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Today

So far: have assumed full information & rational expectations (“FIRE”)

Today: Deviations from FIRE (“information frictions”) ...

• incomplete information (e.g. noisy information, sticky information)
• deviations from rational expectations (e.g. extrapolation, cognitive
discounting, level k thinking)

Leading contender to explain key puzzles in macro & �nance, e.g.

• Why does {in�ation, investment, consumption} respond so sluggishly to
aggregate shocks? (but not to idiosyncratic shocks?)

• Why do asset prices overreact to shocks?
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Problem

• Slight problem: deviations from FIRE typically very hard to simulate on top
of simple RA model

• e.g. [Mankiw and Reis, 2007], [Maćkowiak and Wiederholt, 2015]

Goal for today: Coherent framework to model and simulate deviations from FIRE

... not just RA, but also HA!

Material mostly a version of the approach that we have developed for
[Auclert et al., 2020]. Nice recent work using this approach:
[Bardoczy et al., 2023]
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Introductory example



Monetary policy revisited

• Imagine we have the IKC equation for monetary policy

dY = Mrdr+MdY (1)

where Mr ≡ ∂C
∂r and M ≡

∂C
∂Y are Jacobians of a general household side

• HA, RA, TA, ZL, . . .

• Imagine that households are completely myopic about the economy
• only start responding to drt in period t
• only start responding to dYt in period t

• What is dY then? Can we change (1) to re�ect this?
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Manipulating the Jacobians

• Start with the “FIRE” iMPCs (Mr similar)

M =


M00 M01 M02 M03 · · ·
M10 M11 M12 M13 · · ·
M20 M21 M22 M23 · · ·
M30 M31 M32 M33 · · ·
...

...
...

... . . .

 M =


M00 0 0 0 · · ·
M10 M00 0 0 · · ·
M20 M10 M00 0 · · ·
M30 M20 M10 M00 · · ·
...

...
...

... . . .


• Each column s is the response of C to news shock: “output rises at date s”

• A date s news shock in our “behavioral” model has no e�ect until date s!

• What happens afterwards? Response to an unanticipated shock!
• We call this “Jacobian manipulation” [NB: what NPV do columns of M have?]
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Expectations matrix

• Another way to look at this: how do agents build expectations about a
date-s shock?

• We can de�ne a matrix E that, in each column s, has the expectations about
a date-s shock of 1. What would that look like in FIRE & behavioral model?

E =


1 1 1 1 · · ·
1 1 1 1 · · ·
1 1 1 1 · · ·
1 1 1 1 · · ·
...

...
...

... . . .

  E =


1 0 0 0 · · ·
1 1 0 0 · · ·
1 1 1 0 · · ·
1 1 1 1 · · ·
...

...
...

... . . .


• Et,sdYs is then expected value of dYs at date t
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Solving behavioral IKC

• How can we solve for the GE response of dY then? Just use M and Mr!

dY = Mrdr+MdY

• That’s the main idea: By manipulating Jacobians with zero new
computational burden, we can solve our myopic economy!
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Solving behavioral IKC for �scal policy

• Another application: Imagine we want to solve for �scal multipliers but
agents expect neither future taxes nor future income.

• What’s the right IKC?
dY = dG−MdT+MdY

• Next: Generalize this idea to much more general models of belief formation!
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Some general assumptions we’ll make

We will make a few implicit assumptions:

• Agents are only “behavioral” about changes in aggregate variables
• steady state una�ected
• not “behavioral” w.r.t. idiosyncratic income process

• Deviations from FIRE are orthogonal to idiosyncratic state
• can relax this, but too much for today (see e.g. [Guerreiro, 2022])
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Information frictions in the
sequence space



Separable vs non-separable deviations from FIRE

• There are two conceptually distinct types of deviations from FIRE
• attention: this is new terminology. Not sure who else thinks about it this way

• Separable deviations: A unit news shock at date s does notmove beliefs
about the shock in other periods
• example: what we had before!

• Non-separable deviations: A unit news shock at date s doesmove beliefs
about the shock in other periods
• example: extrapolation. I observe high output at date s = 0 and that makes
me believe output will be high at dates s > 0 as well

• Next: Only focus on separable deviations. Non-separable is di�erent.
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General expectations matrix

• Consider a general E = (Et,s) matrix ...
• entry Et,s captures average date-t expectation of unit shock at date-s
• separability, linearity⇒ Et,sdYs is date-t expectation of a shock dYs at date s

• Will make one of these two assumptions:
• agents have correct expectations about the value of the shock by the time it
hits, Et,s = 1 for all t ≥ s

• or: Jacobian M is such that knowledge of past shocks does not alter behavior
• Typical example:

E =



1 ∗ ∗ ∗ · · ·
1 1 ∗ ∗ · · ·
1 1 1 ∗ · · ·
1 1 1 1 · · ·
...

...
...

...
. . .

 FIRE benchmark: E =



1 1 1 1 · · ·
1 1 1 1 · · ·
1 1 1 1 · · ·
1 1 1 1 · · ·
...

...
...

...
. . .
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General Jacobian manipulation

• How can we use E and a FIRE Jacobian M to come up with M ?

• Consider unit news shock that will hit at date s. What is the response?

• At date τ , expectation shifts by Eτ,s − Eτ−1,s.

• Key: This is a news shock with horizon s− τ ⇒ like column s− τ of M !

• Therefore: Column s of M is given by

Mt,s =

min{t,s}∑
τ=0

(Eτ,s − Eτ−1,s) ·Mt−τ,s−τ︸ ︷︷ ︸
date-t e�ect of date-τ expectation revision of date-s shock

(Here convention is E−1,s = 0)
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Intuition

E =


1 0.3 0.2 0.1 · · ·
1 1 0.5 0.3 · · ·
1 1 1 0.6 · · ·
1 1 1 1 · · ·
...

...
...

... . . .

 M =


M00 M01 M02 M03 · · ·
M10 M11 M12 M13 · · ·
M20 M21 M22 M23 · · ·
M30 M31 M32 M33 · · ·
...

...
...

... . . .


• Contribution:

Mt,2 = . . .+ (0.5− 0.2) ·Mt−1,1 + . . .
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Two special cases

Mt,s =

min{t,s}∑
τ=0

(Eτ,s − Eτ−1,s) ·Mt−τ,s−τ

• FIRE Et,s = 1⇒ only τ = 0 term survives since E−1,s = 0⇒ Mt,s = Mt,s

• No-foresight example from above: Et,s = 0 for all t < s. This implies only
τ = s term can ever be positive
→ Mt,s = 0 whenever t < s
→ Mt,s = Mt−s,0 whenever t ≥ s

Exactly our matrix from before!

• Side remark: We can write Mt,s also in terms of the fake news matrix:

Mt,s =

min{t,s}∑
τ=0

Eτ,s · Ft−τ,s−τ 15



Examples

• Next, we’ll walk through examples from the literature

• For each, there is an E and an M
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Examples



(1) Sticky information

• [Mankiw and Reis, 2002] proposed an information-based microfoundation
of nominal rigidities

• Consider a mass 1 of price setters, who, ideally, would like to set their price
equal to some markup over marginal cost

log Pit = logµ+ logMCt where MCt is stochastic

• Idea: Only random fraction 1− θ of price setters receive latest information
in any given period

• This is called “sticky information” model. In limit case where θ = 0, this
boils down to �exible prices

log Pt = logµ+ logMCt
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(1) Nesting sticky information

• More generally, we’d like to know the Jacobian of log Pt to logMCt

• With FIRE, it’s the identity: M = I

• Expectations matrix and behavioral M are

E =


1− θ 1− θ 1− θ · · ·
1− θ2 1− θ2 1− θ2 · · ·
1− θ3 1− θ3 1− θ3 · · ·
...

...
... . . .

  M =


1− θ 0 0 · · ·
0 1− θ2 0 · · ·
0 0 1− θ3 · · ·
...

...
... . . .


• This allows to solve d log Pt for arbitrary shocks to marginal cost d logMCt !

18



(2) Sticky expectations

• This approach only works if information about past shocks does not
in�uence behavior
• not true for HA models!

• Simple workaround due to [Carroll et al., 2020]: Assume everyone learns
when unit shock materializes. Can then use this for HA models:

E =


1 1− θ 1− θ · · ·
1 1 1− θ2 · · ·
1 1 1 · · ·
...

...
...

. . .

  M =


M00 (1− θ)M01 (1− θ)M02 · · ·
M10 (1− θ)M11 + θM00 (1− θ)M12 + θ(1− θ)M01 · · ·

M20 (1− θ)M21 + θM10
... · · ·

...
...

...
. . .



• See [Auclert et al., 2020] for details + application of this idea to general
equilibrium
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(2) Sticky expectations
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• Intermediate θ generates strong hump shape

• Part of the reason is endogenous: when dY is smaller initially⇒ dC falls too
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(3) Dispersed information

• These models assume there is lots of heterogeneity in learning: Some learn
it all immediately, others much later. What if instead all agents learn
equally quickly?

• To motivate this, let’s think of dYs stemming from an MA(∞) process

d̃Yt =
∞∑
s=0

dYsεt−s εt ∼ N (0, τ−1ε )

• This means: when shock εt hits (e.g. εt = 1), the IRF of d̃Yt is (dYs)
• Two ways of modeling dispersed information:

1. about an exogenous process: agents get signals about εt
2. about an endogenous process: agents get signals about d̃Yt

• 2 is harder! (Why?) Do 1 for now.
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(3) Dispersed information about innovation

• Assume each agent i receives signals about current + past innovation

s(i)jt = εt−j + ν
(i)
jt

where ν(i)jt ∼ N
(
0, τ−1j

)
iid. Allows for arbitrary precisions τj.

• Imagine we hit this economy with a one time shock ε0 = 1 at date 0.

• How does agents’ average expectations evolve? Bayesian updating:

Etε0 =

∑t
j=0 τj

τε +
∑t

j=0 τj
≡ 1− θt

• See appendix of [Auclert et al., 2020] for this model. See appendix of
[Angeletos and Huo, 2021] for a related one.
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(3) Dispersed information cont’d

• Given θt this almost looks like sticky information / expectations!

E =


1 1− θ0 1− θ0 1− θ0 · · ·
1 1 1− θ1 1− θ1 · · ·
1 1 1 1− θ2 · · ·
1 1 1 1 · · ·
...

...
...

... . . .


• In fact, for a given sequence of τj, can replicate sticky information /
expectations
• intuition: only average expectation matters to �rst order
• Heterogeneity of who has what information does not matter!
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(3) Dispersed info plot

• Plot similar to sticky expectations, but a bit less hump-shaped
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(4) Cognitive discounting

• [Gabaix, 2020] introduces cognitive discounting

• Main idea: agents respond to a shock that hits in h periods as if shock size
was dampened by θh

• This is equivalent to assuming agents expect shock size θh of unit shock.
Hence:

E =


1 θ θ2 θ3 · · ·
1 1 θ θ2 · · ·
1 1 1 θ · · ·
1 1 1 1 · · ·
...

...
...

... . . .


Conceptually di�erent from dispersed info / sticky info: Dampening relative
to diagonal, not relative to �rst period! 25



(4) Cognitive discounting - plots

• Doesn’t generate humps, but dampens forward guidance very strongly
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(5) Level k thinking

• [Farhi and Werning, 2019] is the �rst paper combining HA + deviations from
FIRE.

• They use level k thinking: (explained in context of our introductory
economy)

• k = 1: all agents believe output is at steady state
• k = 2: all agents believe all other agents are have level k = 1
• k = 3: al agents believe all other agents have level k = 2, ... etc
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(5) Level k thinking

• Level k = 1 is easily handled. In fact, that was our intro example:

E =



1 0 0 0 · · ·
1 1 0 0 · · ·
1 1 1 0 · · ·
1 1 1 1 · · ·
...

...
...

...
. . .

 M(1) =



M00 0 0 0 · · ·
M10 M00 0 0 · · ·
M20 M10 M00 0 · · ·
M30 M20 M10 M00 · · ·
...

...
...

...
. . .


where (1) indicates k = 1. IKC is then simply:

dY(1) = Mrdr+M(1) · dY(1)
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(5) Level k thinking plots

• What about k > 1? Solve recursively:

dY(k+1) = Mrdr+MdY(k)︸ ︷︷ ︸
other agents are expected to behave according to level k

+ M(1) ·
(
dY(k+1) − dY(k)

)
︸ ︷︷ ︸

...but everyone is unaware that economy may deviate from level k
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Takeaway



Conclusion

• Information rigidities can be nested quite nicely in the sequence space

• This not just gives us a straightforward way of simulating them for RA
models, but allows us to apply it to HA models equally well!
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