Discrete choice with extreme-value taste shocks

Bence Bardóczy ${ }^{a}$
NBER HA Macro Workshop, Spring 2023

[^0]
Today

- So far: agents are hit by discrete shocks and make continuous choices.
- savings, consumption, hours...
- Many interesting economic decisions are discrete.
- labor force participation, occupation choice
- lumpy adjustment with fixed costs (price, investment, portfolio...)
- This class: one approach to discrete choice that's fairly general and fits naturally into the SS framework.
- focus on method, not economic content

Why is discrete choice hard?

- Only discrete choice would be easy.
- value function iteration works well
- Interaction between discrete and continuous choices is the hard part.
- Non-convexity: FOCs are insufficient to obtain policy functions.
- EGM does not work, more robust backward iteration is needed
- solution: EGM + upper envelope (Fella, 2014; Druedahl, 2020)
- Discontinuities in policy functions.
- fake news algorithm relies on differentiating policies wrt aggregate inputs
- solution: logit smoothing (Iskhakov et al., 2017)
\rightarrow common in microeconometrics, also useful for Jacobian computation!

Roadmap

1. SIM model with labor force participation
2. Solving the SIM model with participation
3. General HA framework with stages
4. Jacobians for discrete choices

SIM with labor force participation

SIM model with labor force participation

- Work full time or not at all. Disutility of full-time work is

$$
\begin{aligned}
V_{t}\left(z_{i t}, a_{i t-1}\right) & =\max _{c_{i t}, n_{i t}, a_{i t}} u\left(c_{i t}\right)-\varphi n_{i t}+\beta \mathbb{E}_{t} V_{t+1}\left(z_{i t+1}, a_{i t}\right) \\
\text { s.t. } c_{i t}+a_{i t} & =\left(1+r_{t}\right) a_{i t-1}+w_{t} n_{i t} z_{i t}+T_{t} \\
n_{i t} & \in\{0,1\} \\
a_{i t} & \geq \underline{a}
\end{aligned}
$$

- Nests SIM for $\varphi=0$.
- Solving the model means characterizing

1. policy functions:

$$
\begin{array}{r}
a_{t}\left(z, a_{-}\right), c_{t}\left(z, a_{-}\right), n_{t}\left(z, a_{-}\right) \\
D_{t}\left(z, a_{-}\right) \\
A=\int a_{t} d D_{t}, \quad c_{t}=\int c_{t} d D_{t}, \quad N_{t}=\int n_{t} d D_{t}
\end{array}
$$

2. distribution:
3. aggregate outputs:

Peek at solution

Figure 1: Policy functions conditional on average productivity

Economics of the model

- Rich and unproductive households choose not to work.
- Non-participant households run down assets aggressively to finance consumption.
- Consumption and asset policies are non-monotonic in assets and-absent of taste shocks-have discontinuities.
- primary discontinuity from change in participation
- secondary discontinuities from consumption smoothing in discrete time
- intuition: $a=1.9$ expects to hit participation threshold in 1 period, while $a=2$ expects it in 2 periods $\longrightarrow a=2$ consumes less and saves more today

Solving the SIM model with participation

Stages

- We break up the decision problem into several stages.
- Think of each stage as updating a single state variable.
- Stages are a useful concept to describe models with complex timing. They're also the key abstraction behind implementation of discrete choice in SSJ.
- StageBlock in tutorial

Break up problem into stages

- Stage 0: enter period t.

$$
\left(z_{i t-1}, a_{i t-1}\right)
$$

- Stage 1: productivity shock

$$
z_{i t-1} \rightarrow z_{i t}
$$

- Stage 2: participation choice

$$
\left\} \rightarrow n_{i t}\right.
$$

- Stage 3: consumption-saving choice

$$
a_{i t-1} \rightarrow a_{i t}, c_{i t}
$$

Stage 3: continuous choice

- Stage 3 looks like vanilla SIM model with extra state n

$$
\begin{align*}
V^{(3)}\left(n, z, a_{-}\right)= & \max _{c, a \geq \underline{a}} u(c)-\varphi n+\beta \mathbb{E} V^{(1)}\left(z^{\prime}, a\right) \tag{1}\\
& \text { s.t. } c+a=(1+r) a_{-}+w n z+T
\end{align*}
$$

- Characterizes discrete choice-specific policies $a\left(n, z, a_{-}\right), c\left(n, z, a_{-}\right)$.
-Can we get these via endogenous gridpoint method?

Stage 3: continuous choice

- Stage 3 looks like vanilla SIM model with extra state n

$$
\begin{align*}
V^{(3)}\left(n, z, a_{-}\right)= & \max _{c, a \geq \underline{a}} u(c)-\varphi n+\beta \mathbb{E} V^{(1)}\left(z^{\prime}, a\right) \tag{1}\\
& \text { s.t. } c+a=(1+r) a_{-}+w n z+T
\end{align*}
$$

- Characterizes discrete choice-specific policies $a\left(n, z, a_{-}\right), c\left(n, z, a_{-}\right)$.
-Can we get these via endogenous gridpoint method?
- No! Catch is that $V^{(1)}$ is not concave, so $V_{a}^{(1)}$ is not monotonic.

EGM + upper envelope

- Try EGM with non-monotonic $V_{a}^{(1)}$.
- $C_{\text {endo }}^{-\sigma}=\beta V_{a}^{(1)}$
(Euler)
- $c_{\text {endo }}+a_{\text {grid }}=(1+r) a_{\text {endo }}+y$ (budget)
- $a_{\text {endo }}(a)$ may be non-monotonic as well.

EGM + upper envelope

- Try EGM with non-monotonic $V_{a}^{(1)}$.
- $c_{\text {endo }}^{-\sigma}=\beta V_{a}^{(1)}$ (Euler)
- $c_{\text {endo }}+a_{\text {grid }}=(1+r) a_{\text {endo }}+y$ (budget)
- $a_{\text {endo }}(a)$ may be non-monotonic as well.
- Can't invert $a_{\text {endo }}(a)$ to get policy function. Both - solve FOCs.
- Upper envelope: compute $V^{(3)}$ at both solutions and choose max.
- implementation details in tutorial

Stage 2: discrete choice

- Stage 2 is a pure discrete choice problem

$$
\begin{equation*}
V^{(2)}\left(z, a_{-}\right)=\max _{n \in\{0,1\}} V^{(3)}\left(n, z, a_{-}\right)+\underbrace{\varepsilon(n)}_{\text {taste shock }} \tag{2}
\end{equation*}
$$

Stage 2: discrete choice

- Stage 2 is a pure discrete choice problem

$$
\begin{equation*}
V^{(2)}\left(z, a_{-}\right)=\max _{n \in\{0,1\}} V^{(3)}\left(n, z, a_{-}\right)+\underbrace{\varepsilon(n)}_{\text {taste shock }} \tag{2}
\end{equation*}
$$

- Analytical solution if taste shock is iid $\mathrm{EV}-1$ with scale σ.
- logit choice probability:

$$
\begin{equation*}
P\left(n \mid z, a_{-}\right)=\exp \left(\frac{V^{(3)}\left(n, z, a_{-}\right)}{\sigma}\right) / \sum_{n^{\prime} \in\{0,1\}} \exp \left(\frac{V^{(3)}\left(n^{\prime}, z, a_{-}\right)}{\sigma}\right) \tag{3}
\end{equation*}
$$

- logsum formula:

$$
\begin{equation*}
V^{(2)}\left(z, a_{-}\right)=\sigma \log \left(\sum_{n^{\prime} \in\{0,1\}} \exp \left(\frac{V^{(3)}\left(n^{\prime}, z, a_{-}\right)}{\sigma}\right)\right) \tag{4}
\end{equation*}
$$

Stage 1: discrete shock

- Stage 1: productivity shock follows exogenous Markov process

$$
\begin{equation*}
v^{(1)}\left(z_{-}, a_{-}\right)=\sum_{z} \operatorname{Pr}\left(z \mid z_{-}\right) \cdot v^{(2)}\left(z, a_{-}\right) \tag{5}
\end{equation*}
$$

Stage 1: discrete shock

- Stage 1: productivity shock follows exogenous Markov process

$$
\begin{equation*}
v^{(1)}\left(z_{-}, a_{-}\right)=\sum_{z} \operatorname{Pr}\left(z \mid z_{-}\right) \cdot v^{(2)}\left(z, a_{-}\right) \tag{5}
\end{equation*}
$$

- The circle is complete. Start from an initial guess $V_{T}^{(1)}$ and iterate backward stage-by-stage until convergence

$$
\begin{equation*}
V_{t+1}^{(1)} \rightarrow V_{t}^{(3)} \rightarrow V_{t}^{(2)} \rightarrow V_{t}^{(1)} \tag{6}
\end{equation*}
$$

General framework

Warmup

- Consider a 2-state Markov process of employment \& unemployment.
- flow utility $\mathbf{u}_{t}=\left[u_{t}^{\mathrm{E}}, u_{t}^{U}\right]$, value function $\mathbf{v}_{t}=\left[v_{t}^{\mathrm{E}}, v_{t}^{U}\right]$
- distribution is $\mathbf{D}_{t}=\left[D_{t}^{\mathrm{E}}, D_{t}^{U}\right]$
- transition probabilities are f_{t} and s_{t}

Warmup

- Consider a 2-state Markov process of employment \& unemployment.
- flow utility $\mathbf{u}_{t}=\left[u_{t}^{\mathrm{E}}, u_{t}^{U}\right]$, value function $\mathbf{v}_{t}=\left[v_{t}^{\mathrm{E}}, v_{t}^{U}\right]$
- distribution is $\mathbf{D}_{t}=\left[D_{t}^{\mathrm{E}}, D_{t}^{U}\right]$
- transition probabilities are f_{t} and s_{t}
- Backward iteration for \mathbf{v}_{t} ?

$$
\left[\begin{array}{l}
v_{t}^{\mathrm{E}} \\
v_{t}^{U}
\end{array}\right]=\left[\begin{array}{l}
u_{t}^{\mathrm{E}} \\
u_{t}^{U}
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
1-s_{t} & s_{t} \\
f_{t} & 1-f_{t}
\end{array}\right]}_{\Lambda}\left[\begin{array}{l}
v_{t+1}^{\mathrm{E}} \\
v_{t+1}^{U}
\end{array}\right]
$$

(Bellman equation)

- Forward iteration for \mathbf{D}_{t+1} ?

Warmup

- Consider a 2-state Markov process of employment \& unemployment.
- flow utility $\mathbf{u}_{t}=\left[u_{t}^{E}, u_{t}^{U}\right]$, value function $\mathbf{v}_{t}=\left[v_{t}^{E}, v_{t}^{U}\right]$
- distribution is $\mathbf{D}_{t}=\left[D_{t}^{E}, D_{t}^{U}\right]$
- transition probabilities are f_{t} and s_{t}
- Backward iteration for \mathbf{v}_{t} ?

$$
\left[\begin{array}{c}
v_{t}^{\mathrm{E}} \\
v_{t}^{U}
\end{array}\right]=\left[\begin{array}{l}
u_{t}^{\mathrm{E}} \\
u_{t}^{U}
\end{array}\right]+\beta \underbrace{\left[\begin{array}{cc}
1-s_{t} & s_{t} \\
f_{t} & 1-f_{t}
\end{array}\right]}_{\wedge}\left[\begin{array}{l}
v_{t+1}^{\mathrm{E}} \\
v_{t+1}^{U}
\end{array}\right]
$$

(Bellman equation)

- Forward iteration for \mathbf{D}_{t+1} ?

$$
\left[\begin{array}{c}
D_{t+1}^{E} \\
D_{t+1}^{U}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
1-s_{t} & f_{t} \\
s_{t} & 1-f_{t}
\end{array}\right]}_{\Lambda^{\prime}}\left[\begin{array}{l}
D_{t}^{E} \\
D_{t}^{U}
\end{array}\right]
$$

General HA problem without stages

- Consider HA problem with aggregate inputs \mathbf{X}_{t}.

$$
\begin{aligned}
\mathbf{v}_{t} & =v\left(\mathbf{v}_{t+1}, \mathbf{X}_{t}\right) \\
\mathbf{D}_{t+1} & =D\left(\mathbf{v}_{t+1}, \mathbf{D}_{t}, \mathbf{X}_{t}\right)
\end{aligned}
$$

(Bellman equation) (law of motion)

General HA problem without stages

- Consider HA problem with aggregate inputs \mathbf{X}_{t}.

$$
\begin{aligned}
\mathbf{v}_{t} & =v\left(\mathbf{v}_{t+1}, \mathbf{X}_{t}\right) \\
\mathbf{D}_{t+1} & =D\left(\mathbf{v}_{t+1}, \mathbf{D}_{t}, \mathbf{X}_{t}\right)
\end{aligned}
$$

(Bellman equation)
(law of motion)

- This is a Markov process, just more complex.
- Suppose the state space is discretized on N gridpoints.
- flow utility, value function, distribution are vectors:
- Markov matrix of joint state:

$$
\begin{aligned}
\mathbf{u}, \mathbf{v}, \mathbf{D} & \in \mathbb{R}^{N} \\
\Lambda & \in \mathbb{R}^{N \times N}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{v}_{t} & =\mathbf{u}_{t}+\beta \Lambda\left(\mathbf{v}_{t+1}, \mathbf{X}_{t}\right) \mathbf{v}_{t+1} \\
\mathbf{D}_{t+1} & =\Lambda\left(\mathbf{v}_{t+1}, \mathbf{X}_{t}\right)^{\prime} \mathbf{D}_{t}
\end{aligned}
$$ (law of motion)

Solving HA models in discrete vs continuous time

- Achdou et al. (2021) claim 4 advantages for continuous time.

1. FOCs are sufficient almost everywhere ${ }^{1}$
2. FOCs are static
3. HJB and KFE are adjoint operators
4. sparsity
constraints easier, no secondary kinks no costly root finding
"solve policies get distribution for free" Markov matrix of joint states is block tridiagonal
-What do you say?
[^1]
Solving HA models in discrete vs continuous time

- Achdou et al. (2021) claim 4 advantages for continuous time.

1. FOCs are sufficient almost everywhere ${ }^{1}$
2. FOCs are static
3. HJB and KFE are adjoint operators
4. sparsity
constraints easier, no secondary kinks no costly root finding
"solve policies get distribution for free" Markov matrix of joint states is block tridiagonal
-What do you say?
5. helps in models with ≥ 2 endogenous states or discrete choices
6. EGM avoids root finding but requires interpolation
7. general property of Markov processes
8. claim: we can exploit sparsity better in discrete time
[^2]
General HA problem with stages

- Let there be $j=1, \ldots$, J stages.
- discrete shock, discrete choice, continuous choice (1-2 states)
- Same logic of backward and forward iteration applies between stages.

$$
\begin{aligned}
\mathbf{v}_{t, j} & =\Lambda_{j}\left(\mathbf{v}_{t, j+1}, \mathbf{X}_{t, j}\right) \mathbf{v}_{t, j+1} \\
\mathbf{D}_{t, j+1} & =\Lambda_{j}\left(\mathbf{v}_{t, j+1}, \mathbf{X}_{t, j}\right)^{\prime} \mathbf{D}_{t, j}
\end{aligned}
$$

(Bellman equation)
(law of motion)

General HA problem with stages

- Let there be $j=1, \ldots, J$ stages.
- discrete shock, discrete choice, continuous choice (1-2 states)
- Same logic of backward and forward iteration applies between stages.

$$
\begin{aligned}
\mathbf{v}_{t} & =\left(\Lambda_{1} \cdot \Lambda_{2} \cdots \Lambda_{\jmath}\right) \mathbf{v}_{t+1} \\
\mathbf{D}_{t+1} & =\left(\Lambda_{\jmath}^{\prime} \cdot \Lambda_{\jmath-1}^{\prime} \cdots \Lambda_{1}^{\prime}\right) \mathbf{D}_{t}
\end{aligned}
$$

(Bellman equation)
(law of motion)

- Key insight: Stage-specific Markov matrices are sparser than their product.
- Optimize sparse "matrix multiplication" operation for each type of stage.
- Today = tomorrow property of ctime has costs as well as benefits.
- static FOCs that are sufficient almost everywhere, but can't divide problem into stages

Taking stock

- Stage is a useful abstraction for both intuition \& computation.
- If you can write backward iteration for a stage...
- chain arbitrary many stages together to elegantly represent complex models
- forward iteration is just the transpose operation
- You can solve cutting edge models in discrete as well as in continuous time.
- Next: last piece of sequence-space Jacobian machinery.

Jacobians with discrete choice

Brief overview

- Fake news algorithm applies directly to discrete shock and cont choice stages.
- What about discrete choice stage?
- Main reason for working with EV-1 taste shocks: Choice probability and value function are smooth with closed-form derivatives.

Discrete choice derivatives

- Simplified notation: v_{i}^{\prime} is vfun in next stage conditional on discrete choice i.
- Recall logsum and logit formulae:

$$
V=\sigma \log \left(\sum_{i} \exp \left(V_{i}^{\prime} / \sigma\right)\right) \quad \text { and } \quad P_{i}=\frac{\exp \left(V_{i}^{\prime} / \sigma\right)}{\sum_{k} \exp \left(V_{k}^{\prime} / \sigma\right)}
$$

Discrete choice derivatives

- Simplified notation: V_{i}^{\prime} is vfun in next stage conditional on discrete choice i.
- Recall logsum and logit formulae:

$$
V=\sigma \log \left(\sum_{i} \exp \left(V_{i}^{\prime} / \sigma\right)\right) \quad \text { and } \quad P_{i}=\frac{\exp \left(V_{i}^{\prime} / \sigma\right)}{\sum_{k} \exp \left(V_{k}^{\prime} / \sigma\right)}
$$

- Few lines of algebra yields

$$
d V=\sum_{i} P_{i} d V_{i}^{\prime} \quad \text { and } \quad d P_{i}=\frac{P_{i}\left(d V_{i}^{\prime}-d V\right)}{\sigma}
$$

- Takeaway: propagating small shocks backward \approx expectations with ss probabilities

Conclusion

Conclusion

- Discrete choice itself is easy (choose best of a few alternatives) but causes non-convexity that complicates continuous choices.
- FOCs necessary but not sufficient even in interior
- "secondary kinks" arise in discrete time
- EGM + upper envelope: choose best of few alternatives that satisfy FOCs.
- have to keep track of vfun \& partial vfun
- EV-1 taste shocks facilitate differentiation at almost no cost.
- Intuitive concepts that improve computation: DAG, stage.
- stage only makes sense in discrete time

Thank you!

References i

References

Achdou, Yves, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions, and Benjamin Moll, "Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach," The Review of Economic Studies, 04 2021, 89 (1), 45-86.
Druedahl, Jeppe, "A Guide On Solving Non-Convex Consumption-Saving Models," Computational Economics, 2020, pp. 1-29.
Fella, Giulio, "A Generalized Endogenous Grid Method for Non-Smooth and Non-Concave Problems," Review of Economic Dynamics, 2014, 17 (2), 329-344.
Iskhakov, Fedor, Thomas H Jørgensen, John Rust, and Bertel Schjerning, "The Endogenous Grid Method for Discrete-Continuous Dynamic Choice Models with (or without) Taste Shocks," Quantitative Economics, 2017, 8 (2), 317-365.

[^0]: ${ }^{a}$ Federal Reserve Board: The views expressed are my own and do not necessarily reflect those of the Board of Governors or the Federal Reserve System.

[^1]: ${ }^{1}$ except at boundaries and primary kinks

[^2]: ${ }^{1}$ except at boundaries and primary kinks

