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Outline

• Lay out key identifying assumptions for the simplest
difference-in-differences estimator

• “no anticipation” assumption and its economic content
• “parallel trends” assumption and its economic content

• Generalize assumptions for popular extensions to the estimator
when

• treatment lasts several periods
• treatment is introduced to different units at different times



Basics



Classical example: Card and Krueger (1994)

• Measured employment before and after minimum wage increase
for a sample of fast-food restaurants

• Motivated difference-in-differences (DID) estimator by the
following

https://www.jstor.org/stable/2118030


A simple DID estimator

• Table 3 of Card and Krueger (1994)

• Binary treatment Di

• For PA, Di = 0; for NJ, Di = 1

• Two periods: t ∈ {−1,0} and treatment is implemented at t = 0
• Four sample averages of the outcome ȳt ,D:

• before vs after and PA vs NJ

https://www.jstor.org/stable/2118030


A simple DID estimator

• Row 3 Column (iii) is their DID estimate

• We can write the estimator as

β̂DID =
(
ȳt=0,D=1 − ȳt=−1,D=1

)
−
(
ȳt=0,D=0 − ȳt=−1,D=0

)



What is the DID estimator estimating?

• The DID estimator is

β̂DID =
(
ȳt=0,D=1 − ȳt=−1,D=1

)
−
(
ȳt=0,D=0 − ȳt=−1,D=0

)
• Potential outcomes yi,t(d) for d ∈ {0,1}

• The employment that would have been if minimum wage
increased (d = 1) and did not increase (d = 0)

• For PA, observe yi,t(0); for NJ, observe yi,t(1)

• Interested in the average impact for NJ after the minimum wage
increased, formally, the average treatment effect on the treated

ATT: E [

treatment effect︷ ︸︸ ︷
yi,0(1)︸ ︷︷ ︸
observed

− yi,0(0)︸ ︷︷ ︸
counterfactual

| Di = 1]

• Since counterfactual outcomes are never observed, we need to
impose some assumptions to estimate the ATT



Sufficient assumptions (1): No anticipation

• “no anticipation” assumption:
• the outcome is not affected by the treatment prior to its

implementation: yi,−1(0) = yi,−1(1) for all i with Di = 1

• Assuming “no anticipation,” outcomes we observe yi,t can be
written as

PA Di = 0 NJ Di = 1
before t = −1 yi,−1(0) yi,−1(0)

after t = 0 yi,0(0) yi,0(1)

• Example violation: fast food restaurants laying off minimum wage
workers in advance of increase in wage

• Other examples: consumption smoothing for anticipated job loss
(Hendren 2017)

https://www.jstor.org/stable/44871746


Sufficient assumptions (2): Parallel trends

• “parallel trends” assumption:

E [yi,0(0)− yi,−1(0) | Di = 1] (NJ counterfactual trend)

=E [yi,0(0)− yi,−1(0) | Di = 0] (PA trend)

• if minimum wage never increased for NJ, average trends would
coincide between NJ and PA

• Example violation: NJ labor market was improving compared to
PA

• Other examples: downward trend in wage income leading to
participation in job training programs (Ashenfelter’s dip)



Sufficient assumptions (2): Parallel trends

• Very different from the unconfoundedness assumption that is
common in RCTs:

• Random assignment {yi(1), yi(0)} ⊥ Di

• Parallel trends assumption allows for potentially non-zero
selection bias:

E [yi,−1(0) | Di = 1]− E [yi,−1(0) | Di = 0]︸ ︷︷ ︸
selection bias at t=−1

=E [yi,0(0) | Di = 1]− E [yi,0(0) | Di = 0]︸ ︷︷ ︸
selection bias at t=0

• Sensitive to the scale: if parallel trends holds for level of
employment, it might fail for log of employment, and vice versa
(Roth and Sant’Anna 2023)

https://doi.org/10.3982/ECTA19402


DID is unbiased for ATT

• The DID estimator

β̂DID =
(
ȳt=0,D=1 − ȳt=−1,D=1

)
−
(
ȳt=0,D=0 − ȳt=−1,D=0

)
• is therefore unbiased for

E [yi,0 − yi,−1 | Di = 1]− E [yi,0 − yi,−1 | Di = 0]

=E [yi,0(1)− yi,−1(0)︸ ︷︷ ︸
"no anticipation"

| Di = 1]− E [yi,0(0)− yi,−1(0) | Di = 0]

=E [yi,0(1)− yi,0(0) | Di = 1]︸ ︷︷ ︸
ATT

+

E [yi,0(0)− yi,−1(0) | Di = 1]− E [yi,0(0)− yi,−1(0) | Di = 0]︸ ︷︷ ︸
=0 under "parallel trends"



Estimation with two periods



Regression representation

• Recall the DID estimator:

β̂DID =
(
ȳt=0,D=1 − ȳt=−1,D=1

)
−
(
ȳt=0,D=0 − ȳt=−1,D=0

)
• Can implement via regression as follows
• Define zit as

• 1 if i is treated (Di = 1) and t is after treatment (t = 0)
• 0 otherwise

• Estimate yit = αd + γt + βzit + εit

• Group fixed effect αd for d ∈ {0,1}
• Time fixed effect γt

• The OLS estimate β̂ is numerically equivalent to β̂DID



Grouped data and repeated cross sections

• This regression representation is also useful for non-panel
datasets

• For repeated cross sections, β̂DID still unbiased estimate of ATT
and so is the regression representation

• We can also collapse to group-level and obtain group-level panel
data

• WLS coincides exactly with β̂DID



Two-way Fixed Effects (TWFE)

• Common to implement DID via Two-way Fixed Effects (TWFE)
regression

• Estimate yit = αi + γt + βzit + εit

• Unit fixed effect αi

• Time fixed effect γt

• Large subsequent literature on minimum wage (for example,
Neumark and Wascher 2007) estimates this model allowing for
continuous treatment, covariates, multiple time periods, etc.

• Will return to some of these topics later in lecture

• For now focus on multiple time periods

http://dx.doi.org/10.1561/0700000015


Estimation with multiple periods



Multiple periods but one treatment group

• For example, Seattle minimum wage increase (Jardim et al.
2022)

• Suppose for those Di = 1, treatment starts at t = t∗

• Define zit as before
• 1 if i is treated (Di = 1) and t is after treatment (t ≥ t∗)
• 0 otherwise

• Then relative time indicator ∆zi,t−k = 1 if treatment happens in
period t − k

• k = 0: contemporaneous
• k > 0: indicator for start of treatment k periods ago
• k < 0: indicator for start of treatment |k | periods in future

https://doi.org/10.1257/pol.20180578%20
https://doi.org/10.1257/pol.20180578%20


“Dynamic” specification

• Estimate a “dynamic” specification

yit = αi + γt +
∞∑
−∞

δk∆zi,t−k + εit

• Unit (or group) fixed effect αi

• Time fixed effect γt

• Normalize δ−1 = 0 so δk is in normalized differences

• Each regression coefficient estimator can still be thought of as a
DID estimator:

δ̂k =
(
ȳt=t∗+k ,D=1 − ȳt=t∗−1,D=1

)
−
(
ȳt=t∗+k ,D=0 − ȳt=t∗−1,D=0

)



Generalized “no anticipation” and “parallel trends”

• “No anticipation” assumption:
• Treatment has no causal effect prior to its implementation:

yit(0) = yit(1) for all i with Di = 1 for all t < t∗

• “Parallel trends” assumption:

E [yit ′(0)− yit(0) | Di = 1] = E [yit ′(0)− yit(0) | Di = 0]

for all t ̸= t ′

• Under “no anticipation” and “parallel trends”, can interpret δk for
k ≥ 0 as cumulative ATT:

E [yi,t∗+k (1)− yi,t∗+k (0) | Di = 1]

• But also implies δk for k < −1 should be zero, which is the basis
for pre-trends testing that we discuss later



Multiple periods and multiple treatment groups

• For example, minimum wage increase was introduced gradually
across states

• Suppose we want to estimate the impact of having experienced
any increase in minimum wage (“staggered adoption”)

• Recall that zit ∈ {0,1} indicates whether unit i is treated in period t
• “Staggered adoption” implies that zit is non-decreasing in t

• Can categorize units uniquely into treatment timing groups by
g(i) = min{t : zit = 1}, the earliest period at which unit i has
received treatment

• Takes on values g(i) ∈ {0,1, . . . ,∞} where
• ∞ is never-treated



Generalized “no anticipation” and “parallel trends”

• “no anticipation” assumption:
• Treatment has no causal effect prior to its implementation:

yit(∞) = yit(g) for all i for all t < g(i)

• “parallel trends” assumption (strong version):

E [yit ′(∞)− yit(∞) | g(i) = g] = E [yit ′(∞)− yit(∞) | g(i) = ∞]

for all t ̸= t ′ and for all adoption groups g < ∞
• The never-treated counterfactual would evolve in parallel for all

adoption groups, as well as the never-treated group



Generalized “no anticipation” and “parallel trends”

• “no anticipation” assumption:
• Treatment has no causal effect prior to its implementation:

yit(∞) = yit(g) for all i for all t < g(i)

• “parallel trends” assumption (weak version):

E [yit ′(∞)− yit(∞) | g(i) = g] = E [yit ′(∞)− yit(∞) | g(i) = g′]

for all t ̸= t ′ and for all adoption groups g,g′ < ∞
• The never-treated counterfactual would evolve in parallel for all

adoption groups
• Might not be parallel with the never-treated group



Estimate the dynamic effect: staggered adoption

• Under “staggered adoption”, suppose we estimate a “dynamic”
specification

yit = αi + γt +
∞∑
−∞

δk∆zi,t−k + εit

• In addition to “no anticipation” and “parallel trends for staggered
setting”, this specification also restricts homogeneity on
treatment effects

• The dynamic effect δk only depends on the relative time k , but not
on the treatment timing g

• Return later to cases where homogeneity is violated

• Can summarize “overall” ATT by taking averages of the
estimated δk for k ≥ 0



Estimate the “overall” effect: staggered adoption

• Another option is to estimate a static model

yit = αi + γt + βpostzi,t + εit

• βpost is the correct summary for the “overall” effect if treatment
effects are truly static, i.e., if δk = 1k≥0βpost

• If treatment effects are not static, then misspecified

• In settings without a never-treated group, recent work found
cases with severe misspecification:

• Coefficient βpost may not correspond to any proper average of δk

• For example, βpost < 0 even though δk > 0, and vice versa

• See de Chaisemartin and D’Haultfœuille (2020) and
Goodman-Bacon (2021) for diagnostics

https://doi.org/10.1257/aer.20181169
https://doi.org/10.1016/j.jeconom.2021.03.014


Estimate the “overall” effect: staggered adoption

• For illustration, de Chaisemartin and D’Haultfœuille (2020)
constructed an example of two adoption groups and three time
periods

• Suppose δ0 = 1 and δ1 = 4, can summarize the “overall” effect
appropriately based on the dynamic model

• Only relying on the static model can be misleading because βpost

is equal to −1/2 instead

• If report estimates from both static and dynamic model, can
combine these estimates into one while staying agnostic about
the degree of misspecification by applying Armstrong, Kline and
Sun (2023)

https://doi.org/10.1257/aer.20181169
https://arxiv.org/abs/2305.14265
https://arxiv.org/abs/2305.14265


Alternative identifying
assumptions



Alternative identifying assumptions

• If “parallel trends” assumption is not applicable, many proposals
for alternative identifying assumptions:

• Methods Lecture 2007 (Change-in-Changes, Semiparametric
Difference-in-Differences,...)

• Methods Lecture 2021 (Synthetic Controls)

• Details are beyond the scope of this lecture

https://www.nber.org/lecture/2007-methods-lecture-jeffrey-wooldridge-difference-differences-estimation
https://www.nber.org/lecture/2021-methods-lecture-alberto-abadie-synthetic-controls-methods-and-practice


Cohort comparison

• Instead of panel data or repeated cross sectional data,
• Observe one cross section where units can be categorized by

birth cohorts g(i)

• Sometimes leverage cross-cohort comparison, for example,
Duflo (2001)

• Late cohort in the treatment group is more exposed to the
treatment than the early cohort

• de Chaisemartin and D’Haultfœuille (2017) propose alternative
assumptions

• Intuitively, cohort g(i) plays the role of calendar time, but many
differences

https://www.jstor.org/stable/2677813
https://www.jstor.org/stable/26543909


Randomized treatment / timing

• Treatment is randomized, and observe past outcomes
• For example, baseline surveys

• Or the treatment timing is randomized, even though all units
eventually receive treatment

• For example, Parker, Souleles, Johnson, and McClelland (2013)

• Can now rely on random assignment {yi,t(1), yi,t(0)} ⊥ g(i),
which is invariant to scale

• For example, McKenzie (2012) and Roth and Sant’Anna
(Forthcoming)

https://www.jstor.org/stable/42920659
https://doi.org/10.1016/j.jdeveco.2012.01.002
https://arxiv.org/pdf/2102.01291.pdf
https://arxiv.org/pdf/2102.01291.pdf


Conclusion
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Today

• Overview (Jesse)

• Basics of identification and estimation (Liyang)

• Basics of plotting (Jesse)
• Pitfalls and some solutions

• Confounds and pre-trend testing (Liyang)
• Heterogeneous effects (Jesse)

• Conclusions (Liyang)
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