Lecture 2

Macroeconomics with imperfect coordination

Chen Lian¹

¹UC Berkeley and NBER

May 20, 2024

Outline

1 Overview

2 Imperfect Common Knowledge and the Effects of Monetary Policy

The RBC Model and Responses to Technology Shocks

4 The New-Keynesian Model, Forward Guidance, and Imperfect Dynamic Coordination

5 Level-k Thinking in NK models

6 Cognitive Discounting

Macro Applications with Static Best Responses

Imperfect Common Knowledge and the Effects of Monetary Policy (Woodford, 03)

$$p_{i,t} = (1-\alpha) E_{i,t} [m_t] + \alpha E_{i,t} [p_t]$$

- Imperfect coordination as source of nominal rigidity
- Inertia in price and inflation responses

The RBC Model and Responses to Technology Shocks (Angeletos & La'O, 10)

$$y_{i,t} = (1-lpha)\chi A_{i,t} + lpha \mathbb{E}_{i,t} [y_t]$$

- Imperfect coordination as source of real rigidity
- Negative short-run response of employment to productivity shocks (Gali, 99)
- Inertia in output responses

Dynamic Macro Applications

- Dynamics I: Learning (inertia even with static best responses, as in the previous slides)
- Dynamics II: Forward-looking behavior/best responses

$$y_{t} = -\sigma \left\{ \sum_{k=0}^{+\infty} \beta^{k} \bar{E}_{t}[r_{t+k}] \right\} + (1-\beta) \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_{t}[y_{t+k}] \right\}$$

- Q: How does the economy respond to news about the future?
 - e.g., news about future interest rates
- Imperfect intertemporal coordination and forward guidance puzzle
 - Angeletos & Lian (18, noisy/incomplete info)
 - Farhi & Werning (19, level-k)

Pause for Questions

Outline

1 Overview

2 Imperfect Common Knowledge and the Effects of Monetary Policy

The RBC Model and Responses to Technology Shocks

④ The New-Keynesian Model, Forward Guidance, and Imperfect Dynamic Coordination

5 Level-k Thinking in NK models

6 Cognitive Discounting

Woodford (2003): Imperfect Common Knowledge and the Effects of Monetary Policy

• Optimal price by firm $i \in [0,1]$:

$$p_{i,t} = (1-\alpha) E_{i,t} [m_t] + \alpha E_{i,t} [p_t],$$

where $p_t = \int p_{i,t} di$ and $m_t = p_t + y_t$ is the exogenous nominal GDP • exogenous money supply (central bank) & constant velocity of money

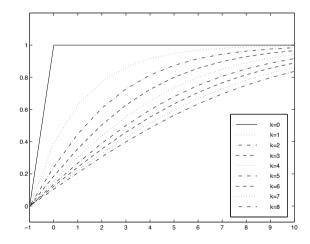
• Δm_t follows an AR(1) process with innovations v_t :

$$\Delta m_t = \rho \Delta m_{t-1} + v_t$$

• Private signal about m_t

$$x_{i,t} = m_t + \varepsilon_{i,t}$$

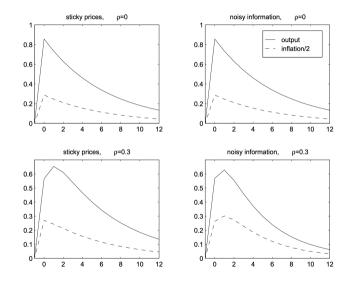
Inertia in Higher-order Beliefs

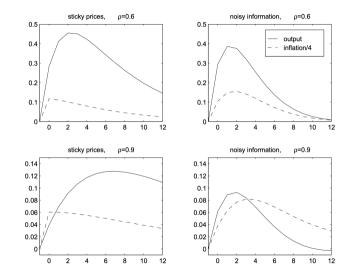

• As in the previous lecture, iterating

$$p_t = (1-lpha)\sum_{k=1}^{\infty} lpha^{k-1} ar{E}_t^k[m_t]$$

- Here, beliefs will adjust over time because of learning
- But beliefs of higher order $\bar{E}_t^k[m_t]$ adjust more sluggishly
 - ▶ with incomplete info, harder to know how much others have learned

Inertia in Higher-order Beliefs


• Use ho = 0 case as an example


Inertia in the Price Level and Inflation

- The inertia in HOB translates to inertia in the price level
 - the more so the stronger the complementarity
- The price level can adjust very slowly to the monetary shock
 - even if every agent learns fast about the shock
- When ρ is high enough, one can get empirically desirable property of inflation inertia
 - "sticky inflation"
 - it is impossible to get this from the Calvo sticky-price

Inertia in Inflation

Inertia in Inflation

Inertia in Medium-Scale DSGE models

Quantitative NK models such as Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2007) generate such empirically relevant inertia in inflation (and output) by

- (i) adding adjustment costs of investment and habit in consumption
- (ii) replacing the standard NKPC with Hybrid NKPC with "indexing"

But micro-level empirical support of those elements controversial

Imperfect coordination with strong strategic complementarity offers a alternative

Pause for Questions

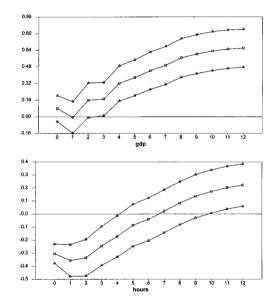
Outline

1 Overview

Imperfect Common Knowledge and the Effects of Monetary Policy

The RBC Model and Responses to Technology Shocks

④ The New-Keynesian Model, Forward Guidance, and Imperfect Dynamic Coordination


5 Level-k Thinking in NK models

6 Cognitive Discounting

The Gali (1999) Puzzle for RBC Models

- A structural VAR method to estimate IRFs to an identified technology shock in US data
 - the technology shock as the only shock that drives labor productivity in the long run
- Inertia in the response of output to productivity shocks
- Employment may actually *decrease* on impact
 - completely opposite to RBC models
 - consistent with NK models (with contractionary monetary policy responses)
- Similar finding for Basu, Fernald, Kimball (2006)

The Gali (1999) Puzzles for RBC Models

An Alternative Flexible-Price Model Based on Imperfect Coordination

- Angeletos & La'O (2010). Noisy business cycles. NBER Macroeconomics Annual.
- Baseline RBC model (without investment) + incomplete info about TFP shocks
- Inertia in the response of aggregate output
- Even a negative initial response in employment

Decisions and Information

• Optimal production decisions:

$$y_{i,t} = (1-\alpha)\chi A_{i,t} + \alpha \mathbb{E}_{i,t} [y_t],$$

where $y_t = \int y_{i,t} di$.

- Island structure:
 - ► knowledge of local TFP $A_{i,t} = A_t + \xi_{i,t}$ serves as a noisy private signal about aggregate TFP
 - also allows a public signal
- Solution: methods of undetermined coefficients + Kalman filter

Predictions (recall employment $n_t = \frac{1}{\theta} (y_t - A_t)$)

Fig. 1. Impulse responses to a positive innovation in productivity

Pause for Questions

Outline

1 Overview

- Imperfect Common Knowledge and the Effects of Monetary Policy
- The RBC Model and Responses to Technology Shocks

The New-Keynesian Model, Forward Guidance, and Imperfect Dynamic Coordination

- 5 Level-k Thinking in NK models
- 6 Cognitive Discounting

Forward Guidance without Common Knowledge (Angeletos & Lian, 2018)

Context: A NK Economy at the ZLB

Forward guidance (FG): the central bank attempts to stimulate AD by committing to keep interest rates low after the economy exits the trap and the ZLB

Forward guidance puzzle: under FIRE, forward guidance is extremely powerful

- Explosive dynamic general-equilibrium effects (y_t and π_t depend on π_{t+k} and y_{t+k})
 - Keynesian multiplier, πy feedback
- Perfect dynamic coordination across periods

Main Findings

Key insight:

- $\bullet\,$ Removing common knowledge of the FG news \Longrightarrow imperfect dynamic coordination
- Anchors expectations of future y and π
- Attenuates dynamic GE feedback loops
- Attenuation larger the longer these loops (horizon effect)

Implications:

- Lessen forward guidance puzzle
- Offer rationale for front-loading fiscal stimuli

A More General IS Robust to Incomplete Info

• Individual rationality + individual budget constraint + aggregation:

$$c_{t} = y_{t} = -\sigma \left\{ \sum_{k=0}^{+\infty} \beta^{k} \bar{E}_{t}[r_{t+k}] \right\} + \underbrace{(1-\beta) \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_{t}[y_{t+k}] \right\}}_{}$$

Dynamic Keynesian Multiplier

Dynamic beauty contest among consumers

- follows from PIH and c = y
- dynamic GE: intertemporal Keynesian income multiplier
- FIRE benchmark $E_{i,t}[\cdot] = \mathbb{E}_t[\cdot]$, where $\mathbb{E}_t[\cdot]$ is FIRE expectation

 $y_t = -\sigma \mathbb{E}_t[r_t] + \mathbb{E}_t[y_{t+1}],$

where $r_t = i_t - \pi_{t+1}$ is the real rate between t and t+1.

- Why no recursive without FIRE?
 - Law of iterated expectation **do not hold** for $\bar{E}_t[\cdots]$

$$\bar{E}_t\left[\cdots \bar{E}_{t_1}\left[\cdots \bar{E}_{t_2}\left[\cdot\right]\right]\right] = \bar{E}_t\left[\cdot\right]$$

- To develop intuition, focus on the demand block first
 - treat real interest rate $\{r_t\}_{t=0}^{+\infty}$ path exogenous
 - $\blacktriangleright\,$ e.g., rigid price or CB directly controls real rate path
- Q: How does y_0 responds to news about $\overline{E}_0[r_T]$?
 - Isolate the effect of frictional intertemporal coordination
 - > On top of any mechanical effect of first order informational friction

FIRE Benchmark

• FIRE benchmark:

$$E_{i,t}[r_{t+k}] = r_{t+k}$$
 and $E_{i,t}[y_{t+k}] = y_{t+k}$

• **Proposition**. Under FIRE,

$$\frac{\partial y_0}{\partial r_T} = \underbrace{-\sigma\beta^T}_{\mathsf{PE}} + \underbrace{(1-\beta)\left\{\sum_{k=1}^T \beta^{k-1} \frac{\partial y_k}{\partial r_T}\right\}}_{\mathsf{GE}} = -\sigma$$

- PE effect of r_T on c_0 decreases with T
- GE effect of r_T on c_0 increases with T
- Total effect independent of T despite declining PE

Incomplete Information

• Information Structure:

- noisy private signals about r_T at t = 0, $x_i = r_T + \varepsilon_i$
- no learning
- Belief anchoring:

$$\bar{E}_t[r_{t+k}] = \lambda r_{t+k}$$
 and $\bar{E}_t[y_{t+k}] = \lambda y_{t+k}$

- imperfect knowledge about future aggregate action
- **GE** attenuation due to imperfect intertemporal coordination:

$$\frac{\partial y_{0}}{\partial \bar{E}_{0}[r_{T}]} = \underbrace{-\sigma\beta^{T}}_{\mathsf{PE}} + \underbrace{\lambda\left(1-\beta\right)\left\{\sum_{k=1}^{T}\beta^{k-1}\frac{\partial y_{k}}{\partial \bar{E}_{0}[r_{T}]}\right\}}_{\mathsf{GE}}$$

Results

Attenuation at any horizon

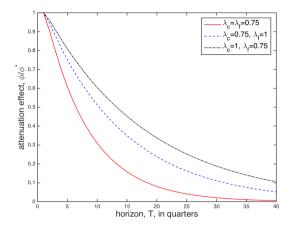
► $\phi_T = -\frac{dy_0}{dE_0[r_T]}$ bounded between PE effect and CK counterpart:

$$\sigma \beta^{T} < \phi_{T} < \phi_{T} \equiv \sigma$$

"CK maximizes GE effect"

2 Attenuation increases with the horizon

- ϕ_T/ϕ_T^* decreases in T
- ▶ the distant future enters through multiple rounds of GE effects


Attenuation grows without limit

• $\phi_{\mathcal{T}}/\phi_{\mathcal{T}}^*
ightarrow 0$ as $\mathcal{T}
ightarrow \infty$ even if noise is tiny

Going Back to the Full NK model

- Demand block (IS):
 - ▶ attenuate GE feedback b/w c and y (Keynesian multiplier)
 - anchor income expectations
 - arrest response of c to news about future real rates
- Supply block (NKPC):
 - \blacktriangleright attenuate GE feedback from future to current π
 - anchor inflation expectations
 - \blacktriangleright arrest response of π to news about future marginal costs
- GE feedback b/w demand (IS) and supply (NKPC)
 - joint endogeneity of real rates and real marginal cost
 - attenuate GE feedback between two blocks

A Numerical Illustration (based on Gali, 2008)

• Modest info friction: $\lambda_c = \lambda_f = 0.75$ (25% prob that others failed to hear announcement)

• On top of any mechanical effect that first order informational friction

Pause for Questions

Outline

1 Overview

2 Imperfect Common Knowledge and the Effects of Monetary Policy

The RBC Model and Responses to Technology Shocks

4 The New-Keynesian Model, Forward Guidance, and Imperfect Dynamic Coordination

5 Level-k Thinking in NK models

6 Cognitive Discounting

- ${\ensuremath{\, \bullet }}$ As illustrated in the static case in Lecture 1
 - incomplete information and level-k thinking both capture imperfect coordination
 - generate similar predictions for the complementarity case
- Here: how to apply level-k thinking in dynamic NK models (dynamic complementarity)
 - similar predictions regarding the impact of forward guidance

Back to the Demand Block in the NK Model

$$y_{t} = -\sigma \left\{ \sum_{l=0}^{+\infty} \beta^{l} \bar{E}_{t} [r_{t+l}] \right\} + (1-\beta) \left\{ \sum_{l=1}^{+\infty} \beta^{l-1} \bar{E}_{t} [y_{t+l}] \right\}$$

- Follow Farhi and Werning (2019)
 - treat real interest rate path exogenous
 - e.g. rigid price or CB directly controls real rate path
- Level-0 outcomes (no shock, steady state outcomes)

$$y_t^0 = 0$$

Level-1 Outcomes

• Level-1 outcomes (expect all future endogenous outcomes are at level 0)

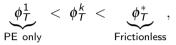
$$y_t^1 = -\sigma \sum_{l=0}^{+\infty} \beta^l r_{t+l} + (1-\beta) \left\{ \sum_{l=1}^{+\infty} \beta^{l-1} y_{t+l}^0
ight\}$$

 $= -\sigma \sum_{l=0}^{+\infty} \beta^l r_{t+l}$

• Captures PE effects of interest rate changes

Level-k Outcomes

• Level-k outcomes (expect all future endogenous outcomes are at level k-1)


$$y_t^k = -\sigma \sum_{l=0}^{+\infty} \beta^l r_{t+l} + (1-\beta) \left\{ \sum_{l=1}^{+\infty} \beta^{l-1} y_{t+l}^{k-1} \right\}$$

• Define ϕ_T^k : macro impact of forward guidance at level-k

$$\phi_T^k = -\frac{\partial y_t^k}{\partial r_{t+T}}$$

Results

• Attenuation for any level and any horizon:

where $\phi_T^* = \lim_{k \to +\infty} \phi_T^k = \sigma$.

• Attenuation increases with the horizon

 ϕ_T^k/ϕ_T^* decreases in T

• Attenuation decreases with the depth of reasoning

 ϕ_T^k/ϕ_T^* increases in k

Pause for Questions

Outline

1 Overview

- 2 Imperfect Common Knowledge and the Effects of Monetary Policy
- The RBC Model and Responses to Technology Shocks
- The New-Keynesian Model, Forward Guidance, and Imperfect Dynamic Coordination
- 5 Level-k Thinking in NK models
- 6 Cognitive Discounting

Gabaix (20): Cognitive Discounting

• A more "reduced-form" method to model "anchored" forward looking expectations ("cognitive discounting")

$$E_{i,t}\left[\mathsf{X}_{\mathsf{t}+\mathsf{k}}\right] = \overline{\mathbf{m}}^{\mathsf{k}} E_t\left[\mathsf{X}_{\mathsf{t}+\mathsf{k}}\right],$$

no matter whether X_{t+k} is an exogenous or endogenous aggregate state.

- Extremely tractable and generalizable
- Sharp and empirically relevant predictions
- But micro-foundation delicate

A Behavioral IS Curve

• Applying cognitive discounting, aggregate, and using market clearing $y_t = c_t$

$$y_t = -\sigma \left\{ \sum_{k=0}^{+\infty} \beta^k \bar{m}^k E_t[r_{t+k}] \right\} + \frac{1-\beta}{\beta} \left\{ \sum_{k=1}^{+\infty} \beta^k \bar{m}^k E_t[y_{t+k}] \right\}$$

• Recursively, a discounted aggregate Euler equation

$$y_t = -\sigma E_t[r_t] + \bar{m} E_t[y_{t+1}]$$
$$= -\sigma \sum_{k=0}^{+\infty} \bar{m}^k E_t[r_{t+k}],$$

where $M = \bar{m}$.

• Can directly see that the impact of forward guidance attenuated

Pause for Questions