Information frictions

NBER Heterogeneous-Agent Macro Workshop

Ludwig Straub

Spring 2023

So far: have assumed full information & rational expectations ("FIRE") **Today:** Deviations from FIRE ("information frictions") ...

- incomplete information (e.g. noisy information, sticky information)
- deviations from rational expectations (e.g. extrapolation, cognitive discounting, level k thinking)

Leading contender to explain key puzzles in macro & finance, e.g.

- Why does {inflation, investment, consumption} respond so sluggishly to aggregate shocks? (but not to idiosyncratic shocks?)
- Why do asset prices overreact to shocks?

Problem

- Slight problem: deviations from FIRE typically very hard to simulate on top of simple RA model
 - e.g. [Mankiw and Reis, 2007], [Maćkowiak and Wiederholt, 2015]

Goal for today: Coherent framework to model and simulate deviations from FIRE

... not just RA, but also HA!

Material mostly a version of the approach that we have developed for [Auclert et al., 2020]. Nice recent work using this approach: [Bardoczy et al., 2023]

1 Introductory example

2 Information frictions in the sequence space

Introductory example

Monetary policy revisited

• Imagine we have the IKC equation for monetary policy

```
d\mathbf{Y} = \mathbf{M}^r d\mathbf{r} + \mathbf{M} d\mathbf{Y} \tag{1}
```

where $\mathbf{M}^r \equiv \frac{\partial C}{\partial r}$ and $\mathbf{M} \equiv \frac{\partial C}{\partial Y}$ are Jacobians of a general household side • HA, RA, TA, ZL, ...

- Imagine that households are completely myopic about the economy
 - only start responding to *dr_t* in period *t*
 - only start responding to dY_t in period t
- What is dY then? Can we change (1) to reflect this?

Manipulating the Jacobians

• Start with the "FIRE" iMPCs (**M**^r similar)

$$\mathbf{M} = \begin{pmatrix} M_{00} & M_{01} & M_{02} & M_{03} & \cdots \\ M_{10} & M_{11} & M_{12} & M_{13} & \cdots \\ M_{20} & M_{21} & M_{22} & M_{23} & \cdots \\ M_{30} & M_{31} & M_{32} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \rightarrow \mathbf{M} = \begin{pmatrix} M_{00} & 0 & 0 & 0 & \cdots \\ M_{10} & M_{00} & 0 & 0 & \cdots \\ M_{20} & M_{10} & M_{00} & 0 & \cdots \\ M_{30} & M_{20} & M_{10} & M_{00} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- Each column s is the response of C to news shock: "output rises at date s"
- A date s news shock in our "behavioral" model has no effect until date s!
- What happens afterwards? Response to an unanticipated shock!
- We call this "Jacobian manipulation" [NB: what NPV do columns of M have?]

Expectations matrix

- Another way to look at this: how do agents build **expectations** about a date-s shock?
- We can define a matrix **E** that, in each column *s*, has the **expectations** about a date-*s* shock of 1. What would that look like in FIRE & behavioral model?

$$\mathbf{E} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \quad \rightsquigarrow \mathbf{E} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 1 & 1 & 1 & 0 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

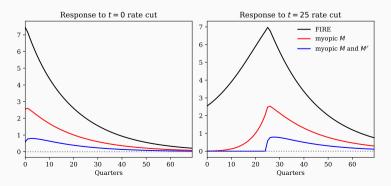
• $E_{t,s}dY_s$ is then expected value of dY_s at date t

Solving behavioral IKC

How can we solve for the GE response of dY then? Just use M and M'!

 $d\mathbf{Y} = \mathbf{M}^r d\mathbf{r} + \mathbf{M} d\mathbf{Y}$

• That's the main idea: By **manipulating** Jacobians **with zero new computational burden**, we can solve our myopic economy!



- Another application: Imagine we want to solve for fiscal multipliers but agents expect neither future taxes nor future income.
- What's the right IKC?

 $d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y}$

• Next: Generalize this idea to much more general models of belief formation!

We will make a few implicit assumptions:

- Agents are only "behavioral" about **changes** in **aggregate** variables
 - steady state unaffected
 - not "behavioral" w.r.t. *idiosyncratic* income process
- Deviations from FIRE are **orthogonal** to idiosyncratic state
 - can relax this, but too much for today (see e.g. [Guerreiro, 2022])

Information frictions in the sequence space

Separable vs non-separable deviations from FIRE

- There are two conceptually distinct types of deviations from FIRE
 - attention: this is new terminology. Not sure who else thinks about it this way
- **Separable** deviations: A unit news shock at date s **does not** move beliefs about the shock in other periods
 - example: what we had before!
- **Non-separable** deviations: A unit news shock at date s **does** move beliefs about the shock in other periods
 - example: extrapolation. I observe high output at date s = 0 and that makes me believe output will be high at dates s > 0 as well
- Next: Only focus on separable deviations. Non-separable is different.

General expectations matrix

- Consider a general $\mathbf{E} = (E_{t,s})$ matrix ...
 - entry *E*_{t,s} captures **average** date-*t* expectation of unit shock at date-s
 - separability, linearity $\Rightarrow E_{t,s}dY_s$ is date-*t* expectation of a shock dY_s at date *s*
- Will make one of these two assumptions:
 - agents have correct expectations about the value of the shock by the time it hits, $E_{t,s} = 1$ for all $t \ge s$
 - or: Jacobian M is such that knowledge of past shocks does not alter behavior
- Typical example:

E =	(1	*	*	*	•••)		(1	1	1	1	•••)
	1	1	*	*		FIRE benchmark: E =		1	1	1	1	
	1	1	1	*				1	1	1	1	
	1	1	1	1				1	1	1	1	
	(:	÷	÷	÷	·.)			:	÷	÷	÷	·.)

General Jacobian manipulation

- How can we use **E** and a FIRE Jacobian **M** to come up with **M** ?
- Consider unit news shock that will hit at date s. What is the response?
- At date τ , expectation shifts by $E_{\tau,s} E_{\tau-1,s}$.
- Key: This is a news shock with horizon $s \tau \Rightarrow$ like column $s \tau$ of M !
- Therefore: Column s of M is given by

$$M_{t,s} = \sum_{\tau=0}^{\min\{t,s\}} \underbrace{(E_{\tau,s} - E_{\tau-1,s}) \cdot M_{t-\tau,s-\tau}}_{\text{date-t effect of date-}\tau \text{ expectation revision of date-}s \text{ shock}}$$

(Here convention is $E_{-1,s} = 0$)

Intuition

$$\mathbf{E} = \begin{pmatrix} 1 & 0.3 & 0.2 & 0.1 & \cdots \\ 1 & 1 & 0.5 & 0.3 & \cdots \\ 1 & 1 & 1 & 0.6 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} M_{00} & M_{01} & M_{02} & M_{03} & \cdots \\ M_{10} & M_{11} & M_{12} & M_{13} & \cdots \\ M_{20} & M_{21} & M_{22} & M_{23} & \cdots \\ M_{30} & M_{31} & M_{32} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• Contribution:

$$M_{t,2} = \ldots + (0.5 - 0.2) \cdot M_{t-1,1} + \ldots$$

Two special cases

$$M_{t,s} = \sum_{\tau=0}^{\min\{t,s\}} \left(E_{\tau,s} - E_{\tau-1,s} \right) \cdot M_{t-\tau,s-\tau}$$

- FIRE $E_{t,s} = 1 \Rightarrow \text{only } \tau = 0$ term survives since $E_{-1,s} = 0 \Rightarrow M_{t,s} = M_{t,s}$
- No-foresight example from above: $E_{t,s} = 0$ for all t < s. This implies only $\tau = s$ term can ever be positive

$$\rightarrow M_{t,s} = 0$$
 whenever $t < s$

 $\rightarrow M_{t,s} = M_{t-s,o}$ whenever $t \ge s$

Exactly our matrix from before!

• Side remark: We can write M_{t,s} also in terms of the fake news matrix:

$$\mathbf{M}_{\mathbf{t},\mathbf{s}} = \sum_{\tau=\mathbf{0}}^{\min\{\mathbf{t},\mathbf{s}\}} E_{\tau,\mathbf{s}} \cdot \mathcal{F}_{\mathbf{t}-\tau,\mathbf{s}-\tau}$$
¹⁵

- Next, we'll walk through examples from the literature
- For each, there is an **E** and an **M**

Examples

(1) Sticky information

- [Mankiw and Reis, 2002] proposed an information-based microfoundation of nominal rigidities
- Consider a mass 1 of price setters, who, ideally, would like to set their price equal to some markup over marginal cost

 $\log P_{it} = \log \mu + \log MC_t$ where MC_t is stochastic

- Idea: Only random fraction 1θ of price setters receive latest information in any given period
- This is called "sticky information" model. In limit case where $\theta = 0$, this boils down to flexible prices

$$\log P_t = \log \mu + \log MC_t$$

(1) Nesting sticky information

- More generally, we'd like to know the Jacobian of $\log P_t$ to $\log MC_t$
- With FIRE, it's the identity: **M** = **I**
- Expectations matrix and behavioral M are

$$\mathbf{E} = \begin{pmatrix} 1-\theta & 1-\theta & 1-\theta & \cdots \\ 1-\theta^2 & 1-\theta^2 & 1-\theta^2 & \cdots \\ 1-\theta^3 & 1-\theta^3 & 1-\theta^3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \rightsquigarrow \mathbf{M} = \begin{pmatrix} 1-\theta & 0 & 0 & \cdots \\ 0 & 1-\theta^2 & 0 & \cdots \\ 0 & 0 & 1-\theta^3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• This allows to solve $d \log P_t$ for **arbitrary** shocks to marginal cost $d \log MC_t$!

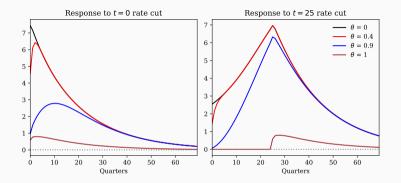
(2) Sticky expectations

- This approach only works if information about past shocks does not influence behavior
 - not true for HA models!
- Simple workaround due to [Carroll et al., 2020]: Assume everyone learns when unit shock materializes. Can then use this for HA models:

$$\mathbf{E} = \begin{pmatrix} 1 & 1-\theta & 1-\theta & \cdots \\ 1 & 1 & 1-\theta^2 & \cdots \\ 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \rightsquigarrow \mathbf{M} = \begin{pmatrix} M_{00} & (1-\theta)M_{01} & (1-\theta)M_{02} & \cdots \\ M_{10} & (1-\theta)M_{11} + \theta M_{00} & (1-\theta)M_{12} + \theta(1-\theta)M_{01} & \cdots \\ M_{20} & (1-\theta)M_{21} + \theta M_{10} & \vdots & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• See [Auclert et al., 2020] for details + application of this idea to general equilibrium

(2) Sticky expectations



- Intermediate θ generates strong hump shape
- Part of the reason is endogenous: when $d\mathbf{Y}$ is smaller initially $\Rightarrow d\mathbf{C}$ falls too

(3) Dispersed information

- These models assume there is lots of heterogeneity in learning: Some learn it all immediately, others much later. What if instead all agents learn equally quickly?
- To motivate this, let's think of dY_s stemming from an $MA(\infty)$ process

$$\widetilde{dY}_t = \sum_{s=0}^{\infty} dY_s \epsilon_{t-s} \qquad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \tau_{\epsilon}^{-1})$$

- This means: when shock ϵ_t hits (e.g. $\epsilon_t = 1$), the IRF of dY_t is (dY_s)
- Two ways of modeling dispersed information:
 - 1. about an **exogenous** process: agents get signals about ϵ_t
 - 2. about an **endogenous** process: agents get signals about \widetilde{dY}_t
- 2 is harder! (Why?) Do 1 for now.

(3) Dispersed information about innovation

• Assume each agent *i* receives signals about current + past innovation

$$\mathbf{s}_{jt}^{(i)} = \epsilon_{t-j} + \nu_{jt}^{(i)}$$

where $\nu_{jt}^{(i)} \sim \mathcal{N}\left(\mathsf{0}, \tau_{j}^{-1}\right)$ iid. Allows for arbitrary precisions τ_{j} .

- Imagine we hit this economy with a one time shock $\epsilon_0 = 1$ at date 0.
- How does agents' average expectations evolve? Bayesian updating:

$$\overline{\mathbb{E}}_{t}\epsilon_{0} = \frac{\sum_{j=0}^{t}\tau_{j}}{\tau_{\epsilon} + \sum_{j=0}^{t}\tau_{j}} \equiv \mathbf{1} - \theta_{t}$$

• See appendix of [Auclert et al., 2020] for this model. See appendix of [Angeletos and Huo, 2021] for a related one.

(3) Dispersed information cont'd

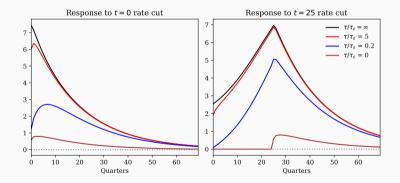
• Given θ_t this almost looks like sticky information / expectations!

$$\mathbf{E} = \begin{pmatrix} 1 & 1 - \theta_0 & 1 - \theta_0 & 1 - \theta_0 & \cdots \\ 1 & 1 & 1 - \theta_1 & 1 - \theta_1 & \cdots \\ 1 & 1 & 1 & 1 - \theta_2 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- In fact, for a given sequence of τ_j , can replicate sticky information / expectations
 - intuition: only average expectation matters to first order
 - Heterogeneity of who has what information does not matter!

(3) Dispersed info plot

• Plot similar to sticky expectations, but a bit less hump-shaped



(4) Cognitive discounting

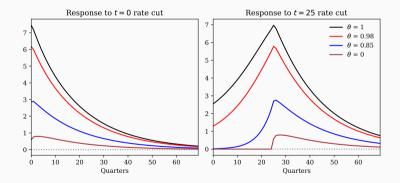
- [Gabaix, 2020] introduces cognitive discounting
- Main idea: agents respond to a shock that hits in h periods as if shock size was dampened by θ^h
- This is equivalent to assuming agents expect shock size θ^h of unit shock. Hence:

$$\mathbf{E} = \begin{pmatrix} 1 & \theta & \theta^2 & \theta^3 & \cdots \\ 1 & 1 & \theta & \theta^2 & \cdots \\ 1 & 1 & 1 & \theta & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Conceptually different from dispersed info / sticky info: Dampening relative to diagonal, not relative to first period!

(4) Cognitive discounting - plots

• Doesn't generate humps, but dampens forward guidance very strongly



(5) Level k thinking

- [Farhi and Werning, 2019] is the first paper combining HA + deviations from FIRE.
- They use **level** *k* **thinking:** (explained in context of our introductory economy)
 - k = 1: all agents believe output is at steady state
 - k = 2: all agents believe *all other* agents are have level k = 1
 - k = 3: al agents believe all other agents have level k = 2, ... etc

(5) Level k thinking

• Level k = 1 is easily handled. In fact, that was our intro example:

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 1 & 1 & 1 & 0 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \mathbf{M}^{(1)} = \begin{pmatrix} M_{00} & 0 & 0 & 0 & \cdots \\ M_{10} & M_{00} & 0 & 0 & \cdots \\ M_{20} & M_{10} & M_{00} & 0 & \cdots \\ M_{30} & M_{20} & M_{10} & M_{00} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

where (1) indicates k = 1. IKC is then simply:

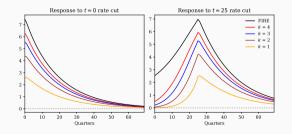
 $d\mathbf{Y}^{(1)} = \mathbf{M}^r d\mathbf{r} + \mathbf{M}^{(1)} \cdot d\mathbf{Y}^{(1)}$

(5) Level *k* thinking plots

• What about k > 1? Solve recursively:

$$d\mathbf{Y}^{(k+1)} = \underbrace{\mathbf{M}^{r} d\mathbf{r} + \mathbf{M} d\mathbf{Y}^{(k)}}_{\text{other agents are expected to behave according to level }k} + \underbrace{\mathbf{M}^{(1)} \cdot \left(d\mathbf{Y}^{(k+1)} - d\mathbf{Y}^{(k)} \right)}_{\text{other agents are expected to behave according to level }k}$$

...but everyone is unaware that economy may deviate from level k



Takeaway

- Information rigidities can be nested quite nicely in the sequence space
- This not just gives us a straightforward way of simulating them for RA models, but allows us to apply it to HA models equally well!

References i

Angeletos, G.-M. and Huo, Z. (2021). Myopia and Anchoring.

American Economic Review, 111(4):1166–1200.

 Auclert, A., Rognlie, M., and Straub, L. (2020).
 Micro Jumps, Macro Humps: Monetary Policy and Business Cycles in an Estimated HANK Model.

Working Paper 26647, National Bureau of Economic Research,.

Bardoczy, B., Bianchi-Vimercati, R., and Guerreiro, J. (2023).
 Unemployment insurance in macroeconomic stabilization with bounded rationality.

References ii

Carroll, C. D., Crawley, E., Slacalek, J., Tokuoka, K., and White, M. N. (2020). Sticky Expectations and Consumption Dynamics.

American Economic Journal: Macroeconomics, 12(3):40–76.

- Farhi, E. and Werning, I. (2019).
 Monetary Policy, Bounded Rationality, and Incomplete Markets.
 American Economic Review, 109(11):3887–3928.
- 📄 Gabaix, X. (2020).

A Behavioral New Keynesian Model.

American Economic Review, 110(8):2271–2327.

Guerreiro, J. (2022).

Belief disagreement and business cycles.

References iii

- Maćkowiak, B. and Wiederholt, M. (2015).
 Business Cycle Dynamics under Rational Inattention. Review of Economic Studies, 82(4):1502–1532.
- Mankiw, N. G. and Reis, R. (2002).
 Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve.

Quarterly Journal of Economics, 117(4):1295–1328.

📔 Mankiw, N. G. and Reis, R. (2007).

Sticky Information in General Equilibrium.

Journal of the European Economic Association, 5(2-3):603–613.