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* Lay out key identifying assumptions for the simplest
difference-in-differences estimator
* “no anticipation” assumption and its economic content
* “parallel trends” assumption and its economic content
» Generalize assumptions for popular extensions to the estimator
when

« treatment lasts several periods
« treatment is introduced to different units at different times



Basics



Classical example: Card and Krueger (1994)

* Measured employment before and after minimum wage increase
for a sample of fast-food restaurants

» Motivated difference-in-differences (DID) estimator by the
following

Moreover, since seasonal patterns of em-
ployment are similar in New Jersey and
eastern Pennsylvania, as well as across
high- and low-wage stores within New Jer-
sey, our comparative methodology effec-
tively “differences out” any seasonal em-
ployment effects.


https://www.jstor.org/stable/2118030

A simple DID estimator

» Table 3 of Card and Krueger (1994)

Stores by state

Difference,
PA NJ NJ-PA
Variable @) (ii) (iii)
1. FTE employment before, 23.33 20.44 —-2.89
all available observations  (1.35) (0.51) (1.44)
2. FTE employment after, 21.17 21.03 -0.14
all available observations  (0.94) (0.52) (1.07)
3. Change in mean FTE -216 059 2.76
employment (1.25) (0.59) (1.36)

* Binary treatment D;
« For PA, D; = 0; for NJ, D; = 1

* Two periods: t € {—1,0} and treatment is implemented at t = 0
 Four sample averages of the outcome y; p:
* before vs after and PA vs NJ


https://www.jstor.org/stable/2118030

A simple DID estimator

* Row 3 Column (iii) is their DID estimate

Stores by state

Difference,
PA NJ NJ—-PA
Variable () (ii) (iii)
1. FTE employment before, 23.33 20.44 —2.89
all available observations ~ (1.35) (0.51) (1.44)
2. FTE employment after, 21.17 21.03 -0.14
all available observations  (0.94) (0.52) (1.07)
3. Change in mean FTE —-2.16 0.59 2.76
employment (1.25) (0.54) (1.36)

» We can write the estimator as

P = (Vi=0,0=1 — Yt=—1,0=1) — (V=0,0=0 — ¥1=—1,0=0)



What is the DID estimator estimating?

* The DID estimator is

B°° = (Vi=0,0=1 — Yt=—1,0=1) — (¥t=0.0=0 — ¥=—1,0=0)

+ Potential outcomes y; ;(d) for d € {0,1}
» The employment that would have been if minimum wage
increased (d = 1) and did not increase (d = 0)
* For PA, observe y; +(0); for NJ, observe y; (1)
* Interested in the average impact for NJ after the minimum wage
increased, formally, the average treatment effect on the treated

treatment effect
ATT: E[yio(1) — Yio(0) | Di=1]
N—— N——

observed  counterfactual

 Since counterfactual outcomes are never observed, we need to
impose some assumptions to estimate the ATT



Sufficient assumptions (1): No anticipation

* “no anticipation” assumption:
 the outcome is not affected by the treatment prior to its
implementation: y; _1(0) = y; _1(1) for all j with D; = 1
+ Assuming “no anticipation,” outcomes we observe y; ; can be
written as

PAD,—0 NJDj—1
before t = -1 y;_1(0)  yi_1(0)
after t =0 ¥i0(0) Yio(1)

» Example violation: fast food restaurants laying off minimum wage
workers in advance of increase in wage

» Other examples: consumption smoothing for anticipated job loss
(Hendren 2017)


https://www.jstor.org/stable/44871746

Sufficient assumptions (2): Parallel trends

* “parallel trends” assumption:

Elyio(0) — yi,—1(0) | D; = 1] (NJ counterfactual trend)
=E[yio(0) — yi,-1(0) | D; = 0] (PA trend)

« if minimum wage never increased for NJ, average trends would
coincide between NJ and PA
» Example violation: NJ labor market was improving compared to
PA
» Other examples: downward trend in wage income leading to
participation in job training programs (Ashenfelter’s dip)



Sufficient assumptions (2): Parallel trends

* Very different from the unconfoundedness assumption that is
common in RCTs:

» Random assignment {yi(1), yi(0)} L D;

+ Parallel trends assumption allows for potentially non-zero
selection bias:

Elyi-1(0) | D; = 1] — E[y; —1(0) | D; = 0]
selection bias at t=—1
= E[yj0(0) | Di = 1] — E[y;o(0) | D; = 0]

selection bias at =0

» Sensitive to the scale: if parallel trends holds for level of
employment, it might fail for log of employment, and vice versa
(Roth and Sant’Anna 2023)


https://doi.org/10.3982/ECTA19402

DID is unbiased for ATT

e The DID estimator

B°° = (V=0,0-1 = Yt=—1,0=1) — (¥i=0.0-0 — ¥1=—1,0-0)

* is therefore unbiased for

Elyio— Yi—1|Di=1] - Elyio — ¥i,—1 | Di = 0]
=E[yjo(1) — ¥i-1(0) | Di=1]—Elyio(0) — yi—1(0) | D; = 0]
—_——
"no anticipation”
=Elyio(1) — yio(0) | D;i = 1]+
ATT
E[yio(0) — yi,—1(0) | D; = 1] — E[y;0(0) — y5,-1(0) | D; = 0]

=0 under "parallel trends"




Estimation with two periods




Regression representation

Recall the DID estimator:

B°° = (V=0,0-1 = Yt=—1,0=1) — (¥i=0.0-0 — ¥1=—1,0-0)

» Can implement via regression as follows
» Define z;; as
« 1ifjistreated (D; = 1) and t is after treatment (f = 0)
» 0 otherwise
Estimate yi; = ag + v + 6zt + €jy
« Group fixed effect a4 for d € {0, 1}
+ Time fixed effect +;

The OLS estimate 3 is numerically equivalent to 5P'P



Grouped data and repeated cross sections

* This regression representation is also useful for non-panel
datasets

« For repeated cross sections, 3P/ still unbiased estimate of ATT
and so is the regression representation
» We can also collapse to group-level and obtain group-level panel
data
« WLS coincides exactly with 3PP



Two-way Fixed Effects (TWFE)

« Common to implement DID via Two-way Fixed Effects (TWFE)
regression
» Estimate yjy = o + v: + Bzit + €j¢
« Unit fixed effect o
+ Time fixed effect ¢
» Large subsequent literature on minimum wage (for example,
Neumark and Wascher 2007) estimates this model allowing for
continuous treatment, covariates, multiple time periods, etc.
» Will return to some of these topics later in lecture

» For now focus on multiple time periods


http://dx.doi.org/10.1561/0700000015

Estimation with multiple periods




Multiple periods but one treatment group

» For example, Seattle minimum wage increase (Jardim et al.
2022)

» Suppose for those D; = 1, treatment starts at t = t*

» Define z; as before
« 1ifjistreated (D; = 1) and t is after treatment (f > t*)
» 0 otherwise
+ Then relative time indicator Az;;_, = 1 if treatment happens in
period t — k
* k = 0: contemporaneous
* k > 0: indicator for start of treatment k periods ago
+ k < 0: indicator for start of treatment | k| periods in future


https://doi.org/10.1257/pol.20180578%20
https://doi.org/10.1257/pol.20180578%20

“Dynamic” specification

 Estimate a “dynamic” specification

[e.9]
Yi=oai+y+ Y 0kDZik+ei

—0o0
+ Unit (or group) fixed effect «;
» Time fixed effect ¢
* Normalize §_1 = 0 so dx is in normalized differences

» Each regression coefficient estimator can still be thought of as a
DID estimator:

Ok = (Ve=t*+k,p=1 — Vt=t-—1,0=1) — (Vt=t++k,0=0 — Vt=t—1,0=0)



Generalized “no anticipation” and “parallel trends”

* “No anticipation” assumption:

» Treatment has no causal effect prior to its implementation:
yir(0) = yir(1) for all i with D; = 1 for all t < t*

 “Parallel trends” assumption:

Elyir(0) = yir(0) | Di = 1] = Elyir(0) — yi(0) | D; = O]

forall t #

» Under “no anticipation” and “parallel trends”, can interpret d, for
k > 0 as cumulative ATT:

ElYit+k(1) — Yit+k(0) | Dj = 1]

* But also implies o4 for k < —1 should be zero, which is the basis
for pre-trends testing that we discuss later



Multiple periods and multiple treatment groups

» For example, minimum wage increase was introduced gradually
across states

» Suppose we want to estimate the impact of having experienced
any increase in minimum wage (“staggered adoption”)

* Recall that z; € {0, 1} indicates whether unit i is treated in period t
+ “Staggered adoption” implies that z; is non-decreasing in t
» Can categorize units uniquely into treatment timing groups by
g(i) = min{t : z; = 1}, the earliest period at which unit / has
received treatment
» Takes on values g(i) € {0,1,...,00} where
* oo is never-treated



Generalized “no anticipation” and “parallel trends”

* “no anticipation” assumption:
» Treatment has no causal effect prior to its implementation:
Yit(o00) = yi(g) for all i for all t < g(f)
* “parallel trends” assumption (strong version):

Elyiv(c0) = yir(oo) [ 9(7) = g] = Elyir(o0) = yir(o0) | 9(/) = o]

for all t # t' and for all adoption groups g < oo

» The never-treated counterfactual would evolve in parallel for all
adoption groups, as well as the never-treated group



Generalized “no anticipation” and “parallel trends”

* “no anticipation” assumption:
» Treatment has no causal effect prior to its implementation:
Yit(o00) = yi(g) for all i for all t < g(f)
* “parallel trends” assumption (weak version):

Elyir(00) — yir(o0) | g(i) = g] = Elyir(o0) — yir(o0) | g(i) = d]

for all t # t' and for all adoption groups g, g’ < o
» The never-treated counterfactual would evolve in parallel for all
adoption groups
+ Might not be parallel with the never-treated group



Estimate the dynamic effect: staggered adoption

» Under “staggered adoption”, suppose we estimate a “dynamic”
specification

o
Yi=oi+n+ Y 0kDZiik+ei
—0oQ
* In addition to “no anticipation” and “parallel trends for staggered
setting”, this specification also restricts homogeneity on
treatment effects
» The dynamic effect §, only depends on the relative time k, but not
on the treatment timing g
* Return later to cases where homogeneity is violated

» Can summarize “overall” ATT by taking averages of the
estimated §, for k > 0



Estimate the “overall” effect: staggered adoption

» Another option is to estimate a static model
Yit = aj + vt + BpostZit + €it

* Bpost i the correct summary for the “overall” effect if treatment
effects are truly static, i.e., if 0x = 1xk>008post
« If treatment effects are not static, then misspecified
* In settings without a never-treated group, recent work found
cases with severe misspecification:
+ Coefficient Bp0st may not correspond to any proper average of dx
* For example, fBpost < 0 even though dx > 0, and vice versa
» See de Chaisemartin and D’Haultfceuille (2020) and
Goodman-Bacon (2021) for diagnostics


https://doi.org/10.1257/aer.20181169
https://doi.org/10.1016/j.jeconom.2021.03.014

Estimate the “overall” effect: staggered adoption

* For illustration, de Chaisemartin and D’Haultfceuille (2020)
constructed an example of two adoption groups and three time
periods

» Suppose 0y = 1 and 6 = 4, can summarize the “overall” effect
appropriately based on the dynamic model

+ Only relying on the static model can be misleading because Spost
is equal to —1/2 instead

* If report estimates from both static and dynamic model, can
combine these estimates into one while staying agnostic about
the degree of misspecification by applying Armstrong, Kline and
Sun (2023)


https://doi.org/10.1257/aer.20181169
https://arxiv.org/abs/2305.14265
https://arxiv.org/abs/2305.14265

Alternative identifying
assumptions




Alternative identifying assumptions

« If “parallel trends” assumption is not applicable, many proposals
for alternative identifying assumptions:
* Methods Lecture 2007 (Change-in-Changes, Semiparametric
Difference-in-Differences,...)
* Methods Lecture 2021 (Synthetic Controls)

* Details are beyond the scope of this lecture


https://www.nber.org/lecture/2007-methods-lecture-jeffrey-wooldridge-difference-differences-estimation
https://www.nber.org/lecture/2021-methods-lecture-alberto-abadie-synthetic-controls-methods-and-practice

Cohort comparison

* Instead of panel data or repeated cross sectional data,
» Observe one cross section where units can be categorized by
birth cohorts g(/)

» Sometimes leverage cross-cohort comparison, for example,
Duflo (2001)
 Late cohort in the treatment group is more exposed to the
treatment than the early cohort
+ de Chaisemartin and D’Haultfceuille (2017) propose alternative
assumptions
« Intuitively, cohort g(i) plays the role of calendar time, but many
differences


https://www.jstor.org/stable/2677813
https://www.jstor.org/stable/26543909

Randomized treatment / timing

 Treatment is randomized, and observe past outcomes
» For example, baseline surveys

* Or the treatment timing is randomized, even though all units
eventually receive treatment
» For example, Parker, Souleles, Johnson, and McClelland (2013)
+ Can now rely on random assignment {y; (1), ¥i+(0)} L g(i),
which is invariant to scale

» For example, McKenzie (2012) and Roth and Sant’Anna
(Forthcoming)


https://www.jstor.org/stable/42920659
https://doi.org/10.1016/j.jdeveco.2012.01.002
https://arxiv.org/pdf/2102.01291.pdf
https://arxiv.org/pdf/2102.01291.pdf

Conclusion
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* Basics of plotting (Jesse)
+ Pitfalls and some solutions

» Confounds and pre-trend testing (Liyang)
» Heterogeneous effects (Jesse)

+ Conclusions (Liyang)
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