
Fiscal Policy

NBER Heterogeneous-Agent Macro Workshop

Ludwig Straub

Spring 2023

1



This session

We just introduced the canonical HANK model.

Next: Focus on �scal policy!

• Switch o� all other shocks: TFP Xt = 1, no monetary shock rt = r = const

• Focus on �rst order shocks to �scal policy: dG = {dGt},dT = {dTt} such that

∞∑
t=0

(1+ r)−t(dGt − dTt) = 0

• Main reference for this class is Auclert et al. (2023b)
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The intertemporal Keynesian cross



DAG for the economy with only �scal shocks

Switching o� monetary shocks, the DAG is simply:

shocks T,G
unknown Y

�scal ha

goods mkt.
clearing (H)

T, Y

Y, G

Z

C

In this case, H = 0 simply corresponds to:

Y = G+ C(Z)

To emphasize that C is a function, write it as C. C only a function of Z here!

Next: Analyze this equation “by hand”...
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The aggregate consumption function

• We call C the aggregate consumption function

Ct = Ct (Z0, Z1, Z2, . . .) = Ct ({Zs})

It’s a collection of∞ many nonlinear functions of∞ many Z’s!

• It usually also depends on the path of real interest rates, but those are
assumed to be constant

• Using the DAG, we can substitute out Z and write goods market clearing as

Yt = Gt + Ct ({Ys − Ts})
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Intertemporal MPCs

Yt = Gt + Ct ({Ys − Ts})

• Feed in small shock {dGt,dTt}

dYt = dGt +
∞∑
s=0

∂Ct
∂Zs
· (dYs − dTs) (1)

• Response dYt entirely characterized by the Jacobian of C function, which we
also call intertemporal MPCs

Mt,s ≡
∂Ct
∂Zs

(
= J C,Z

t,s

)
• Mt,s = how much of an income change at date s is spent at date t

• Note: All income is spent at some point, hence
∑∞

t=0(1+ r)s−tMt,s = 1
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The intertemporal Keynesian cross

• Rewrite equation (1) in vector / matrix notation:

dY = dG−MdT+MdY (2)

• This equation exactly corresponds to dH = 0

• This is an intertemporal Keynesian cross

• entire complexity of model is in M

• with M from data, could get dY without model!
(there is a “correct” M out there, but it’s very hard to measure...)
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Connecting to the standard Keynesian cross...

• Standard IS-LM theory postulates Ct = C (Yt − Tt) plus market clearing, so

Yt = Gt + C (Yt − Tt)

Di�erentiate around steady state with constant Y, T,G:

dYt = dGt −mpc · dTt +mpc · dYt

where mpc = C′ (Y − T). This is the static Keynesian cross.

• The intertemporal Keynesian cross is a vector-valued version of this

• HANK models tend to revive & microfound IS-LM logic
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Solving the intertemporal Keynesian cross

• How can we solve (2)? Rewrite as

(I−M)dY = dG−MdT (3)

• Standard Keynesian cross solution:

dYt =
dGt −mpc · dTt

1−mpc
Can we do the same, inverting (I−M)? Not so fast!

• Why? Multiply both sides of (3) by: q ≡ (1, (1+ r)−1, (1+ r)−2, . . .)′

q′ (I−M)dY = 0 q′dG− q′MdT = q′dG− q′dT = 0

both left and right hand side have “zero NPV” !

• Intuition: present value of mpc is 1, dY is 0/0... What to do?
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Solving the intertemporal Keynesian cross

• So how can we solve the IKC? Just like with L’Hospital, we want to modify
both numerator and denominator to avoid 0/0 issue ...

• Do this by pre-multiplying with a matrix K

K (I−M)dY = K (dG−MdT)

• Now for a clever choice of K, K (I−M) may be invertible:

Theorem
There exists a unique solution to the IKC for any dG,dT satisfying q′dG = q′dT,
i� K (I−M) is invertible. Then, the solution is:

dY =M (dG−MdT)

whereM≡ (K (I−M))−1 K is a bounded linear operator (“multiplier”)
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Which K are we using?

• Which K is needed?

• One natural choice:

K = −



0 (1+ r)−1 (1+ r)−2 (1+ r)−3 · · ·

0 0 (1+ r)−1 (1+ r)−2 . . .

0 0 0 (1+ r)−1 . . .

0 0 0 0 . . .
... . . . . . . . . . . . .


= −

∞∑
t=1

(1+ r)−t Ft

where F is forward operator matrix.

• Then: K (I−M) is the “asset jacobian” of the household block.

• When is K (I−M) invertible? → see Auclert et al. (2023a) for a criterion.
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The balanced budget multiplier

• Suppose dG = dT (balanced budget)

• Result: We always have dY = dG !

• Irrespective of all household heterogeneity, holds for any path of spending

• IS-LM antecedents: Gelting (1941), Haavelmo (1945)

• Proof is trivial: dY = dG is unique solution to

dY = (I−M) · dG+M · dY
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De�cit �nanced �scal policy

• With de�cit �nancing dG 6= dT we have

dY = dG+M ·M · (dG− dT)︸ ︷︷ ︸
dC

Consumption dC depends on primary de�cits dG− dT

• Interaction term: De�cits matter precisely when M is “large” (which will
mean very di�erent from RA model)

• Next: Go over our three examples and then compare multipliers to full HA
model
• De�ne:

• initial multiplier: dY0/dG0
• cumulative multiplier:

∑
(1+r)−tdYt∑
(1+r)−tdGt 13



Three special cases



Representative-agent model

Let’s get an intuition for all this in the RA model. Last lecture we derived
consumption function for RA model when β(1+ r) = 1

Ct = (1− β)
∑
s≥0

βsZs + ra−1

In particular
Mt,s =

∂Ct
∂Zs

= (1− β)βs

Thus iMPC matrix is given by

MRA =


1− β (1− β)β (1− β)β2 · · ·
1− β (1− β)β (1− β)β2 · · ·
1− β (1− β)β (1− β)β2 · · ·
...

...
... . . .

 =
1q′

1′q

Easy to verify that q′M = q′, and also that Mw = 0 for any zero NPV w 14



Representative-agent model
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Fiscal policy in RA model

• Let’s solve the IKC for the RA model

• Calculate:

dC =M ·M · (dG− dT)
=M · (1− β) 1q′ (dG− dT)

But government budget balance implies q′ (dG− dT) = 0! So:

dY = dG

• Can prove this directly, too (eg Woodford 2011).

• De�cits are irrelevant in RA!
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Impulse response to dG shock in RA model
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Two agent model

• 1− µ share of agents behave like RA agent, µ are hand to mouth⇒ M matrix
is simple linear combination

MTA = (1− µ)MRA + µI

• Issue: Only strong contemporaneous spending e�ect

18



iMPCs in TA model
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Fiscal policy in TA model

• In Keynesian cross:(
I−MTA

)
dY = dG−MTAdT ⇔

(
I−MRA

)
dY =

1
1− µ [dG− µdT]−MRAdT

This equation has same shape as for RA, hence:

dY =
1

1− µ [dG− µdT]

• Results from undergrad: Spending multiplier 1/(1− µ) and transfer
multiplier µ/(1− µ). So: µ is “e�ective” MPC, ignoring RA

• Can also write:
dY = dG+

µ

1− µ [dG− dT]︸ ︷︷ ︸
primary de�cit

• Only current de�cit matters. Initial multiplier can be large ∈ [1, 1
1−µ ], but

cumulative multiplier is always equal to 1! 20



Impulse response to dG shock in TA model
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Zero-liquidity model

• What about iMPCs in the ZL model?
• We can calculate (see IKC paper)

MZL
t0 = µ1t=0 + (1− µ)

(
1− λ

1+ r

)
· λt

MZL
0s = (1− µ) 1− βλ

β(1+ r) · (βλ)
s

• Intuitively, it’s a mix of a “constrained agent” with mass µ and agents that
spend down assets at constant rate λ
• Latter are also the iMPCs of a bond-in-utility model (and an OLG model!)

• Note, given known M00 and M10, can solve for µ and λ
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iMPCs in ZL model see also Bilbiie (2021)
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Fiscal policy in ZL model

• Can solve above model explicitly

dYt =
1

1− µ [dGt − µdTt]︸ ︷︷ ︸
as in TA model

+
β (1+ r)− 1

1− µ dBt + (1+ r) 1− βλ1− µ

(
1
λ
− 1
) ∞∑
s=0

dBt+s︸ ︷︷ ︸
new terms

Future �scal policy extremely powerful here.
• Why? Dynamic income-consumption feedback from “spending down” e�ect
• In particular, can show:

Theorem
Holding β, r, and M00 �xed in the ZL model, a higher M10 increases the
cumulative multiplier whenever dB ≥ 0 and dBt > 0 for some t.
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Impulse response to dG shock in ZL model
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iMPCs in the HA model



iMPCs in the HA model (computed using fake news algorithm)
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Comparing iMPCs across models
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Comparison with the data

0 1 2 3 4 5
Year (t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

iM
PC

 M
t,

0
RA and TA models

Data
RA
TA

0 1 2 3 4 5
Year (t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
HA models

Data
High-liquidity HA
Low-liquidity HA
Zero-liquidity HA

Data from Fagereng et al. (2021), estimating consumption response to lottery
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Insights about Fiscal Multipliers



Fiscal stimulus more powerful when de�cit �nanced
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Fiscal policy is more powerful if front loaded...

0 5 10 15 20 25 30 35 40
Horizon of the shock 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

dY
0

Impact

High-liquidity HA
Low-liquidity HA
Zero-liquidity HA
RA
TA

0 5 10 15 20 25 30 35 40
Horizon of the shock 

0

5

10

15

20

25

30

35

(1
+

r)
t d

Y t

Cumulated impact

30



... but not in the zero-liquidity model (a �scal policy forward guidance puzzle?)
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Fiscal policy is less powerful if �nanced by lump-sum taxes (Why?)
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Fiscal policy is more powerful if income risk is countercyclical (Why?)
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Takeaway



Fiscal policy in HANK

• First exploration of shocks & policies in HANK

• One key di�erence already emerged: in HANK, households have very
di�erent iMPCs

• This matters for �scal policy:
• de�cit �nancing & front loading ampli�es initial and cumulative multipliers
• not the case in RA, and not even in TA
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