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Why Model Bounded Rationality?

Elementary observation: people make mistakes

Economic hypothesis: smaller mistakes when they are more “costly”

Goals:

1. Overview existing models of making mistakes

2. Explore their equilibrium implications
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Facts to Motivate Our Search for a Model of Mistakes

• Our search for a good model of bounded rationality should be guided by our
psychological evidence about how people make mistakes

• Five stylized facts

1. Choice is random

2. Choice responds to incentives

3. Choice depends on prior beliefs

4. Choice depends on the decision context

5. Choice can depend on decision-irrelevant context
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Fact 1: Choice is Random

Psychometric Function: The probability of choosing the correct answer as a
function of properties of stimuli

Examples:

1. Which light is brighter?

2. Which object is heavier?

3. How many objects are there?

Full rationality benchmark: get the correct answer
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Fact 1: Choice is Random

Figure from Woodford (2020): Modeling Imprecision in Perception, Valuation,
and Choice (Ann. Rev. Econ.)
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Facts 2/3: Choice Responds to Incentives and Prior Beliefs

Key to economics being relevant (as distinct from relevant to economics!): do
choices respond to payoffs (incentives) and beliefs (priors)?

An example experiment (Green and Swets, 1966)

1. Two auditory stimuli s and n

2. Subject played audio and can answer S or N

3. Hit rate: P(S |s). False alarm rate: P(S |n).

Vary both the prior probabilities of s and n (0.1,0.3.0.5,0.7,0.9) and the incentive
for correct identification
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Facts 2/3: Choice Responds to Incentives and Prior Beliefs

Figure from Woodford (2020): Modeling Imprecision in Perception, Valuation,
and Choice (Ann. Rev. Econ.)
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Fact 4: Choice Depends on the Decision Context

The accuracy and precision of choice varies with the “context of decision
problems,” such as the action space and the state space

Dean and Neligh (2023): Experimental Tests of Rational Inattention (JPE)

1. The action space matters:

1.1 Pick between two options
1.2 Introduce a third option (expand action space)
1.3 Probability that one of the actions is taken increases

2. The state space matters:

2.1 Probabilities are more inaccurate when people are asked to
distinguish states that look more similar
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Fact 5: Choice Can Depend on Decision-Irrelevant Context

The accuracy and precision of choice can also depend on context that is not
decision-relevant

Mani et al. (2013): Poverty Impedes Cognitive Function (Science)

Performance in cognitive task declines when

1. People are reminded if the difficulty of making financial decisions

2. Have higher or lower income from a seasonal cycle

See also Gorodnichenko et al. (2024): The Economics of Financial Stress (WP)
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Primitives
• Actions x ∈ X ⊂ R

• State θ ∈ Θ ⊂ R, where Θ is finite; (subjective) probability distribution
π ∈ ∆(Θ)

• Choice variable (“plan”) is (p(· | θ))θ∈Θ ∈ (∆(X ))|Θ| =: P , a probability
distribution over actions in each state of the world

• Payoffs come from two source:
▶ ex post felicity, u : X ×Θ → R
▶ ex ante cost of implementing plan, K : (∆(X ))|Θ| ×∆(Θ) → R

• So in summary, the agent solves

max
p∈P

{∑
θ∈Θ

∑
x∈X

u(x , θ)p(x | θ)π(θ)− K [p, π]

}
(1)
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Defining “Mistakes”

max
p∈P

{∑
θ∈Θ

∑
x∈X

u(x , θ)p(x | θ)π(θ)− K [p, π]

}
(2)

• Assume there is a unique x∗ : Θ → X that defines the ex post optimum:
that is, for each θ ∈ Θ, {x∗(θ)} = argmaxx∈X u(x , θ)

• It is possible to put full probability on x∗. Let’s call any deviation of p(· | θ)
from x∗(θ) a “mistake” in that state.
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Why Make Mistakes?

max
p∈P

{∑
θ∈Θ

∑
x∈X

u(x , θ)p(x | θ)π(θ)− K [p, π]

}
(3)

What could K embody?

• Trembling hands: decision making (especially precision) requires effort, and
people don’t put in 100%

• Information acquisition: it’s hard to learn perfectly about θ

• Complexity: it is hard to think through the “logic” of a problem, even form
the right expected utility representation. ⇒ huge open questions, that for
now are mostly confined to experimental economics

• Ambiguity aversion: I might randomize to hedge against uncertainty about
the state or probability distribution. see, e.g., Fudenberg, Iijima, Strzalecki
(ECMA), 2015, Section 5
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Trembling Hands (I)

• The simplest, most classic models of trembling hands are “state-separable”:

K [p, ϕ] =
∑
θ

λ(θ)
∑
x

ϕ(p(x | θ)) (4)

where ϕ is increasing and convex, and λ > 0 are state-specific weights

• Interpretation: precision is difficult to achieve, weights measure how easy or
hard different states are to plan for

1. Ex post planning: λ = π
2. Ex ante planiing: λ(θ) ≡ cons
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Trembling Hands (II)

• Logit model (Harsanyi, 1973; McKelvey and Palfrey, 1995), up to constant
λ > 0

ϕ(x) = λx log x (5)

• Key property: Inada condition

• Choice probabilities available in closed form

p(x | θ) = exp(λ−1u(x , θ))∑
x ′∈X exp(λ−1u(x ′, θ))

(6)

▶ Resembles McFadden’s model with Type-I Extreme Value shocks
▶ Generates choice that is random, responds to incentives, and gets more

precise when utility differences are large.
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Trembling Hands (III)

• Quadratic model (Rosenthal, 1989)

ϕ(x) = λ
x2

2
(7)

• Key property: no Inada condition!

• Choice probabilities available in closed form

p(x | θ) = 1

λ
(u(x , θ)− ū(θ))1u(x ,θ)≥ū(θ) (8)

where constants ū(θ) chosen so each distribution integrates to unity
▶ Endogenous “consideration sets”: possible that only a strict subset of

actions is played with positive probability
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Information Theory (I)

• One important approach in economics, due to Sims (2003): model costly
information acquisition by appealing to established theory in mathematics
about how to “optimally” encode information

• Claude Shannon introduced an important definition of information content
in a random variable: the entropy for a random variable θ, with distribution
function π

H[π] = −
∑
θ

p(θ) log p(θ) = Eπ[− log p(θ)] (9)
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Information Theory (II)

Figure: Entropy of a Bernoulli R.V.
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Information Theory (III)

Justification 1: the encoding theorem

• If we have a random variable X with entropy H(X ), then (i) it can be
compressed into H(X ) bits with negligible probability of information loss (ii)
compressing it into less than H(X ) bits implies almost certain loss of
information

• This is something you would learn to understand how computers do lossless
compression (e.g., RAW and TIFF are lossless, JPG is lossy)

Justification 2: axioms. see the “Characterization” section on the Wikipedia
article about Entropy (information theory).
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Information Theory (IV)

Further facts about entropy that will help with intuition later:

• Entropy doesn’t depend on the “labels” of the states

• It is zero for a deterministic random variable (under usual continuity
convention for 0 log 0)

• It is not affected by adding zero probability states

• If we transform a random variable X by applying some function f , entropy
can only go down
▶ and it goes down only if f coarsens the states
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The Rational Inattention Cost: Information Formulation
Proposed in articles by Sims (1998, 2003)

K [ψ, π] =
∑
ω∈Ω

(H[π]− H[ψ(· | ω)])ψ(ω) = MI[ψ] (10)

• Information cost is expected reduction in entropy after observing ω

• which is also the definition of “Mutual Information,” another
information-theoretic notion

• n.b., there are other cost functionals which are “expected difference in
informativeness between prior and posterior”: the posterior separable class
studied by Denti (2022), Caplin, Dean and Leahy (2022), etc.

• Note that this has a natural extension to cases in which θ is continuous,
using differential entropy (previous definition with an integral rather than
sum). But this does not follow all of the axioms!

19 / 37



The Rational Inattention Cost: Information Formulation
Proposed in articles by Sims (1998, 2003)

K [ψ, π] =
∑
ω∈Ω

(H[π]− H[ψ(· | ω)])ψ(ω) = MI[ψ] (10)

• Information cost is expected reduction in entropy after observing ω

• which is also the definition of “Mutual Information,” another
information-theoretic notion

• n.b., there are other cost functionals which are “expected difference in
informativeness between prior and posterior”: the posterior separable class
studied by Denti (2022), Caplin, Dean and Leahy (2022), etc.

• Note that this has a natural extension to cases in which θ is continuous,
using differential entropy (previous definition with an integral rather than
sum). But this does not follow all of the axioms!

19 / 37



The Rational Inattention Cost: Information Formulation
Proposed in articles by Sims (1998, 2003)

K [ψ, π] =
∑
ω∈Ω

(H[π]− H[ψ(· | ω)])ψ(ω) = MI[ψ] (10)

• Information cost is expected reduction in entropy after observing ω

• which is also the definition of “Mutual Information,” another
information-theoretic notion

• n.b., there are other cost functionals which are “expected difference in
informativeness between prior and posterior”: the posterior separable class
studied by Denti (2022), Caplin, Dean and Leahy (2022), etc.

• Note that this has a natural extension to cases in which θ is continuous,
using differential entropy (previous definition with an integral rather than
sum). But this does not follow all of the axioms!

19 / 37



The Rational Inattention Cost: Stochastic Choice Formulation

K [p, π] =
∑
x ,θ

p(x |θ) log p(x |θ)π(θ)︸ ︷︷ ︸
Entropy stochastic choice

−
∑
x

p(x) log p(x)︸ ︷︷ ︸
Cross-State Interactions

(11)

• Mutual information model likes random choice, just like our first example of
stochastic choice

• But it also likes the distribution of actions (unconditional) to have low
entropy, or be concentrated on a few points
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Result 1: Logit Choice Formula

Theorem (Theorem 1, Matejka and McKay (2015))

Choice probabilities are implicitly defined by

p(x | θ) = p(x) exp(λ−1u(x , θ))∑
x ′∈X p(x ′) exp(λ−1u(x ′, θ))

p(x) =
∑
θ

p(x | θ)
(12)

• “Logit plus anchoring”

• Defines a fixed-point equation
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Result 2: Endogenous Consideration Sets (I)

Corollary (Corollary 2, Matejka and Mckay (2015))

For all x ∈ X such that p(x) > 0, we have that:

E
[

exp(λ−1u(x , θ))∑
x̃∈X p(x̃) exp(λ−1u(x̃ , θ))

]
= 1 (13)

• Example 2 from Caplin, Dean, and Leahy (ReStud, 2019)

• Safe choice x = 0 always give payoff 5.5

• Risky choices x ∈ {1, 2, 3, 4, 5} are all (independent) lotteries that give
payoff 10 with probability 1/2, 0 with probability 1/2

• Problem is to maximize expected utility minus λ > 0 times MI cost
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Result 2: Endogenous Consideration Sets (II)

• Why? In a certain way, commonly played actions are “self-reinforcing”
because marginal costs decrease
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Result 3: Discrete Solutions (I)

• Jung, Kim, Matejka, Sims in ReStud (2020) show that mutual information
often implies discrete support of actions in problems that allow a continuous
action space

• That is: even though a continuum of prices (e.g., p ∈ [$0, $10]) are
possible, a seller facing mutual information constraints may want only to
charge a few prices (e.g., $1 or $5 or $7)

• Economically, this is shown most clearly for “tracking problems with
bounded support”: that is, the agent’s objective is u(x , θ) = V (x − θ)
where V is (uniquely) maximized at 0, and Θ is a compact subset of RN

• Mathematically, the result is quite interesting as well
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Result 4: Endogenous Gaussian-Gaussian Structure

• Finally, the most celebrated result of them all. . .

• Let u(x , θ) = −(x − θ)2 and let λ > 0 be the scaling on the cost

• Then the optimal action x is normally distributed with variance
max{σ2 − 2λ, 0} and the optimal signal is Gaussian

• A microfoundation for all the Gaussian-fundamentals, Gaussian-signals,
quadratic problems that we solved earlier in the course

• Widely used result but also not robust (as we have seen)
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There are Lots of Other Information Costs. . .

• Pomatto, Strack, and Tamuz, AER : “The Cost of Information: The Case of
Constant Marginal Costs”

• Hebert and Woodford, JET : “Rational Inattention When Decisions Take
Time”

• Hebert and Woodford, AER : “Neighborhood-Based Information Costs”

• Denti, Marinacci, and Rustichini, AER : “Experimental Costs of Information”

• Bloedel and Zhong, WP: “The Cost of Optimally Acquired Information”

• Morris and Strack, WP: “The Wald Problem and the Equivalence of
Sequential Sampling and Static Information Costs”
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Equilibrium Predictions with Stochastic Choice (I)
• In a paper with Karthik (“Strategic Mistakes,” JET ) we study general
aggregative games with state-separable costs

• Continuum of agents care about own actions x ∈ X , the state θ ∈ Θ and an
aggregate of actions of others X : ∆(X ) → R. Payoff function: u(x ,X , θ)

• Agents choose a non-parametric stochastic choice rule p : Θ → ∆(X ),
p(x |θ) PDF of actions x ∈ X in state θ ∈ Θ

• Cost of playing more precise actions mediated by a cost functional
(ϕ : R+ → R strictly convex, e.g. entropy ϕ(x) = x log x)

c(P ; X̂ ) =
∑
Θ

∫
X
ϕ(p(x |θ)) dx λ(θ, X̂ (θ))

where λ : Θ× X → R+ is a weighting function and X̂ is the conjecture of
the equilibrium law of motion
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Conditions for Equilibrium Uniqueness: Payoffs and Costs (I)

Assumption (Supermodularity and Sufficient Concavity)

The payoff function u and weighting function λ are such that the following holds
for all x ′ ≥ x ,X ′ ≥ X , and θ:

u(x ′,X ′, θ)− u(x ,X ′, θ)

λ(X ′, θ)
≥ u(x ′,X , θ)− u(x ,X , θ)

λ(X , θ)

Moreover, for all α ∈ R+, x
′ ≥ x , X , and θ, the following holds:

u(x ′ − α,X , θ)− u(x − α,X , θ)

λ(X , θ)
≥ u(x ′,X + α, θ)− u(x ,X + α, θ)

λ(X + α, θ)
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Conditions for Equilibrium Uniqueness: Payoffs and Costs (II)

Lemma

If u(·, θ) and λ(·, θ) are twice continuously differentiable, then this assumption is
equivalent to:

0 ≤ uxX (x ,X , θ)− ux(x ,X , θ)
λX (X , θ)

λ(X , θ)
≤ −uxx(x ,X , θ)
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Conditions for Equilibrium Uniqueness: Aggregation

Assumption (Monotone and Discounted Aggregator)

For all g , g ′ ∈ ∆(X ):

g ′ ⪰FOSD g =⇒ X (g ′) ≥ X (g)

Moreover, there exists β ∈ (0, 1) such that for any distribution g ∈ ∆(X ) and
any α ∈ R+:

X ({g(x − α)}x∈X ) ≤ X ({g(x)}x∈X ) + βα

1. Linear aggregators:

X (g) = β

∫
X
f (x)g(x)dx

where β ∈ [0, 1) and f : X → R is such that f ′ ∈ [0, 1].
2. Quantile aggregators X (g) = βG−1(l) where β ∈ [0, 1) and l ∈ (0, 1).
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Conditions for Equilibrium Uniqueness: Costs

Definition (Quasi-MLRP)

A function f : R+ → R satisfies quasi-MLRP if for any two distributions
g ′, g ∈ ∆(X ):(

f (g ′(x ′))− f (g ′(x)) ≥ f (g(x ′))− f (g(x)) ∀x ′ ≥ x
)

=⇒ g ′ ⪰FOSD g

Assumption (Quasi-MLRP Kernel)

Costs have a differentiable kernel ϕ such that ϕ′ satisfies quasi-MLRP.

Lemma

The entropy kernel ϕ(p) = p log p and the quadratic kernel ϕ(p) = 1
2
p2 satisfy

this assumption.
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Equilibrium Uniqueness

Theorem (Existence, Uniqueness, and Symmetry)

Under the assumptions above, there exists a unique equilibrium. The unique
equilibrium is symmetric.

• Define the operator T : B → B and show it’s a contraction:

TX̂ = X ◦ p∗(X̂ )

• Use variational arguments to show that (for any two points in support of
optimal stochastic choice rule):

u(x ′, X̂ (θ), θ)− λ(X̂ (θ), θ)ϕ′(p(x ′|θ; X̂ ))

= u(x , X̂ (θ), θ)− λ(X̂ (θ), θ)ϕ′(p(x |θ; X̂ ))

• Under the assumptions, if X̂ ′ ≥ X̂ then p∗(θ; X̂ ′) ⪰FOSD p∗(θ; X̂ ).
Moreover, if X̂ and X̂ ′ = X̂ + α for α ∈ R+, then we have that
p∗−α(θ; X̂ ) ⪰FOSD p∗(θ; X̂ ′) 32 / 37



Robust Predictions with Stochastic Choice (III)

Theoretical results: find conditions on (u, ϕ,X ) such that:

1. Equilibria exist and are unique

2. Equilibrium action distribution p(x |θ) is FOSD-monotone in θ (and action
support is monotone in strong set order), aggregate X (θ) is monotone in θ

3. Equilibrium action distribution features dispersion or extent of mistakes that
is monotone in the state

4. Equilibria are efficient

Technique: contraction-mapping arguments, which are essentially impossible
under unrestricted information acquisition

What goes wrong with mutual information, in particular?
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Robust Predictions with Stochastic Choice (IV)

• Payoffs
u(x ,X , θ) = −(x − (0.15θ + 0.85X ))2 (14)

• Aggregator X =
∫ 1

0
xi di

• State Θ = {1, 2}, with 50/50 prior

• Action space is 40-piont grid between 0 and 3

• Costs: either logit stochastic choice or mutual information
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Robust Predictions with Stochastic Choice (V)
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Robust Predictions with Stochastic Choice (VI)

Parameterize, relative to some equilibrium: X̂ (q) = (q · X ∗
MI (θ0), q · X ∗

MI (θ1))
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Robust Predictions with Stochastic Choice (VI)

Parameterize, relative to some equilibrium: X̂ (q) = (q · X ∗
MI (θ0), q · X ∗

MI (θ1))
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Takeaways for Modelling Bounded Rationality

• No simple answer of what method is best (depends upon what you want to
capture)

• Different models have different pros and cons

• My stylized recommendation:

1. If an informational interpretation is not important, use a state-separable
stochastic choice formulation

2. If an informational interpretation is important, use a cost function that
allows for the important properties of the problem that you wish to study

• Beware of blindly using mutual information: it has poor properties in games
(general equilibrium) outside of the very special Gaussian-Gaussian case
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