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Today

• So far: agents are hit by discrete shocks and make continuous choices.
• savings, consumption, hours. . .

• Many interesting economic decisions are discrete.
• labor force participation, occupation choice
• lumpy adjustment with fixed costs (price, investment, portfolio. . . )

• This class: one approach to discrete choice that’s fairly general and fits naturally
into the SSJ framework.

• focus on method, not economic content
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Why is discrete choice hard?

• Only discrete choice would be easy.
• value function iteration works well

• Interaction between discrete and continuous choices is the hard part.

• Non-convexity: FOCs are insufficient to obtain policy functions.
• EGM does not work, more robust backward iteration is needed
• solution: EGM + upper envelope (Fella, 2014; Druedahl, 2020)

• Discontinuities in policy functions.
• fake news algorithm relies on differentiating policies wrt aggregate inputs
• solution: logit smoothing (Iskhakov et al., 2017)

→ common in microeconometrics, also useful for Jacobian computation!
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Roadmap

1. SIM model with labor force participation

2. Solving the SIM model with participation

3. General HA framework with stages

4. Jacobians for discrete choices
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SIM with labor force participation



SIM model with labor force participation

• Work full time or not at all. Disutility of full-time work is

Vt(zit,ait−1) = max
cit,nit,ait

u(cit)− φnit + βEtVt+1(zit+1,ait)

s.t. cit + ait = (1 + rt)ait−1 + wtnitzit + Tt
nit ∈ {0, 1}
ait ≥ a

• Nests SIM for φ = 0.

• Solving the model means characterizing
1. policy functions: at(z, a−), ct(z, a−),nt(z, a−)
2. distribution: Dt(z, a−)
3. aggregate outputs: A =

∫
atdDt, Ct =

∫
ctdDt, Nt =

∫
ntdDt
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Peek at solution
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Figure 1: Policy functions conditional on average productivity
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Economics of the model

• Rich and unproductive households choose not to work.

• Non-participant households run down assets aggressively to finance consumption.

• Consumption and asset policies are non-monotonic in assets and—absent of taste
shocks—have discontinuities.

• primary discontinuity from change in participation
• secondary discontinuities from consumption smoothing in discrete time
• intuition: a = 1.9 expects to hit participation threshold in 1 period, while a = 2 expects

it in 2 periods −→ a = 2 consumes less and saves more today
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Solving the SIM model with
participation



Stages

• We break up the decision problem into several stages.

• Think of each stage as updating a single state variable.

• Stages are a useful concept to describe models with complex timing. They’re also
the key abstraction behind implementation of discrete choice in SSJ.

• StageBlock in tutorial

8



Break up problem into stages

• Stage 0: enter period t. (zit−1,ait−1)

• Stage 1: productivity shock zit−1 → zit

• Stage 2: participation choice {} → nit

• Stage 3: consumption-saving choice ait−1 → ait, cit
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Stage 3: continuous choice

• Stage 3 looks like vanilla SIM model with extra state n

V(3)(n, z,a−) = max
c,a≥a

u(c)− φn+ βEV(1)(z′,a)

s.t. c+ a = (1 + r)a− + wnz+ T
(1)

• Characterizes discrete choice-specific policies a(n, z,a−), c(n, z,a−).

• Can we get these via endogenous gridpoint method?

• No! Catch is that V(1) is not concave, so V(1)
a is not monotonic.
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EGM + upper envelope
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• Try EGM with non-monotonic V(1)
a .

• c−σ
endo = βV(1)

a (Euler)
• cendo + agrid = (1 + r)aendo + y (budget)

• aendo(a) may be non-monotonic as well.

• Can’t invert aendo(a) to get policy
function. Both solve FOCs.

• Upper envelope: compute V(3) at both
solutions and choose max.

• implementation details in tutorial
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Stage 2: discrete choice

• Stage 2 is a pure discrete choice problem

V(2)(z,a−) = max
n∈{0,1}

V(3)(n, z,a−) + ε(n)︸︷︷︸
taste shock

(2)

• Analytical solution if taste shock is iid EV-1 with scale σ.
• logit choice probability:

P(n|z, a−) = exp

(
V(3)(n, z, a−)

σ

)/ ∑
n′∈{0,1}

exp

(
V(3)(n′, z, a−)

σ

)
(3)

• logsum formula:

V(2)(z, a−) = σ log

 ∑
n′∈{0,1}

exp

(
V(3)(n′, z, a−)

σ

) (4)
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Stage 1: discrete shock

• Stage 1: productivity shock follows exogenous Markov process

V(1)(z−,a−) =
∑
z

Pr(z|z−) · V(2)(z,a−) (5)

• The circle is complete. Start from an initial guess V(1)
T and iterate backward

stage-by-stage until convergence

V(1)
t+1 → V(3)

t → V(2)
t → V(1)

t (6)
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General framework



Warmup

• Consider a 2-state Markov process of employment & unemployment.
• flow utility ut = [uEt ,uUt ], value function vt = [vEt , vUt ]
• distribution is Dt = [DEt ,DUt ]
• transition probabilities are ft and st

• Backward iteration for vt?[
vEt
vUt

]
=

[
uEt
uUt

]
+ β

[
1 − st st
ft 1 − ft

]
︸ ︷︷ ︸

Λ

[
vEt+1
vUt+1

]
(Bellman equation)

• Forward iteration for Dt+1?[
DEt+1
DUt+1

]
=

[
1 − st ft
st 1 − ft

]
︸ ︷︷ ︸

Λ′

[
DEt
DUt

]
(law of motion)
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General HA problem without stages

• Consider HA problem with aggregate inputs Xt.

vt = v(vt+1,Xt) (Bellman equation)
Dt+1 = D(vt+1,Dt,Xt) (law of motion)

• This is a Markov process, just more complex.

• Suppose the state space is discretized on N gridpoints.
• flow utility, value function, distribution are vectors: u, v,D ∈ RN

• Markov matrix of joint state: Λ ∈ RN×N

vt = ut + βΛ(vt+1,Xt)vt+1 (Bellman equation)
Dt+1 = Λ(vt+1,Xt)′Dt (law of motion)
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Solving HA models in discrete vs continuous time

• Achdou et al. (2021) claim 4 advantages for continuous time.
1. FOCs are sufficient almost everywhere1 constraints easier, no secondary kinks
2. FOCs are static no costly root finding
3. HJB and KFE are adjoint operators “solve policies get distribution for free”
4. sparsity Markov matrix of joint states is block tridiagonal

• What do you say?

1. helps in models with ≥ 2 endogenous states or discrete choices
2. EGM avoids root finding but requires interpolation
3. general property of Markov processes
4. claim: we can exploit sparsity better in discrete time

1except at boundaries and primary kinks
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General HA problem with stages

• Let there be j = 1, . . . , J stages.
• discrete shock, discrete choice, continuous choice (1-2 states)

• Same logic of backward and forward iteration applies between stages.

vt,j = Λj(vt,j+1,Xt,j)vt,j+1 (Bellman equation)
Dt,j+1 = Λj(vt,j+1,Xt,j)′Dt,j (law of motion)

• Key insight: Stage-specific Markov matrices are sparser than their product.

• Optimize sparse “matrix multiplication” operation for each type of stage.

• Today = tomorrow property of ctime has costs as well as benefits.
• static FOCs that are sufficient almost everywhere, but can’t divide problem into stages

17



General HA problem with stages

• Let there be j = 1, . . . , J stages.
• discrete shock, discrete choice, continuous choice (1-2 states)

• Same logic of backward and forward iteration applies between stages.

vt = (Λ1 · Λ2 · · ·ΛJ) vt+1 (Bellman equation)
Dt+1 =

(
Λ′
J · Λ′

J−1 · · ·Λ′
1
)

Dt (law of motion)

• Key insight: Stage-specific Markov matrices are sparser than their product.

• Optimize sparse “matrix multiplication” operation for each type of stage.

• Today = tomorrow property of ctime has costs as well as benefits.
• static FOCs that are sufficient almost everywhere, but can’t divide problem into stages

17



Taking stock

• Stage is a useful abstraction for both intuition & computation.

• If you can write backward iteration for a stage. . .
• chain arbitrary many stages together to elegantly represent complex models
• forward iteration is just the transpose operation

• You can solve cutting edge models in discrete as well as in continuous time.

• Next: last piece of sequence-space Jacobian machinery.
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Jacobians with discrete choice



Brief overview

• Fake news algorithm applies directly to discrete shock and cont choice stages.

• What about discrete choice stage?

• Main reason for working with EV-1 taste shocks: Choice probability and value
function are smooth with closed-form derivatives.

19



Discrete choice derivatives

• Simplified notation: V′
i is vfun in next stage conditional on discrete choice i.

• Recall logsum and logit formulae:

V = σ log

(∑
i

exp (V′
i/σ)

)
and Pi =

exp
(
V′
i/σ
)∑

k exp
(
V′
k/σ
)

• Few lines of algebra yields

dV =
∑
i

PidV′
i and dPi =

Pi(dV′
i − dV)
σ

• Takeaway: propagating small shocks backward ≈ expectations with ss probabilities
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Conclusion



Conclusion

• Discrete choice itself is easy (choose best of a few alternatives) but causes
non-convexity that complicates continuous choices.

• FOCs necessary but not sufficient even in interior
• “secondary kinks” arise in discrete time

• EGM + upper envelope: choose best of few alternatives that satisfy FOCs.
• have to keep track of vfun & partial vfun

• EV-1 taste shocks facilitate differentiation at almost no cost.

• Intuitive concepts that improve computation: DAG, stage.
• stage only makes sense in discrete time
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Thank you!
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