ARTIFICIAL INTELLIGENCE AND GOVERNMENTS: THE GOOD, THE BAD, AND THE UGLY

Martin Beraja (MIT)

- ► AI is a multi-faceted technology, with different features and uses
- ► Has brought opportunities and challenges, raising questions about the role of gov'ts

- ► AI is a multi-faceted technology, with different features and uses
- ► Has brought opportunities and challenges, raising questions about the role of gov'ts
 - 1. The Good: Al is a data-intensive technology. New gov't policies to foster innovation? "Data-intensive innovation and the state: Evidence from Al firms in China" (with Yang and Yuchtman)

- ► AI is a multi-faceted technology, with different features and uses
- ► Has brought opportunities and challenges, raising questions about the role of gov'ts
 - 1. The Good: Al is a data-intensive technology. New gov't policies to foster innovation? "Data-intensive innovation and the state: Evidence from Al firms in China" (with Yang and Yuchtman)
 - 2. The Bad: AI is an automation technology. Should gov'ts tax it and slow down adoption? *"Inefficient automation"* (with Zorzi)

- ► AI is a **multi-faceted** technology, with different features and uses
- ► Has brought opportunities and challenges, raising questions about the role of gov'ts
 - 1. The Good: Al is a data-intensive technology. New gov't policies to foster innovation? "Data-intensive innovation and the state: Evidence from Al firms in China" (with Yang and Yuchtman)
 - 2. The Bad: AI is an automation technology. Should gov'ts tax it and slow down adoption? *"Inefficient automation"* (with Zorzi)
 - 3. The Ugly: AI is a surveillance technology. Gov't misuse for repression and social control? *"AI-tocracy"* (with Kao, Yang and Yuchtman) *"Exporting the surveillance state via trade in AI"* (with Kao, Yang and Yuchtman)

1. The Good: Access to Government Data as Innovation Policy

2. The Bad: Inefficient Automation

3. The Ugly: AI-tocracy

- Much focus on how data collected by private firms shapes AI innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)
- > Yet, throughout history, states have also collected massive quantities of data
- ► The state has a large role in many areas
 - Public security, health care, education, basic science...

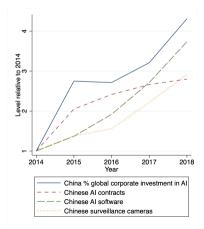
- Much focus on how data collected by private firms shapes AI innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)
- > Yet, throughout history, states have also collected massive quantities of data
- ► The state has a large role in many areas
 - Public security, health care, education, basic science...

Can access to government data stimulate commercial AI innovation?

DATA-INTENSIVE INNOVATION AND THE STATE: EVIDENCE FROM AI FIRMS IN CHINA

A common way in which firms access to gov't data is by providing services to the state

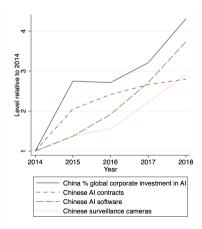
DATA-INTENSIVE INNOVATION AND THE STATE: EVIDENCE FROM AI FIRMS IN CHINA


A common way in which firms access to gov't data is by providing services to the state

- Algo's trained on video of faces from many angles
- Government units collect this data through their surveillance apparatus, and contract AI firms

A common way in which firms access to gov't data is by providing services to the state

- Algo's trained on video of faces from many angles
- Government units collect this data through their surveillance apparatus, and contract AI firms



A common way in which firms access to gov't data is by providing services to the state

- Algo's trained on video of faces from many angles
- Government units collect this data through their surveillance apparatus, and contract AI firms
- Firms gaining access to this data use it to train algorithms and provide gov't services
- If gov't data or algorithms are sharable across uses, they can be used to develop commercial AI (e.g., a facial recognition platform for retail stores)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

- 1. Identify all facial recognition AI firms
 - 7,837 firms
 - Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

1. Identify all facial recognition AI firms

- 7,837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)
- 2. Obtain universe of government contracts
 - 2,997,105 contracts
 - Source: Chinese Govt. Procurement Database (Ministry of Finance)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

- 1. Identify all facial recognition AI firms
 - 7,837 firms
 - Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)
- 2. Obtain universe of government contracts
 - 2,997,105 contracts
 - Source: Chinese Govt. Procurement Database (Ministry of Finance)
- 3. Link government buyers to AI suppliers
 - 10,677 AI contracts issued by public security arms of government (e.g., local police department)

Registered with Min. of Industry and Information Technology

Categorize by intended customers (with RNN model using tensorflow):

- 1. **Commercial:** e.g., visual recognition system for smart retail;
- 2. Government: e.g., smart city real time monitoring system on main traffic routes;
- 3. General: e.g., a synchronization method for multi-view cameras based on FPGA chips.

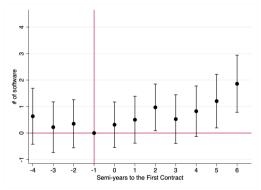
Within AI public security contracts: variation in the data collection capacity of the public security agency's local surveillance network

- 1. Identify non-AI contracts: police department purchases of street cameras
- 2. Measure quantity of advanced cameras in a prefecture at a given time
- 3. Categorize public security contracts as coming from "high" or "low" camera capacity prefectures

Regional variation in contracts

Empirical strategy

 Triple diff: software releases before and after firm receives 1st data-rich contract (relative to data-scarce)


$$y_{it} = \sum_{T} \beta_{1T} T_{it} \mathsf{Data}_i + \sum_{T} \beta_{2T} T_{it} + \alpha_t + \gamma_i + \sum_{T} \beta_{3T} T_{it} X_i + \epsilon_{it}$$

- T_{it} : 1 if T semi-years before/since firm *i*'s 1st contract
- **Data**_i: 1 if firm *i* receives "data rich" contract
- X_i pre-contract controls: age, size, and software prod

Regional variation in contracts

Cumulative commercial software releases

Magnitude: 2 new products over 3 years

1. The Good: Access to Government Data as Innovation Policy

2. The Bad: Inefficient Automation

3. The Ugly: AI-tocracy

> Past automation (robots) has displaced workers and lowered their earnings

Acemoglu and Restrepo, 2020, 2022; Humlum, 2021

Past automation (robots) has displaced workers and lowered their earnings Acemoglu and Restrepo, 2020, 2022; Humlum, 2021

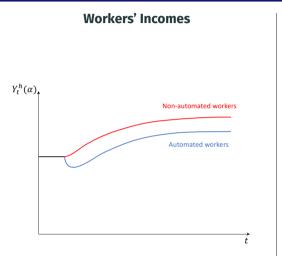
- Two economic arguments for slowing down automation based on:
 - 1. Equity considerations (Guerreiro et al, 2022; Costinot and Werning, 2022)
 - 2. Efficiency considerations (Beraja and Zorzi, 2023)

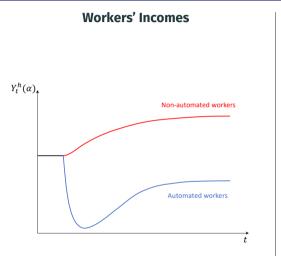
Past automation (robots) has displaced workers and lowered their earnings Acemoglu and Restrepo, 2020, 2022; Humlum, 2021

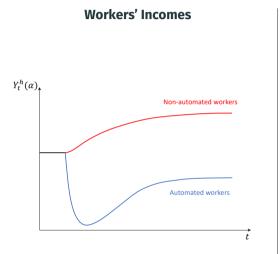
► Two economic arguments for slowing down automation based on:

- 1. Equity considerations (Guerreiro et al, 2022; Costinot and Werning, 2022)
- 2. Efficiency considerations (Beraja and Zorzi, 2023)

Are these arguments as strong for AI (e.g., LLMs) as they were for robots?

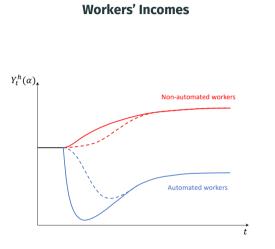

• Consider a firm choosing how much to automate (α)


$$\max_{\alpha} \text{PDV of profits} \equiv \sum_{t} \underbrace{\frac{1}{(1+r)^{t}}}_{\text{Interest rate}} \times \underbrace{\pi_{t}(\alpha)}_{\text{Profits}}$$


• Consider a firm choosing how much to automate (α)

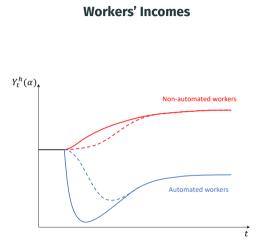
$$\max_{\alpha} \text{PDV of profits} \equiv \sum_{t} \frac{1}{\underbrace{(1+r)^{t}}_{\text{Interest rate}}} \times \underbrace{\pi_{t}(\alpha)}_{\text{Profits}}$$

- Consider a worker of type *h*, e.g., a 40 year old in a routine occupation
- Their income is $\mathcal{Y}_t^h(\alpha)$
- $d\mathcal{Y}_t^h(\cdot)/d\alpha$ depends on their type, how easy it is to reallocate/retrain, etc



Ricardian workers (ample savings, borrow easily)

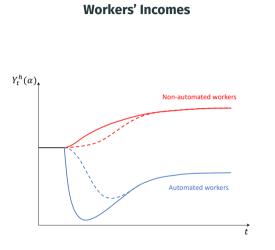
$$c_t^h = \frac{r}{1+r} \sum_t \left(\frac{1}{1+r}\right)^t \mathcal{Y}_t^h(\alpha)$$


▶ Non-auto. better-off; Auto. worse-off

Ricardian workers (ample savings, borrow easily)

$$c_{t}^{h} = \frac{r}{1+r} \sum_{t} \left(\frac{1}{1+r}\right)^{t} \mathcal{Y}_{t}^{h}\left(\alpha\right)$$

- ► Non-auto. better-off; Auto. worse-off
- Equity rationale for taxing automation
 Permanent income redistribution


Ricardian workers (ample savings, borrow easily)

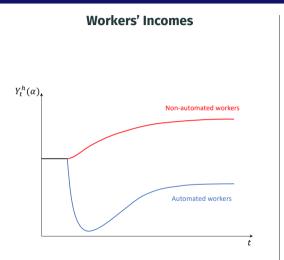
$$c_t^h = \frac{r}{1+r} \sum_t \left(\frac{1}{1+r}\right)^t \mathcal{Y}_t^h(\alpha)$$

- ► Non-auto. better-off; Auto. worse-off
- Equity rationale for taxing automation
 Permanent income redistribution

► But firm automation is **efficient**

Maximize output PDV. Income timing irrelevant

Ricardian workers (ample savings, borrow easily)


$$c_t^h = \frac{r}{1+r} \sum_t \left(\frac{1}{1+r}\right)^t \mathcal{Y}_t^h\left(\alpha\right)$$

- ► Non-auto. better-off; Auto. worse-off
- Equity rationale for taxing automation
 Permanent income redistribution

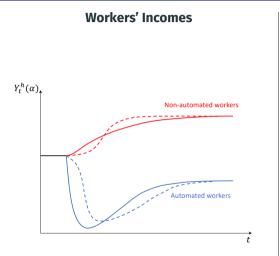
But firm automation is efficient

Maximize output PDV. Income timing irrelevant


 In practice, workers may be financially vulnerable...

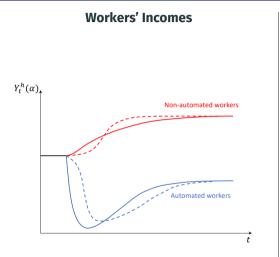
HtM workers (no savings, cannot borrow)

 $c_{t}^{h}=\mathcal{Y}_{t}^{h}\left(\alpha\right)$


• Timing of \mathcal{Y}_t^h matters. Not just PDV

HtM workers (no savings, cannot borrow)

 $c_{t}^{h}=\mathcal{Y}_{t}^{h}\left(\alpha\right)$


- Timing of \mathcal{Y}_t^h matters. Not just PDV
- Firms fail to internalize that automation lowers *Y*^{Auto}_t early on

HtM workers (no savings, cannot borrow)

 $c_{t}^{h}=\mathcal{Y}_{t}^{h}\left(\alpha\right)$

- Timing of \mathcal{Y}_t^h matters. Not just PDV
- Firms fail to internalize that automation lowers *Y*^{Auto}_t early on
- Efficiency rationale for taxing autom. As firms and workers disagree on how they value income over time

HtM workers (no savings, cannot borrow)

 $c_{t}^{h}=\mathcal{Y}_{t}^{h}\left(\alpha\right)$

- Timing of \mathcal{Y}_t^h matters. Not just PDV
- Firms fail to internalize that automation lowers *Y*^{Auto}_t early on
- Efficiency rationale for taxing autom. As firms and workers disagree on how they value income over time
- ► No Efficiency v. Equity trade-off

AI (generative, LLMs) \neq Robots

- **Equity** rationale seems much weaker for AI than it was for robots
 - Robots automate routine, low-to-middle-wage jobs (car manuf)
 - Al (likely) automates cognitive, middle-to high-wage jobs (lawyers, journos, soft devs)

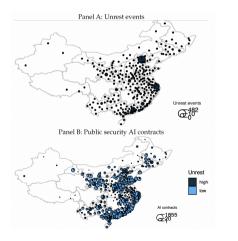
- **Equity** rationale seems much weaker for AI than it was for robots
 - Robots automate routine, low-to-middle-wage jobs (car manuf)
 - Al (likely) automates cognitive, middle-to high-wage jobs (lawyers, journos, soft devs)
- ► Efficiency rationale seems much weaker too
 - Lawyers, journos, and soft devs not the first that come to mind as "financially vulnerable"
 - Call centers? College debt?

- **Equity** rationale seems much weaker for AI than it was for robots
 - Robots automate routine, low-to-middle-wage jobs (car manuf)
 - Al (likely) automates cognitive, middle-to high-wage jobs (lawyers, journos, soft devs)
- ► Efficiency rationale seems much weaker too
 - Lawyers, journos, and soft devs not the first that come to mind as "financially vulnerable"
 - ► Call centers? College debt?
- ► Weaker rationale for **slowing down AI** due to job automation. AI **alignment** concerns?

1. The Good: Access to Government Data as Innovation Policy

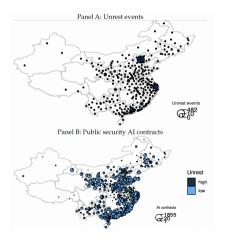
2. The Bad: Inefficient Automation

3. The Ugly: AI-tocracy

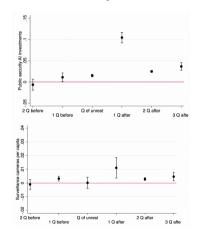

- As a technology of prediction, gov'ts may use AI for repression and social control (Zuboff, 2019; Tirole, 2021; Acemoglu, 2021)
- ► Facial recognition AI, in particular, is a technology of **surveillance** (and dual-use)

- As a technology of prediction, gov'ts may use AI for repression and social control (Zuboff, 2019; Tirole, 2021; Acemoglu, 2021)
- ► Facial recognition AI, in particular, is a technology of **surveillance** (and dual-use)

Evidence from China?


AI-TOCRACY

Unrest and gov't procurement of AI



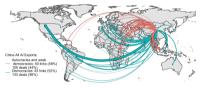
AI-TOCRACY

Unrest and gov't procurement of AI

Unrest \longrightarrow Gov't buys AI and cameras

EXPORTING THE SURVEILLANCE STATE VIA TRADE IN AI

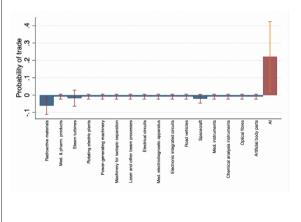
Exports of Al: China v. US


Democracies: Polity Score 7 or greater. Autocracies and weak democracies: Polity Score below 7

Democracies: Polity Score 7 or greater, Autocracies and weak democracies: Polity Score below 7

EXPORTING THE SURVEILLANCE STATE VIA TRADE IN AI

Exports of AI: China v. US



Democracies: Polity Score 7 or greater, Autocracies and weak democracies: Polity Score below 7

Democracies: Polity Score 7 or greater, Autocracies and weak democracies: Polity Score below 7

Autocracies and weak democracies are more likely to import AI from China

- ► AI is a new technology with many different features and uses
- ▶ Touches on issues across fields: macro (growth, innovation, labor), pol. econ, IO

- ► AI is a new technology with many different features and uses
- ► Touches on issues across fields: macro (growth, innovation, labor), pol. econ, IO
- ▶ We have a **responsibility** to study the benefits, risks, and policy implications of AI
 - Otherwise, we leave the task to...
- We have only started to scratch the surface. More questions as AI is widely adopted.