ARTIFICIAL INTELLIGENCE AND GOVERNMENTS: THE GOOD, THE BAD, AND THE UGLY

Martin Beraja (MIT and NBER)

NBER Digitization Tutorial, Spring 2023

- ► AI can transform modern economies but has brought **new challenges** to the fore
- ► This has raised questions about the role of governments

- ► AI can transform modern economies but has brought **new challenges** to the fore
- ► This has raised questions about the role of governments
 - 1. **The Good:** Al is a data-intensive technology. New gov't policies to foster innovation? "Data-intensive innovation and the state: Evidence from Al firms in China" (with Yang and Yuchtman)

- ► AI can transform modern economies but has brought **new challenges** to the fore
- ► This has raised questions about the role of governments
 - 1. **The Good:** Al is a data-intensive technology. New gov't policies to foster innovation? "Data-intensive innovation and the state: Evidence from Al firms in China" (with Yang and Yuchtman)
 - 2. The Bad: AI is an automation technology. How should gov'ts respond?

"Inefficient automation" (with Zorzi)

- ► AI can transform modern economies but has brought new challenges to the fore
- ► This has raised questions about the role of governments
 - 1. **The Good:** Al is a data-intensive technology. New gov't policies to foster innovation? "Data-intensive innovation and the state: Evidence from Al firms in China" (with Yang and Yuchtman)
 - 2. The Bad: AI is an automation technology. How should gov'ts respond? *"Inefficient automation"* (with Zorzi)
 - 3. **The Ugly:** AI is a surveillance technology. Gov't misuse for repression and social control? *"AI-tocracy"* (with Kao, Yang and Yuchtman) *"Exporting the surveillance state via trade in AI"* (with Kao, Yang and Yuchtman)

- Much focus on how data collected by private firms shapes AI innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)
- > Yet, throughout history, **states** have also collected massive quantities of data
- The state has a large role in many areas
 - Public security, health care, education, basic science...

- Much focus on how data collected by private firms shapes AI innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)
- > Yet, throughout history, states have also collected massive quantities of data
- The state has a large role in many areas
 - Public security, health care, education, basic science...

Can access to government data stimulate commercial AI innovation?

DATA-INTENSIVE INNOVATION AND THE STATE: EVIDENCE FROM AI FIRMS IN CHINA

A common way in which firms access to gov't data is by providing services to the state

DATA-INTENSIVE INNOVATION AND THE STATE: EVIDENCE FROM AI FIRMS IN CHINA

A common way in which firms access to gov't data is by providing services to the state

Think about facial recognition AI sector in China...

- Algo's trained on video of faces from many angles
- Government units collect this data through their surveillance apparatus, and contract AI firms

A common way in which firms access to gov't data is by providing services to the state

Think about facial recognition AI sector in China...

- Algo's trained on video of faces from many angles
- Government units collect this data through their surveillance apparatus, and contract AI firms

A common way in which firms access to gov't data is by providing services to the state

Think about facial recognition AI sector in China...

- Algo's trained on video of faces from many angles
- Government units collect this data through their surveillance apparatus, and contract AI firms
- Firms gaining access to this data use it to train algorithms and provide gov't services
- If gov't data or algorithms are sharable across uses, they can be used to develop commercial AI (e.g., a facial recognition platform for retail stores)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

- 1. Identify all facial recognition AI firms
 - 7,837 firms
 - Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

1. Identify all facial recognition AI firms

- 7,837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)

2. Obtain universe of government contracts

- 2,997,105 contracts
- Source: Chinese Govt. Procurement Database (Ministry of Finance)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

1. Identify all facial recognition AI firms

- 7,837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)
- 2. Obtain universe of government contracts
 - 2,997,105 contracts
 - Source: Chinese Govt. Procurement Database (Ministry of Finance)
- 3. Link government **buyers** to AI **suppliers**
 - 10,677 AI contracts issued by public security arms of government (e.g., local police department)

Registered with Min. of Industry and Information Technology

Categorize by intended customers (with RNN model using tensorflow):

- 1. **Commercial:** e.g., visual recognition system for smart retail;
- 2. Government: e.g., smart city real time monitoring system on main traffic routes;
- 3. General: e.g., a synchronization method for multi-view cameras based on FPGA chips.

Within AI public security contracts: variation in the data collection capacity of the public security agency's local surveillance network

- 1. Identify non-AI contracts: police department purchases of street cameras
- 2. Measure quantity of advanced cameras in a prefecture at a given time
- 3. Categorize public security contracts as coming from "high" or "low" camera capacity prefectures

Regional variation in contracts

Empirical strategy

 Triple diff: software releases before and after firm receives 1st data-rich contract (relative to data-scarce)

$$y_{it} = \sum_{T} \beta_{1T} T_{it} Data_{i} + \sum_{T} \beta_{2T} T_{it} + \alpha_{t} + \gamma_{i} + \sum_{T} \beta_{3T} T_{it} X_{i} + \epsilon_{it}$$

- T_{it} : 1 if T semi-years before/since firm i's 1st contract
- Data_i: 1 if firm *i* receives "data rich" contract
- X_i pre-contract controls: age, size, and software prod

Regional variation in contracts

Cumulative commercial software releases

Magnitude: 2 new products over 3 years

• Automation raises productivity but **displaces workers** and **lowers their earnings**

- Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)

- ► Automation raises productivity but **displaces workers** and **lowers their earnings**
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ► No optimal policy results that take into account frictions faced by displaced workers

- Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ► No optimal policy results that take into account frictions faced by displaced workers
- ► Two literatures can justify taxing automation

Tax automation

Guerreiro et al 2017; Costinot-Werning 2018

- (i) Govt. has preference for redistribution
- (ii) Automation/reallocation are efficient

- Automation raises productivity but displaces workers and lowers their earnings
- Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- No optimal policy results that take into account frictions faced by displaced workers
- Two literatures can justify taxing automation

Tax automation

Guerreiro et al 2017; Costinot-Werning 2018

- (i) Govt. has preference for redistribution
- (ii) Automation/reallocation are efficient

Tax capital (long-run)

Aiyagari 1995; Conesa et al. 2002

- (i) Improve efficiency in economies with IM
- (ii) Worker displacement/reallocation absent

- Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ► No optimal policy results that take into account frictions faced by displaced workers
- ► Two literatures can justify taxing automation. Reallocation is frictionless or absent

Tax automation

Guerreiro et al 2017; Costinot-Werning 2018

Tax capital (long-run)

Aiyagari 1995; Conesa et al. 2002

- Automation raises productivity but displaces workers and lowers their earnings
- Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ► No optimal policy results that take into account frictions faced by displaced workers
- ▶ Two literatures can justify taxing automation. Reallocation is frictionless or absent
- Recognize that displaced workers face two important frictions:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes

- Automation raises productivity but displaces workers and lowers their earnings
- Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ► No optimal policy results that take into account frictions faced by displaced workers
- ► Two literatures can justify taxing automation. Reallocation is frictionless or absent
- Recognize that displaced workers face two important frictions:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes

Could firms automate excessively? How should the gov't respond?

Environment

Optimal Policy

Quantitative Analysis

Continuous time $t \ge 0$

Occupations

Continuous time $t \ge 0$

Occupations

h = A (degree $\alpha \ge 0$) or h = N

Continuous time $t \ge 0$

Occupations

h = A (degree $\alpha \ge 0$) or h = N

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha
ight)$$
 , $\mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}
ight)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0
ight)$

Continuous time $t \ge 0$

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

$$y^{A}=F\left(\mu^{A},\alpha
ight)$$
 , $y^{N}=F^{\star}\left(\mu^{N}
ight)\equiv F\left(\mu^{N},0
ight)$

Final good producer

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right)\equiv G\left(\left\{y^{\mathsf{h}}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Occupations

h = A (degree $\alpha \ge 0$) or h = N

$$y^{A}=F\left(\mu^{A},lpha
ight)$$
 , $y^{N}=F^{\star}\left(\mu^{N}
ight)\equiv F\left(\mu^{N},0
ight)$

Final good producer

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right)\equiv G\left(\left\{y^{h}
ight\}
ight)-\mathcal{C}\left(\alpha
ight)$$

Automation

 $\partial_{\mathsf{A}}G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\pmb{\alpha}\right)\downarrow\mathsf{in}\;\pmb{\alpha}\;(\mathsf{labor-displacing})$

 $G^{\star}\left(\mu^{A},\mu^{N};\pmb{lpha}
ight)$ concave in lpha (costly)

Occupations

h = A (degree $\alpha \ge 0$) or h = N

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha
ight)$$
 , $\mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}
ight)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0
ight)$

Final good producer

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right)\equiv G\left(\left\{y^{\mathsf{h}}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Automation

 $\partial_{\mathsf{A}} \mathsf{G}^{\star} \left(\mu^{\mathsf{A}}, \mu^{\mathsf{N}}; \boldsymbol{\alpha} \right) \downarrow \operatorname{in} \boldsymbol{\alpha} (\operatorname{labor-displacing})$

 $G^{\star}\left(\mu^{A},\mu^{N};\pmb{lpha}
ight)$ concave in lpha (costly)

Profit maximization

$$\max_{\alpha \ge 0} \int_{0}^{+\infty} Q_t \Pi_t(\alpha) \, dt$$

Occupations

h = A (degree $\alpha \ge 0$) or h = N

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha
ight)$$
 , $\mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}
ight)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0
ight)$

Final good producer

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right)\equiv G\left(\left\{y^{\mathsf{h}}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Automation

 $\partial_{\mathsf{A}} \mathsf{G}^{\star} \left(\mu^{\mathsf{A}}, \mu^{\mathsf{N}}; \boldsymbol{\alpha} \right) \downarrow \operatorname{in} \boldsymbol{\alpha} (\operatorname{labor-displacing})$

 $G^{\star}\left(\mu^{A},\mu^{N};\pmb{lpha}
ight)$ concave in lpha (costly)

Profit maximization

$$\max_{\alpha\geq0}\int_{0}^{+\infty}Q_{t}\Pi_{t}\left(\alpha\right)dt$$

$$\Pi_{t}\left(\alpha\right) \equiv \max_{\mu^{A},\mu^{N}\geq0} G^{\star}\left(\mu^{A},\mu^{N};\alpha\right) - \mu^{A} W_{t}^{A} - \mu^{N} W_{t}^{N}$$

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$
Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_{t}^{\text{A}},\mu_{t}^{\text{N}}
ight) egin{cases} = 1/2 & ext{in } t=0 \\ & & \\$$

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h\right] dt$$

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_{t}^{\text{A}},\mu_{t}^{\text{N}}
ight) egin{cases} = 1/2 & ext{in } t=0 \\ & & \\ & \text{Reallocation afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h\right] dt$$

Two frictions

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h\right] dt$$

Two frictions

Slow reallocation (neoclassical)

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$(\mu_t^{\mathsf{A}}, \mu_t^{\mathsf{N}}) egin{cases} = 1/2 & ext{in } t = 0 \ \\ ext{Reallocation} & ext{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h\right] dt$$

Two frictions

Slow reallocation (neoclassical)

Mobility opportunities arrive at rate λ

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_{t}^{\text{A}},\mu_{t}^{\text{N}}
ight) egin{cases} = 1/2 & ext{in } t=0 \\ & & \\$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h\right] dt$$

Two frictions

Slow reallocation (neoclassical)

Unempl. / retrain. exit at rate κ

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$(\mu_t^{\mathsf{A}}, \mu_t^{\mathsf{N}}) egin{cases} = 1/2 & ext{in } t = 0 \ \\ ext{Reallocation} & ext{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h\right] dt$$

Two frictions

Slow reallocation (neoclassical)

Unempl. / retrain. exit at rate κ

Borrowing constraint

 $a_{t}\left(\mathbf{x}\right) \geq \underline{a}$ for some $\underline{a} \leq 0$

Workers expect income to improve as they reallocate \rightarrow Motive for **borrowing**

Workers expect income to improve as they reallocate \rightarrow Motive for **borrowing**

Two benchmarks: instant realloc. (Costinot-Werning) or no borrowing frictions (Guerreiro et al)

Evidence: Earnings partially recover (Jacobson et al) + Imperfect cons. smoothing (Landais-Spinnewijn)

Environment

Optimal Policy

Quantitative Analysis

CONSTRAINED RAMSEY PROBLEM

How should a government respond to automation?

► Depends on the **tools** available

- ► Depends on the **tools** available
- First best tools: lump sum transfers (directed, UBI)

Info requirements? Fiscal cost? (Guerreiro et al., 2017; Costinot-Werning, 2018, Guner et al., 2021)

- ► Depends on the **tools** available
- Second best tools: tax automation (ex ante) + labor market interventions (ex post)

E.g., South Korea's reduction in automation tax credit in manuf; Geneva's tax on automated cashiers.

- ► Depends on the **tools** available
- Second best tools: tax automation (ex ante) + labor market interventions (ex post) E.g., South Korea's reduction in automation tax credit in manuf; Geneva's tax on automated cashiers.
- ▶ Primal problem: The government maximizes the social welfare function

$$\mathcal{U} \equiv \sum_{h} \eta^{h} \int_{0}^{+\infty} \exp\left(-\rho t\right) u\left(c_{t}^{h}\right) dt$$

by choosing $\{\alpha, T, \mu_t^A, \mu_t^N, c_t^A, c_t^N\}$ subject to workers choosing consumption optimally, the law of motion of labor, firms choosing labor optimally, and market clearing.

• Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u'\left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u'\left(c_{t}^{N}\right)}{u'\left(c_{0}^{N}\right)}}_{=\exp\left(-\int_{0}^{t} r_{s} ds\right)} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{N,\star}\right) dt}_{+ \eta^{A} u'\left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u'\left(c_{t}^{A}\right)}{u'\left(c_{0}^{A}\right)}}_{\text{How automated workers value flows}} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{A,\star}\right) dt$$

where Δ_t^{\star} is aggregate term and $\Sigma_t^{A,\star} + \Sigma_t^{N,\star} = 0$ are distributional terms.

• Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u' \left(c_{0}^{N} \right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t \right) \frac{u' \left(c_{t}^{N} \right)}{u' \left(c_{0}^{N} \right)}}_{=\exp\left(-\int_{0}^{t} r_{s} ds \right)} \times \left(\underbrace{\Delta t}_{t}^{\star} + \Sigma_{t}^{N,\star} \right) dt$$

$$+ \eta^{A} u' \left(c_{0}^{A} \right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t \right) \frac{u' \left(c_{t}^{A} \right)}{u' \left(c_{0}^{A} \right)}}_{\text{How automated workers value flows}} \times \left(\underbrace{\Delta t}_{t}^{\star} + \Sigma_{t}^{A,\star} \right) dt$$

where Δ_t^{\star} is aggregate term and $\Sigma_t^{A,\star} + \Sigma_t^{N,\star} = 0$ are distributional terms.

► No borrowing constraints $\rightarrow \frac{u'(c_t^N)}{u'(c_0^N)} = \frac{u'(c_t^A)}{u'(c_0^A)} \rightarrow \text{Efficiency} \text{ (only distributional terms)}$

• Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u' \left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}}_{=\exp\left(-\int_{0}^{t} r_{s} ds\right)} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{N,\star}\right) dt$$

$$+ \eta^{A} u' \left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{A}\right)}{u' \left(c_{0}^{A}\right)}}_{\text{How outperform value flows}} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{A,\star}\right) dt$$

now automated workers value nows

where Δ_t^{\star} is aggregate term and $\Sigma_t^{A,\star} + \Sigma_t^{N,\star} = 0$ are distributional terms.

► No borrowing constraints $\rightarrow \frac{u'(c_t^N)}{u'(c_0^N)} = \frac{u'(c_t^A)}{u'(c_0^A)} \rightarrow \text{Efficiency} \text{ (only distributional terms)}$

▶ Still rationale for redistribution since $u'(c_t^N) < u'(c_t^A)$, e.g., utilitarian weights

• Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u'\left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u'\left(c_{t}^{N}\right)}{u'\left(c_{0}^{N}\right)}}_{=\exp\left(-\int_{0}^{t} r_{s} ds\right)} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{N,\star}\right) dt$$

$$+ \eta^{A} u'\left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u'\left(c_{t}^{A}\right)}{u'\left(c_{0}^{A}\right)}}_{\text{How automated workers value flows}} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{A,\star}\right) dt$$

where Δ_t^{\star} is aggregate term and $\Sigma_t^{A,\star} + \Sigma_t^{N,\star} = 0$ are distributional terms.

► Borrowing constraints $\rightarrow \frac{u'(c_t^N)}{u'(c_t^N)} > \frac{u'(c_t^N)}{u'(c_t^N)} \rightarrow$ Inefficiency

• Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u'\left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u'\left(c_{t}^{N}\right)}{u'\left(c_{0}^{N}\right)}}_{=\exp\left(-\int_{0}^{t} r_{s} ds\right)} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{N,\star}\right) dt$$

$$+ \eta^{A} u'\left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u'\left(c_{t}^{A}\right)}{u'\left(c_{0}^{A}\right)}}_{\text{How automated warkers value flows}} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{A,\star}\right) dt$$

How automated workers value flows

where Δ_t^{\star} is aggregate term and $\Sigma_t^{A,\star} + \Sigma_t^{N,\star} = 0$ are distributional terms.

Borrowing constraints

$$\rightarrow \frac{u'(c_t^N)}{u'(c_0^N)} \rightarrow \frac{u'(c_t^A)}{u'(c_0^A)} \rightarrow \text{Inefficiency}$$

There is a **conflict** between how the firm and displaced workers value the **effects of automation over time**. This creates room for **Pareto improvements**.

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta \alpha < 0$.

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta \alpha < 0$.

(automated)

(non-automated / firm)

$$\delta \alpha \times \int_{0}^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_{t}^{\mathsf{A}})}{u'(c_{0}^{\mathsf{A}})} \left(\Delta_{t}^{\star} + \Sigma_{t}^{\star,\mathsf{A}}\right) dt \qquad \delta \alpha \times \int_{0}^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_{t}^{\mathsf{N}})}{u'(c_{0}^{\mathsf{N}})} \left(\Delta_{t}^{\star} + \Sigma_{t}^{\star,\mathsf{N}}\right) dt$$

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta \alpha < 0$.

(automated)

(non-automated / firm)

$$\delta \alpha \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^A)}{u'(c_0^A)} \Delta_t^* dt \stackrel{?}{=} 0$$

$$\delta \alpha \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^N)}{u'(c_0^N)} \Delta_t^* dt = 0$$

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta \alpha < 0$.

(automated) (non-automated / firm)

$$\delta \alpha \times \int_{0}^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_{t}^{\mathsf{A}})}{u'(c_{0}^{\mathsf{A}})} \Delta_{t}^{\star} dt \stackrel{?}{=} 0 \qquad \qquad \delta \alpha \times \int_{0}^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_{t}^{\mathsf{N}})}{u'(c_{0}^{\mathsf{N}})} \Delta_{t}^{\star} dt = 0$$

1. The output gains from automation Δ_t^* build up over time

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta \alpha < 0$.

(automated) (non-automated / firm)

$$\delta\alpha \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^A)}{u'(c_0^A)} \Delta_t^* dt > 0 \qquad \qquad \delta\alpha \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^N)}{u'(c_0^N)} \Delta_t^* dt = 0$$

1. The output gains from automation Δ_t^{\star} build up over time

2. Automated workers are more impatient than the firm - priced by unconst. workers

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta \alpha < 0$.

(automated) (non-automated / firm)

$$\delta\alpha \times \int_{0}^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^{A})}{u'(c_0^{A})} \left(\Delta_t^{\star} + \Sigma_t^{\star,A}\right) dt > 0 \qquad \delta\alpha \times \int_{0}^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^{N})}{u'(c_0^{N})} \left(\Delta_t^{\star} + \Sigma_t^{\star,N}\right) dt = 0$$

1. The output gains from automation Δ_t^{\star} build up over time

2. Automated workers are more impatient than the firm — priced by unconst. workers

3. Set $\delta \alpha < 0$, and $\delta T < 0$ to compensate non-auto. workers (akin to future transfer)

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta \alpha < 0$.

(automated) (non-automated / firm)

$$\delta\alpha \times \int_{0}^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^A)}{u'(c_0^A)} \left(\Delta_t^{\star} + \Sigma_t^{\star,A}\right) dt > 0 \qquad \delta\alpha \times \int_{0}^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^N)}{u'(c_0^N)} \left(\Delta_t^{\star} + \Sigma_t^{\star,N}\right) dt = 0$$

Taxing automation increases **aggregate consumption** and **redistributes** early on during the transition, precisely when **displaced workers** value it more.

▶ Optimal intervention depends on how the government values efficiency vs. equity.

- ▶ Optimal intervention depends on how the government values efficiency vs. equity.
- ▶ No pref. for equity: The government uses efficiency weights $\{\eta^{h, effic}\}$

Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")

- ▶ Optimal intervention depends on how the government values efficiency vs. equity.
- No pref. for equity: The government uses efficiency weights {η^{h,effic}}
 Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")
- Optimality condition wrt α

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \sum_{h} \eta^{h, \text{effic}} u'(c_0^h) \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^h)}{u'(c_0^h)} \times \left(\Delta_t^\star + \Sigma^{h, \star}\right) dt = 0$$

- Optimal intervention depends on how the government values efficiency vs. equity.
- No pref. for equity: The government uses efficiency weights {η^{h,effic}} Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")
- Optimality condition wrt α . Negative when evaluated at laissez-faire

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \sum_{h} \eta^{h, \text{effic}} u'(c_0^h) \times \int_0^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u'(c_t^h)}{u'(c_0^h)}}_{< \exp\left(-\int_0^t r_s ds\right) \text{ for } h = A} \times \underbrace{\left(\Delta_t^\star + \Sigma^{h, \star}\right)}_{\text{Back-loaded}} dt < 0$$

- Optimal intervention depends on how the government values efficiency vs. equity.
- No pref. for equity: The government uses efficiency weights {η^{h,effic}} Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")
- Optimality condition wrt α . Negative when evaluated at laissez-faire

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \sum_{h} \eta^{h, \text{effic}} u'(c_0^h) \times \int_0^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u'(c_t^h)}{u'(c_0^h)}}_{<\exp\left(-\int_0^t r_s ds\right) \text{ for } h=A} \times \underbrace{\left(\Delta_t^\star + \Sigma^{h,\star}\right)}_{\text{Back-loaded}} dt < 0$$

Proposition. (Taxing automation on efficiency grounds)

A government using efficiency weights $\{\eta^{h, effic}\}$ finds it optimal to tax automation.

- Optimal intervention depends on how the government values efficiency vs. equity.
- No pref. for equity: The government uses efficiency weights {η^{h,effic}} Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")
- Optimality condition wrt α . Negative when evaluated at laissez-faire

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \sum_{h} \eta^{h, \text{effic}} u'(c_0^h) \times \int_0^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u'(c_t^h)}{u'(c_0^h)}}_{<\exp\left(-\int_0^t r_s ds\right) \text{ for } h=A} \times \underbrace{\left(\Delta_t^\star + \Sigma^{h,\star}\right)}_{\text{Back-loaded}} dt < 0$$

Proposition. (Taxing automation on efficiency grounds)

A government using efficiency weights $\{\eta^{h, effic}\}$ finds it optimal to tax automation.

▶ Pref. for equity: Government taxes even more with utilitarian weights
Environment

Optimal Policy

Quantitative Analysis

QUANTITATIVE MODEL

Adds: gradual autom. + idiosync. risk (Huggett-Aiyagari) + gross flows (McFadden)

QUANTITATIVE MODEL

Adds: gradual autom. + idiosync. risk (Huggett-Aiyagari) + gross flows (McFadden)

QUANTITATIVE MODEL

Adds: gradual autom. + idiosync. risk (Huggett-Aiyagari) + gross flows (McFadden)

- As a technology of prediction, gov'ts may use AI for repression and social control (Zuboff, 2019; Tirole, 2021; Acemoglu, 2021)
- ► Facial recognition AI, in particular, is a technology of **surveillance** (and dual-use)

- As a technology of prediction, gov'ts may use AI for repression and social control (Zuboff, 2019; Tirole, 2021; Acemoglu, 2021)
- ► Facial recognition AI, in particular, is a technology of **surveillance** (and dual-use)

Evidence from China?

AI-TOCRACY

AI-TOCRACY

Unrest \longrightarrow Gov't buys AI and cameras

EXPORTING THE SURVEILLANCE STATE VIA TRADE IN AI

Democracies: Polity Score 7 or greater, Autocracies and weak democracies: Polity Score below 7

EXPORTING THE SURVEILLANCE STATE VIA TRADE IN AI

Orem And Reports

Exports of Al: China v. US

Democracies: Polity Score 7 or greater, Autocracies and weak democracies: Polity Score below 7

Democracies: Polity Score 7 or greater, Autocracies and weak democracies: Polity Score below 7

Autocracies and weak democracies are more likely to import AI from China

► AI is a new technology with many **different features and uses**

► Touches on issues across fields: macro (growth, innovation, labor), pol. econ, IO

► AI is a new technology with many different features and uses

- ► Touches on issues across fields: macro (growth, innovation, labor), pol. econ, IO
- Social scientists have a responsibility to study the benefits, risks, and policy implications of AI
 - Otherwise, we leave the task to computer scientists, tech firms, pundits, politicians...
- We have only started to scratch the surface. More questions as AI is widely adopted.

Much work ahead!