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Day-ahead market provides central price signals in the EU

• 98,6% of EU consumption is coupled
• 1.530 TWh / year coupled in one market solution
• 200 M€ average daily value of matched trades

All exchanges are cleared centrally once a day 
using mixed-integer programming
(several problems for allocation and pricing)

• Size of the power grid for continental Europe and Ireland** 
~16,000 generators and batteries
~25,000 nodes
~22,000 lines

European Day-Ahead Market Coupling

* Data and illustration from https://www.entsoe.eu/
** Numbers from the ENTSO-E report on the LMP Study 

for  the  Bidding Zone Review Process 2

https://www.entsoe.eu/


Not all countries or states are using markets!

Electric power systems are often operated by 
vertically integrated utilities, which own the generation, 
transmission, and distribution assets. 

Arguments for markets are often based on the Welfare
theorems, but power markets are different from the
original Arrow-Debreu model:

1. markets are coupled
2. preferences are not convex

Electricity Spot Markets and Arrow-Debreu Markets
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The welfare maximization problem for the market is

max
𝑥𝑥

∑𝑖𝑖∈𝑃𝑃 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖) 𝑠𝑠. 𝑡𝑡.∑𝑖𝑖∈𝑃𝑃 𝑥𝑥𝑖𝑖 = 0.

where ∑𝑖𝑖∈𝑃𝑃 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖) = ∑𝑏𝑏 𝑣𝑣𝑏𝑏 𝑥𝑥𝑏𝑏 − ∑𝑠𝑠 𝑐𝑐𝑠𝑠(𝑥𝑥𝑠𝑠).

When valuations and costs of buyers and sellers are all concave and a maximum exists, prices may be 
found by the Lagrangian dual

min
𝑝𝑝

max
𝑥𝑥

�
𝑖𝑖∈𝑃𝑃

𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑝𝑝𝑇𝑇𝑥𝑥𝑖𝑖

This insight extends to distributed and coupled markets with transmission service operators.

Pricing in Convex Markets
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Theorem 1 (Welfare Theorems for Coupled Markets with Quasilinear and Convex Preferences). 
Let price vector 𝑝𝑝∗ ∈ ℝ𝑀𝑀∪𝐹𝐹 and the allocation 𝑧𝑧𝑙𝑙 ∗

𝑙𝑙∈𝐿𝐿 be a Walrasian equilibrium, then this allocation 
maximizes social welfare. Conversely, if 𝑧𝑧𝑙𝑙 ∗

𝑙𝑙∈𝐿𝐿 is a welfare-maximizing allocation, then it can be supported 
by a Walrasian price vector 𝑝𝑝 that forms a Walrasian equilibrium.

Notes (Ahunbay, Bichler, Knoerr, 2023): 
• Theorem 1 does not require differentiability of the functions.
• Proof via Fenchel-Young inequalities. 
• The version with quasilinear utility allows for fast computation via (discrete) convex optimization.

The Welfare Theorems for Coupled and Convex Markets
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For a convex market, a primal solution 𝑥𝑥∗ and a dual solution 𝑝𝑝∗ assemble to form a Walrasian equilibrium.

Such a pair 𝑥𝑥∗,𝑝𝑝∗ satisfy certain desirable properties:

Properties of Convex (Coupled) Markets
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 Primal Optimality

Efficiency

 Primal Feasibility

Supply-Demand 
Balance

 Strong duality

Envy-Freeness

 C. Slackness

Budget Balance



 Non-linear AC (Alternating Current) power flow equations 
 ACOPF (AC Optimal Power Flow) is intractable 

for realistic problem sizes.

Non-Convexities due to Power Flows
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 Non-linear AC (Alternating Current) power flow equations 
 ACOPF (AC Optimal Power Flow) is intractable 

for realistic problem sizes.

 Linear approximations used today provide poor solutions
 US ISO markets are based on approximations (DCOPF) via MIPs.
 SOC relaxations are often feasible in the ACOPF. 
 DCOPF can lead to large but unnecessary price peaks 

(Bichler & Knörr, 2023).

Non-Convexities due to Power Flows
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Non-convexities due to start-up and shutdown costs of gas turbines, curtailment, transmission and 
distribution costs, etc.

=> Walrasian equilibrium might not exist.

Non-Convexities due to Preferences
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Indivisible 
1 MWh

$10
Indivisible 

2 MWh
$30

Seller
?

Indivisible 
1 MWh

$28

Buyer 2

Buyer 1

Clearing the market

• Seller makes a 
loss at 𝑝𝑝 ≤ $10

• Buyer 1 makes a 
loss at 𝑝𝑝 > $10



In the USA real-time market: 
Welfare-maximizing outcome, make-whole payments and penalties.

In the EU day-ahead market:
Suboptimal outcome, no make-whole payments.

How to Deal with Non-Convexities?
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Properties of Walrasian equilibria:

Maintain the Efficient Outcome
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 Primal Optimality

Efficiency

 Primal Feasibility

Supply-Demand 
Balance

 Strong Duality

Envy-Freeness

 C. Slackness

Budget Balance

Look magnitude of deviations. 



Pricing on US ISO markets:

• Convex-Hull Pricing (Hogan and Ring, 2003) 
and ELMP pricing (MISO, 2019)

• IP-Pricing (O‘Neill et al, 2005) 

Central concerns:

High make-whole payments (MWPs): 
“The use of side-payments can undermine the 
market’s ability to send actionable price signals.” 
(U.S. FERC, 2018)

Wrong congestion signals (LLOCs):
“Convex Hull Pricing may produce positive 
congestion prices for transmission lines that are not 
congested as dispatched.” (Schiro et al. 2015)
=> IP-Pricing achieves zero LLOCs

State-of-the-Practice
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Minimize a convex combination of
MWPs and LLOCs 

min
𝑝𝑝
∑𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚{𝜆𝜆𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝 𝑧𝑧𝑙𝑙∗ , 𝜆𝜆𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑝𝑝 𝑧𝑧𝑙𝑙∗ }

Experiments based on data from the ENTSO-E 
bid zone review (4538 generators, 1687 nodes)

1) guaranteed to have lower MWPs than IP-Pricing
2) lower LLOCs compared to min-MWP
3) Prices are participant-wise Pareto optimal

Pricing as Multi-Objective Optimization Problem*
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*M. Ahunbay, M. Bichler, and J. Knoerr. Pricing optimal outcomes in coupled and non-convex markets: Theory and 
applications to electricity markets. In: Proceedings of the ACM Conference on Economics and Computation. ACM, 2023.

Min GLOC (ELMP) 24,577 44,726

Min LLOC (IP-Pricing) 22,487 0

Min MWP 0 8,933,860

Min LLOC v MWP 326 1292



• The EU day-ahead markets use an iterative algorithm (PCR EUPHEMIA)
to find an allocation that allows for linear and anonymous prices.

• Bichler, Fux, and Goeree (ISR, 2018) compute constrained welfare-maximizing 
outcomes and provide welfare bounds decreasing with the number of agents.

• Milgrom and Watt (2022) introduce a mechanism with two price vectors, 
which is nearly efficient, nearly IR and IC that only relies on convex optimization.
=> The Bound-Form First Welfare Theorem bounds the welfare loss 

of non-convex markets by a constant indep. of the # of agents. 

• Implementations require domain-specific rounding procedures. 
Experimental results show <2% welfare loss with realistic data from the 
ARPA-E Grid Optimization Competition.

Relax Welfare Maximization
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Electricity spot markets need to solve very large non-convex problems 
and determine prices.

- US ISO markets relax budget balance
- High make-whole payments 
- Wrong congestion signals (high LLOCs)

Summary
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Both costs can be reduced 
significantly with adequate 
optimization models.

Even very large problems can be 
computed via convex relaxations. 
Welfare losses are small on 
realistic data sets.

- EU day-ahead markets relax efficiency
- Expensive price computations (PCR EUPHEMIA)

(focus of current SDAC revisions)
- No bounds on the welfare loss
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