitory factors have been very important, but all must end:

◦ rising educational attainment

◦ rising LF participation

◦ declining misallocation

◦ increasing research intensity

• Implication: Unless something changes, growth must slow down!

◦ The long-run growth rate is ≈ 0.3%, not 2%
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Why Future Growth might be Slower
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Why Future Growth might be Slower

• Growth accounting exercise just presented: γn ≈ 0.3%

• Slowdown in the growth rate of research

• Slowing population growth
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Research Employment in the U.S., OECD, and World

1980 1985 1990 1995 2000 2005 2010 2015 2020
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United States

1981-2003: 3.4%
2003-2018: 2.1%

OECD

1981-2003: 4.1%
2003-2018: 2.8%

World
1991-2003: 3.2%
2003-2018: 3.0%

YEAR

RESEARCH EMPLOYMENT (1000S, LOG SCALE)
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The Total Fertility Rate (Live Births per Woman)

1950 1960 1970 1980 1990 2000 2010 2020

2

3

4

5

6

World

India

China

U.S.

High income

  countries
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Italy = 1.3

Spain = 1.3
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What happens if future population growth is negative?

• Suppose population declines exponentially at rate η: Rt = R0e−ηt

• Production of ideas
Ȧt

At
= RtA

−β
t = R0A−β

t e−ηt

• Integrating reveals that At asymptotes to a constant!

A∗ =











A0

(

1 +
βgA0

η

)1/β

if β > 0

A0 exp
(

gA0

η

)

if β = 0

Source: Jones (2022) “The End of Economic Growth...”
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The Empty Planet Result

• Fertility has trended down: 5, 4, 3, 2, and less in rich countries

◦ For a family, nothing special about “above 2” vs “below 2”

◦ But macroeconomics makes this distinction critical!

• Standard result shown earlier: n > 0 ⇒Expanding Cosmos

◦ Exponential growth in income and population

• Negative population growth ⇒much more pessimistic Empty Planet

◦ Stagnating living standards for a population that vanishes

◦ Could this be our future?
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Why Future Growth might be Faster?

(Or at least not as slow as the preceding section implies!)

1. Finding Lost Einsteins

2. Automation and artificial intelligence

30



Finding Lost Einsteins

• How many Edisons and Doudnas have we missed out on historically?

◦ The rise of China, India, and other emerging countries

– China and India each have as many people as U.S.+Europe+Japan

◦ Brouillette (2022): Only 3% of inventors were women in 1976; only 12% in 2016

◦ Bell et al (2019): Poor people missing opportunities

• Increase global research by a factor of 3 or 7?

◦ For γ = 1/3: Increase incomes by 3
γ − 1 = 40% and 7

γ − 1 = 90%

◦ Could easily raise growth by 0.2pp to 0.4pp for a century
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Automation and A.I.

• Suppose research involves many tasks Xi that can be done by people or by machines

Ȧt = A1−β
t Xα1

1
Xα2

2
· ... · Xαn

n ,
∑

αi = 1

= A1−β
t Kα

t R1−α
t

α is the fraction of research tasks that have been automated

• Long-run growth rate:

gA =
n

β − α

• Rising automation could raise economic growth

◦ Singularity if α = β (or at least all possible ideas get discovered quickly)

◦ Labs, computers, WWW: recent automation has not offset slowing growth
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Conclusion: Key Outstanding Questions
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Important Questions for Future Research

• How large is the degree of IRS associated with ideas, γ?

• What is the social rate of return to research?

◦ Are we underinvesting in basic research?

• Better growth accounting: contributions from DARPA, NIH, migration of European

scientists during WWII, migration more generally

• Automation ongoing for 150 years, but growth slowing not rising: why?
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Chad Jones
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As for myself, I only like basic problems and could characterize my own research

by telling you that when I settled in Woods Hole and took up fishing, I always used

an enormous hook. I was convinced that I would catch nothing anyway, and I

thought it much more exciting not to catch a big fish than not to catch a small one.

— Albert Szent-Gyorgi, 1893-1986

Nobel Prize, 1937 (discovered Vitamin C)
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How I Work

• Find a question that excites you (and others)

• Document the basic facts

• Build a model to try to generate those facts (Lucas, Feynman)

• See what else pops out
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The Role of Models

If we understand the process of economic growth — or of anything else — we

ought to be capable of demonstrating this knowledge by creating it in these pen

and paper (and computer-equipped) laboratories of ours. If we know what an

economic miracle is, we ought to be able to make one.

— Robert E. Lucas, Jr.

What I cannot create, I do not understand.

— Richard P. Feynman
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Thoughts on Research

• PPF for economics (macro vs. micro)

• Motivate research by simple, indisputable facts. (cf estimation)

• Build models to explain the facts.

• Keep a “notebook”

• On reading papers

• Try to have research be the thing you think about when sleeping/bathing/etc.
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On Writing Papers with Models

• Start as simple as possible (or at least get there eventually!)

• Show entire economic environment (preferences + technology) in one slide and in

Table 1 of paper

• Allocating resources: always count equations and unknowns

◦ Rule of thumb easiest (Solow)

◦ Optimal allocation / social planner: pretty easy and where we’d like to begin

◦ Equilibrium: most complicated, and details matter (is there an NSF?). Define it

fully and carefully.
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Research Questions

• How do we understand economic growth?

• Why is health spending / GDP rising everywhere?

• A Schumpeterian Model of Top Income Inequality

• The Allocation of Talent and U.S. Economic Growth

• Artificial Intelligence and Economic Growth

• Taxing Top Incomes in a World of Ideas
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Other Specific Points
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Shanghai 1987
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Shanghai 2013
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Growth Theory

• Conclusion of any growth theory:

ẏt

yt
= g and a story about g

• Key to this result is (essentially) a linear differential equation somewhere in the model:

Ẋt = Xt

• Growth models differ according to what they call the Xt variable and how they fill in

the blank.

10



Catalog of Growth Models: What is Xt?

Solow k̇t = skαt

Solow Ȧt = ḡAt

AK model K̇t = sAKt

Lucas ḣt = uht

Romer/AH Ȧt = RAt

Semi-endogenous growth L̇t = nLt
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Why did I write “Are Ideas Getting Harder to Find?” (BJVW 2020 AER)

• In response to the “scale effects” critique:

◦ Howitt (1999), Peretto (1998), Young (1998) and others

◦ Composition bias: perhaps research productivity within every quality ladder is

constant, e.g. if number of products Nt grows at the right rate:

Ȧit

Ait
= α Sit (*)

⇒Sit =
St

Nt
invariant to scale, but responds to subsidies

– Aggregate evidence would then be misleading

– Permanent subsidies would still have growth effects.

• Key to addressing this concern:

Study (*) directly ⇒ research productivity within a variety!
12



Alternative Futures?

The stock of ideas, A

                                                                      The shape of the idea production function, f(A)

The past

Today

Increasing
  returns

   GPT
"Waves"

Run out
of ideas
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Taxing Top Incomes in a World of Ideas (JPE 2022)

• Large literature but interaction with ideas underappreciated.

• Consider raising the top marginal income tax rate from 50% to 75%

◦ ≈ 10% of GDP faces the top rate, so mechanically +2.5% GDP in revenue

◦ Halving the “keep rate” from 50% to 25% ⇒entrepreneurs may create fewer

ideas

◦ Akcigit et al (2022 QJE) suggest a behavioral elasticity η of ideas wrt 1 − τ ≥ 0.2

◦ Suppose degree of IRS is γ = 1/2

◦ Then lower effort reduces GDP by a factor of 2
γη = 2

0.5×0.2 = 2
0.1 ≈ 1.07

• Everyone’s income falls by 7%, while tax raises 2.5% of GDP in revenue. Not worth it!

• Question: Is the 7% number large or small?
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What is graphed here?
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Population and Per Capita GDP: the Very Long Run
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Growth over the Very Long Run

• Malthus: c = y = ALα, α < 1

◦ Fixed supply of land: ↑ L ⇒ ↓ c holding A fixed

• Story:

◦ 100,000 BC: small population ⇒ ideas come very slowly

◦ New ideas ⇒ temporary blip in consumption, but permanently higher population

◦ This means ideas come more frequently

◦ Eventually, ideas arrive faster than Malthus can reduce consumption!

• People produce ideas and Ideas produce people

◦ If nonrivarly > Malthus, this leads to the hockey stick
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What is this?
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North versus South Korea: Institutions Matter!
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Misallocation and TFP: A Simple Example

Production: Xsteel = Lsteel, Xlatte = Llatte

Resource constraint: Lsteel + Llatte = L̄

GDP (aggregation): Y = X
1/2

steelX
1/2

latte

x ≡ Lsteel/L̄ denotes the allocation

(markets, distortions, central planner, etc).

Then GDP and TFP are

Y = A(x)L̄

A(x) =
√

x (1 − x)
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Misallocation Reduces TFP

 0 1/2  1 
 0 

1/2

Fraction of labor

making steel,  x

                                                    Total factor productivity,  A(x)
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Misallocation in the United States (HHJK 2019 ECMA)
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Misallocation in the United States (HHJK 2019 ECMA)

• Sandra Day O’Connor, Supreme Court Justice (1981–2006)

◦ Graduated 3rd in her class at Stanford Law School, 1952

◦ Only job offer in the private sector: legal secretary
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Misallocation in the United States (HHJK 2019 ECMA)

• Sandra Day O’Connor, Supreme Court Justice (1981–2006)

◦ Graduated 3rd in her class at Stanford Law School, 1952

◦ Only job offer in the private sector: legal secretary

• Consider white men in U.S. business:

1960: 94% of doctors, lawyers, and managers

2010: 60% of doctors, lawyers, and managers
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Misallocation in the United States (HHJK 2019 ECMA)

• Sandra Day O’Connor, Supreme Court Justice (1981–2006)

◦ Graduated 3rd in her class at Stanford Law School, 1952

◦ Only job offer in the private sector: legal secretary

• Consider white men in U.S. business:

1960: 94% of doctors, lawyers, and managers

2010: 60% of doctors, lawyers, and managers

• Over the past 50 years, the U.S. allocation of talent has improved!

Accounts for

◦ 40% of growth in GDP per person, and

◦ 20% of growth in GDP per worker

22


