Plotting

Linear Panel Event Studies

Liyang (Sophie) Sun (CEMFI) Jesse M. Shapiro (Harvard and NBER)

Motivation

Source: Freyaldenhoven et al. (2021)

- · Plotting an essential, not incidental, part of methodology
 - Of 16 papers in the 2022 AER mentioning DID or event studies, 12 do some form of pre-event testing and 10 include some form of plot of dynamic treatment effects and pre-event trends

Basics

Two Groups, Two Periods

Two Groups, Many Periods

Differences, Many Periods

Normalized Differences, Many Periods

Regression Trick

- Let zit be
 - 1 if *i* is in treatment group and *t* is after treatment date
 - 0 otherwise
- Estimate

$$\mathbf{y}_{it} = \alpha_i + \gamma_t + \sum_{k=-\infty}^{\infty} \delta_k \Delta \mathbf{z}_{i,t-k} + \varepsilon_{it}$$

- Unit fixed effect α_i
- Time fixed effect γ_t
- Normalize $\delta_{-1} = 0$ so δ_k is in normalized differences
- Then plot $\left\{\left(k,\hat{\delta}_k\right)\right\}_{k=-\infty}^{\infty}$

Normalized Differences, Many Periods

What If?

- Different units treated at different dates
 - · e.g., staggered adoption of state law
- Policy $z_{it} \in \{0, 1\}$ is not binary
 - e.g., minimum wage
- Time series is not infinite
 - · e.g., all real situations

Regression Trick

Estimate

$$y_{it} = \alpha_i + \gamma_t + \sum_{k=-(B-1)}^{A-1} \delta_k \Delta z_{i,t-k} + \delta_A z_{i,t-A} + \delta_B \left(1 - z_{i,t+B-1}\right) + \varepsilon_{it}$$

- Normalize $\delta_{-1} = 0$
- Then plot $\left\{\left(k,\hat{\delta}_{k}\right)\right\}_{k=-B}^{A}$
 - A = number of periods After to plot
 - *B* = number of periods **B**efore to plot
- NB: For algebra, see Freyaldenhoven et al. (2021) or Schmidheiny and Siegloch (2023)

Event-study Plot

$$y_{it} = \alpha_i + \gamma_t + \sum_{k=-(B-1)}^{A-1} \delta_k \Delta z_{i,t-k} + \delta_A z_{i,t-A} + \delta_B \left(1 - z_{i,t+B-1}\right) + \varepsilon_{it}$$

- Treating dynamics as stable more than *B* periods before event, *A* periods after
 - · Can't allow for infinite dynamics due to finite data
- Estimating dynamics relative to a fixed normalization, e.g., $\delta_{-1}=\mathbf{0}$
 - · Can't identify causal effects without a base period

Warning

- This "trick" is one possible regression generalization of DID
- It has the virtue of being flexible
- Think of it as a starting point
- · Other approaches may be more suited to your setting
- · Will come back to this!

Making More Informative Plots

Point Estimates

Confidence Intervals

Confidence Bands

Sup-t bands a la Montiel Olea and Plagborg-Møller (2018)

Testing

Confounding

· Could confounding explain this pattern?

Confounding

• A linear path in event-time, not statistically rejected.

Confounding

• A linear path in event-time, statistically rejected.

Least Wiggly Confound

· Defined in Freyaldenhoven et al. (2021)

Implementation

Software

- · Stata: xtevent
- R: EventStudyR

Today

- Overview (Jesse)
- · Basics of identification and estimation (Liyang)
- Basics of plotting (Jesse)
- · Pitfalls and some solutions
 - · Confounds and pre-trend testing (Liyang)
 - Heterogeneous effects (Jesse)
- · Conclusions (Liyang)