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Empirical Bayes Applications
I Economists are increasingly drilling down to study heterogeneity in

fine-grained, unit-specific parameters

I Returns to a year of education =⇒ Returns to college selectivity
=⇒ Returns to specific colleges (Card, 1999; Dale and Krueger, 2002,

2014; Mountjoy and Hickman, 2021)

I Industry wage premia =⇒ Firm-specific wage premia (Krueger and

Summers, 1988; Abowd et al., 1999; Card et al., 2018)

I Effects of neighborhood characteristics =⇒ Effects of specific
neighborhoods (Kling et al., 2007; Chetty and Hendren, 2018; Chetty et

al., 2018)

I In settings with many unit-specific parameters, empirical Bayes (EB)
methods are useful for

I Learning about the distribution of parameters across units

I Improving estimates for individual units (“borrowing strength”)

I Making decisions (Policy: what to do? Scientific: what to report?)
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Today’s Agenda

I Goals for the rest of today:

I Recap basic EB theory

I Illustrate through two applications

I Application 1: School value-added in Boston (Angrist, Hull, Pathak and
Walters, 2017)

I Classic parametric EB

I Application 2: Labor market discrimination among large US employers
(Kline, Rose, and Walters, forthcoming)

I Non-parametric/robust EB
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Application 1: School Value-Added

I Consider a population of students indexed by i , each attending one of J
schools in a district

I Let Yi (j) denote student i’s potential academic achievement if s/he
attends school j ∈ {1, ..., J}

I Simple additive model for potential outcomes:

Yi (j) = βj + εi

I βj is the value-added of school j

I εi represents unobserved student heterogeneity (family background,
ability, etc.). Normalize E [εi ] = 0

I Constant effects model: βj − βk is the effect of moving any student from
school k to school j
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Questions About Schools

I Several possible questions of interest in this setting

I Might be interested in the value-added of a particular school, e.g. β1

I Might be interested in features of the distribution of βj ’s across schools

I How much does school quality vary?

I Might be interested in making a decision that depends on the βj ’s

I Which school should my child attend? Which school(s) should be
closed or expanded?

I EB methods are useful for answering each of these questions
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VAM Regression

I Letting Dij indicate attendance at j , observed outcome is:

Yi =
∑

j βjDij + εi

I Project εi on a vector of covariates Xi (e.g. demographics and lagged
achievement):

Yi =
∑

j βjDij + X ′i γ + ui

I Here E [Xiui ] = 0 by definition

I Suppose we have selection-on-observables: additive control for Xi

captures all selection bias, so E [Dijui ] = 0 ∀j

I Then ordinary least squares (OLS) regression recovers the parameters of
this value-added model (VAM)
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VAM Estimates

I VAM estimation yields an estimate for each school along with
standard errors: {β̂j , sj}Jj=1

I Assume:

β̂j |βj , sj ∼ N(βj , s
2
j )

I Think of this as an asymptotic approximation: schools are large
enough for estimates to be approximately normal and centered at
the truth, with variance ≈ s2

j
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Introducing G

I Second level of the hierarchy describes the cross-school distribution of
value-added:

βj ∼ G(β), j = 1, ...., J

I The mixing distribution G is a key object in the EB framework

I G is an objective feature of the world, not a subjective prior

I G answers questions about variation in value-added

I How much does school quality vary? σ2
β =

∫
(β − µβ)2dG(β)

I What’s the difference between 75th and 25th percentiles of
value-added? G−1(0.75)− G−1(0.25)

I EB deconvolution: Use noisy estimates β̂j along with standard errors sj
to compute an estimate Ĝ of G
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The Philosophy of G
I What does it mean to say that value-added parameters are random draws

from a distribution G?

I “Fixed effects” perspective: There are J schools in the district, with
fixed but unknown parameters {βj}Jj=1

I One (unsatisfying) answer: observed schools are sampled from some
larger superpopulation

I “Random effects” perspective can be motivated by analyst’s objectives

I Even with finite population of schools, we can ask how the βj ’s are
distributed in this population

I If our loss function cares about average performance across schools,
it’s valuable to incorporate distributional information into estimates
for individuals

I Continuous/iid models for G as parsimonious approximations

I Random vs. fixed effects is not about correlation of βj ’s with VAM
X ’s (c.f. “random effects” vs. “correlated random effects”)
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Normal/Normal Model

I Suppose G is normal and independent of sj

I Then we have the hierarchical model

β̂j |βj , sj ∼ N(βj , s
2
j )

βj |sj ∼ N(µβ , σ
2
β)

I Hyperparameters µβ and σ2
β summarize the value-added distribution

I With this model for G , deconvolution just requires estimating these two
hyperparameters
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Estimating Hyperparameters

I Common estimators for value-added hyperparameters:

µ̂β =
1

J

J∑
j=1

β̂j

σ̂2
β =

1

J

J∑
j=1

[
(β̂j − µ̂β)2 − s2

j

]

I Subtracting s2
j is a bias-correction accounting for excess variance in β̂j ’s

due to sampling error

I σ̂2
β > 0 =⇒ overdispersion beyond what we’d expect from noise

I Other approaches: MLE; Kline, Saggio, and Sølvsten (2020) unbiased
variance estimator
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Posterior Means

I In normal/normal model, posterior mean for βj given (β̂j , sj) is:

β∗
j ≡ E [βj |β̂j , sj ] =

(
σ2
β

σ2
β + s2

j

)
β̂j +

(
s2
j

σ2
β + s2

j

)
µβ

I Posterior mean shrinks noisy estimate β̂j toward prior mean based
on signal-to-noise ratio

I Linear shrinkage formula coincides with regression of βj on β̂j =⇒
minimum mean squared error (MSE) linear predictor even if G isn’t
normal
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EB Posterior Means

I Putting the “E” in “EB” – Empirical Bayes posterior mean β̂∗
j plugs

in estimated hyperparameters σ̂2
β and µ̂β :

β̂∗
j =

(
σ̂2
β

σ̂2
β + s2

j

)
β̂j +

(
s2
j

σ̂2
β + s2

j

)
µ̂β

I EB posterior shrinks estimate for school j using hyperparameters
estimated with the larger pool of schools

I Reflects general EB approach: Use deconvolution estimate Ĝ as
prior when forming posteriors for individual units

I “Borrowing strength from the ensemble” (Efron and Morris,
1973; Morris, 1983)

I “Learning from the experience of others” (Efron, 2012)
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Summary: A Three-step EB Recipe

1. Effect estimation: Estimate parameter for each unit
=⇒ {β̂j , sj}Jj=1

2. Deconvolution: Use {β̂j , sj}Jj=1 to estimate mixing distribution

=⇒ Ĝ

3. Posterior formation: Treating Ĝ as prior, update with (β̂j , sj) to

form posterior =⇒ {β̂∗
j }Jj=1
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When to Shrink?

I Should we prefer the shrunk posterior mean to the unbiased estimate β̂j?
It depends on our goals

I Conditional on the value-added of school j , MSE for the two estimators is:

E
[
(β̂j − βj)2|βj , sj

]
= s2

j

E
[
(β∗j − βj)2|βj , sj

]
=

(
σ2
β

σ2
β

+s2
j

)2

s2
j +

(
s2
j

σ2
β

+s2
j

)2

(βj − µβ)2

I If we’re only interested in one school (e.g. β1), not clear which is better

I Shrinkage reduces variance, but may introduce substantial bias if the
school is very different from average
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When to Shrink?

I Now suppose we’re interested in many schools

I In this case the relevant notion of MSE integrates over G :

E
[
(β̂j − βj)2|sj

]
=
∫
E
[
(β̂j − β)2|βj = β, sj

]
dG(β) = s2

j

E
[
(β∗j − βj)2|sj

]
=
∫
E
[
(β∗j − β)2|βj = β, sj

]
dG(β) =

(
σ2
β

σ2
β

+s2
j

)
s2
j

I Linear shrinkage estimate is superior if we want an estimator that
performs well on average across schools

I Holds whether or not G is normal (James/Stein 1961 result)

I See Armstrong et al. (forthcoming) on robust inference
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VAM Standard Deviations for Boston Middle Schools
(Sixth Grade Math)886 QUARTERLY JOURNAL OF ECONOMICS

FIGURE I

Standard Deviations of School Effects from OLS Value-Added Models

This figure compares standard deviations of school effects from alternative OLS
value-added models. The notes to Table III describe the controls included in the
lagged score and gains models; the uncontrolled model includes only year effects.
The variance of OLS value-added is obtained by subtracting the average squared
standard error from the sample variance of value-added estimates. Within-sector
variances are obtained by first regressing value-added estimates on charter and
pilot dummies, then subtracting the average squared standard error from the
sample variance of residuals.

ability differences using an “uncontrolled” model that adjusts only
for year effects. Although the uncontrolled model almost certainly
provides a poor measure of school value-added, many districts dis-
tribute school report cards based on unadjusted test score levels.10

Figure I summarizes the value-added estimates generated by
sixth-grade math scores. We focus on math scores because value-
added for math appears to be more variable across schools than
value-added for ELA (bias tests for ELA, presented in Online
Appendix Table A.II, yield similar results). Each bar in Figure I
reports an estimated standard deviation of αj across schools,

10. For example, California’s School Accountability Report Cards list school
proficiency levels (see http://www.sarconline.org), while Massachusetts’ school and
district profiles provide information on proficiency levels and test score growth (see
http://profiles.doe.mass.edu).

Estimates from Angrist et al. (2017)
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Histogram of Lagged Score VAM Estimates for Boston
(Sixth Grade Math, 2014)
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Prior Distribution Pooling Sectors
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Posterior Means Pooling Sectors
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Incorporating Covariates

I It is often natural to build observed covariates into EB estimates

I Learning from the experience of which others?

I Model for G conditional on a vector of characteristics Cj , e.g. charter
sector indicator:

βj |sj ,Cj ∼ N
(
C ′j µ, σ

2
r

)
I Estimate µ from regression of β̂j on Cj ; deconvolve residuals

r̂j = β̂j − C ′j µ̂ to estimate σ2
r

I Resulting EB posterior shrinks β̂j toward estimated linear index:

β̂∗j =

(
σ̂2
r

σ̂2
r + s2

j

)
β̂j +

(
s2
j

σ̂2
r + s2

j

)
C ′j µ̂
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Prior with Charter Sector Location Shift
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Posteriors Shrinking Toward Sector Means
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EB for Bias Correction

I EB framework extends naturally to cases where we have multiple
estimates of the same parameter, some possibly biased

I Changing notation, let α̂j denote OLS estimate for school j , and suppose
selection-on-observables fails, represented by bias parameter bj :

α̂j |βj , bj , sjα ∼ N
(
βj + bj , s

2
jα

)
I Suppose we also have a noisy but (asymptotically) unbiased estimate β̂j ,

e.g. IV estimate from randomized lottery :

β̂j |βj , bj , sjβ ∼ N(βj , s
2
jβ)

I Suppose a Hausman test rejects OLS = IV. Should we throw away OLS?
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EB for Bias Correction

α̂j |βj , bj , sjα ∼ N
(
βj + bj , s

2
jα

)
β̂j |βj , bj , sjβ ∼ N(βj , s

2
jβ)

I We can use the ensemble {α̂j , β̂j}Jj=1 to estimate G(β, b), the joint
distribution of truth and bias

I EB “hybrid” posterior β̂∗j = EĜ [βj |β̂j , α̂j ] trades off bias and variance to
minimize MSE:

β̂∗j = τ̂β β̂j + τ̂α(α̂j − (µ̂α − µ̂β)) + (1− τ̂β − τ̂α)µ̂β

I Angrist et al. (2017) generalize to underidentified case; see also Chetty
and Hendren (2018)
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MSE Improvements from Lottery-based Hybrid Estimates912 QUARTERLY JOURNAL OF ECONOMICS

FIGURE VI

Root Mean Squared Error for Value-Added Posterior Predictions

This figure plots root mean squared error (RMSE) for posterior predictions of
sixth-grade math value-added. Conventional predictions are posterior means con-
structed from OLS value-added estimates. Hybrid predictions are posterior modes
constructed from OLS and lottery estimates. The total height of each bar indicates
RMSE. Dark bars display shares of mean squared error due to bias, and light bars
display shares due to variance. RMSE is calculated from 500 simulated samples
drawn from the data generating processes implied by the estimates in Table VI.
The random coefficients model is reestimated in each simulated sample.

The RMSE of hybrid estimates is impressively stable across
specifications, starting at 0.17σ in an uncontrolled benchmark
model and falling to 0.14σ in the lagged score and gains models.
With sector effects included, hybrid estimation reduces RMSE
from 0.15σ to about 0.12σ in the lagged score model and from
0.14σ to about 0.10σ in the gains model. The relatively stable hy-
brid RMSE shows how the hybrid estimator manages to reduce
bias even when nonlottery estimates are badly biased. Although
the largest bias mitigation seen in the figure comes from control-
ling for covariates, hybrid estimation reduces RMSE by a further
20–30%.

Not surprisingly, the RMSE reduction yielded by the hybrid
estimator reflects reduced bias at the cost of increased sampling
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EB Decision Rules

I EB posterior means deliver estimates with low MSE

I We often have goals other than minimizing MSE

I Example: Suppose we want to select schools with value-added below a
cutoff c

I Loss function for decision δj ∈ {0, 1}:

L(βj , δj) = δj1 {βj > c}+ (1− δj)1 {βj ≤ c}κ

I Cost 1 of mistakenly selecting high-performing school; cost κ of failing to
select low-performing school

I Risk-minimizing decision rule with J schools:

δ∗ = arg min
δ∈D

∑
j

∫ ∫
L(β, δ(β̂, sj))

1

sj
φ

(
β̂ − β
sj

)
d β̂dG(β|sj)
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EB Decision Rules

I Solution is to select schools with sufficiently high posterior probability of
value-added below c:

δ∗(β̂j , sj) = 1

{
PrG

[
βj < c|β̂j , sj

]
≥ 1

1 + κ

}

I This means we should select based on posterior (1/(1 + κ)) quantile
rather than posterior mean. In normal/normal model:

δ∗(β̂j , sj) = 1

{(
σ2
β

σ2
β

+s2
j

)
β̂j +

(
s2
j

σ2
β

+s2
j

)
µβ +

√
σ2
β s2

j

σ2
β

+s2
j

Φ−1

(
1

1 + κ

)
≤ c

}

I EB decision rule plugs in estimated hyperparameters (µ̂β , σ̂
2
β)

I Different objectives call for using different functionals of posterior for

decision-making

I See Gu and Koenker (2021) for EB analysis of tail selection problems
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EB and Machine Learning

I EB methods are closely related to machine learning (ML) approaches

I Parametric normal/normal model with N students per school:

Yij = βj + εij

εij |βj ∼ N(0, σ2
ε)

βj ∼ N(0, σ2
β)

I Unbiased estimator Ȳj = 1
N

∑
i Yij , with variance Var(Ȳij |βj) = σ2

ε/N

I Posterior distribution for βj is N(β∗j ,V
∗) with

β∗j =

(
σ2
β

σ2
β

+σ2
ε/N

)
Ȳj , V ∗ =

σ2
εσ

2
β

Nσ2
β

+σ2
ε
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EB and Machine Learning
I Posterior density for βj :

f (βj |Y1j , ....,YNj) =

[
N∏
i=1

1
σε
φ
(

Yij−βj
σε

)]
1
σβ
φ
(
βj
σβ

)
∫∞
−∞

[
N∏
i=1

1
σε
φ
(

Yij−β
σε

)]
1
σβ
φ
(
β
σβ

)
dβ

I Posterior distribution is normal =⇒ posterior mean and mode coincide

I This implies posterior means maximize posterior density:

(β∗1 , ..., β
∗
J ) = arg max

(β1,...,βJ )

∑
j

log f (βj |Y1j ....YNj)

= arg max
(β1,...,βJ )

J∑
j=1

N∑
i=1

logφ
(

Yij−βj
σε

)
+

J∑
j=1

log φ
(
βj
σβ

)
+ cons

I Posterior mode is also known as a maximum a posteriori (MAP)
estimate
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EB and Machine Learning

I Plugging in normal density yields

(β∗1 , ..., β
∗
J ) = arg max

(β1,...,βJ )
−

J∑
j=1

N∑
i=1

(Yij − βj)2

2σ2
ε

−
J∑

j=1

β2
j

2σ2
β

= arg min
(β1,...,βJ )

J∑
j=1

N∑
i=1

(Yij − βj)2 +
σ2
ε

σ2
β

J∑
j=1

β2
j

= arg min
(β1,...,βJ )

J∑
j=1

N∑
i=1

(Yij − βj)2 + λp(β1, ..., βJ)

I This is regularized least squares with an L2 (quadratic) penalty p(·), also
known as ridge regression

I Empirical Bayes =⇒ use the data to choose tuning parameters in
penalty function
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EB and Machine Learning

I ML penalization/regularization procedures often have an EB
interpretation

I Ridge regression estimates (L2 penalization) can be interpreted as
posterior means from a model with normal priors

I LASSO estimates (L1 penalization) can be interpreted as MAP
estimates from a model with double exponential (Laplace) priors

I When doing model selection or penalization via ML, useful to think about
implicit prior distribution and connection to loss function

I See Abadie and Kasy (2019) for analysis of the relative performance of
common regularization approaches under various G ’s
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Application 2: Employer-level Labor Market Discrimination

I Kline, Rose and Walters (forthcoming) apply EB methods to study
the distribution of discrimination across large US employers

I Massive resume correspondence study sending applications to
multiple establishments at large employers

I 108 Fortune 500 firms

I Up to 125 jobs per firm, each in a different county

I 8 applications per job (stratified 4 Black/4 white)

I Following Bertrand and Mullainathan (2004), manipulate employer
perceptions of race and sex using distinctive names
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Job-level Estimates

I Let Yijf (r) ∈ {0, 1} indicate potential callback to applicant i at job
j within firm f if assigned race r ∈ {b,w}

I Average treatment effect at this job is ∆jf ≡ E [Yijf (w)− Yijf (b)]

I Observed outcome is Yijf = Yijf (Rijf ), with Rijf ∈ {b,w}

I Black/white difference in callback rates (contact gap):

∆̂jf =
1

4

∑8
i=1 1{Rijf = w}Yijf −

1

4

∑8
i=1 1{Rijf = b}Yijf

I Random assignment of Rijf =⇒ ∆̂jf is an unbiased estimate of ∆jf
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Firm-level Estimates

I Let ∆f = Ef [∆jf ] denote the average of ∆jf across all jobs within firm f

I Observed average contact gap at firm f :

∆̂f =
1

Jf

Jf∑
j=1

∆̂jf

I Random sampling of jobs =⇒ ∆̂f is an unbiased estimate of ∆f

I Unbiased (squared) standard error estimator:

s2
f =

1

Jf (Jf − 1)

Jf∑
j=1

(∆̂jf − ∆̂f )2

I {∆̂f , sf }Ff =1 provide building blocks for EB analysis of firm heterogeneity
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The Distribution of Discrimination

I Let G denote the distribution of contact gaps across firms:

∆f ∼ G (∆), f = 1, ....,F

I G answers questions about concentration of discrimination

I Is average white/Black difference in callbacks driven by a small
share of severe discriminators?

I Start by estimating mean and variance

I Then use flexible deconvolution methods to estimate other features
of G
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Average Contact Gaps by Race and Gender
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Variance Estimation
I Estimator for variance of G :

σ̂2
∆ =

(
F − 1

F

)[
1

F − 1

F∑
f =1

(
∆̂f − ∆̄

)2

− 1

F

F∑
f =1

s2
f

]

I Special case of unbiased leave-out variance component estimator of Kline,
Saggio and Sølvsten (2020)

I Unbiased s2
f + degrees of freedom correction =⇒ finite-sample

unbiased estimate

I Rewrite using cross-products of job-level contact gaps:

σ̂2
∆ =

(
F − 1

F

)[
1

F

F∑
f =1

2

Jf (Jf − 1)

Jf∑
j=2

j−1∑
`=1

∆̂fj∆̂f ` −
2

F (F − 1)

F∑
f =2

f−1∑
k=1

∆̂f ∆̂k

]

I Interpretation: σ̂2
∆ measures covariance between contact gaps across jobs

at the same firm
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Standard Deviations of G : Substantial Variation for Both
Race and Gender

Bias-corrected
Mean std. dev. of

contact gap contact gaps
(1) (2)

Race (White - Black) 0.021 0.0185
(0.002) (0.0031)

Gender (Male - Female) -0.001 0.0267
(0.003) (0.0038)

Estimates of firm heterogeneity in race and gender discrimination

Estimates from Kline, Rose, and Walters (forthcoming).
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Flexible Deconvolution

I Features of G beyond the mean and variance are also of interest

I Hierarchical model:

∆̂f |∆f , sf ∼ N(∆f , s
2
f )

∆f ∼ G(∆)

I Next, consider flexible deconvolution methods imposing little structure on
G

I N.B.: Need to account for possible dependence between effect sizes ∆f

and sampling variance s2
f

I Maybe firms where more jobs were sampled discriminate more/less

I Maybe firms where overall callback rates are higher discriminate
more/less
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Flexible Deconvolution: Efron (2016)
I For now, sidestep precision-dependence by transforming estimates into

z-scores

I Let zf = ∆̂f /sf denote the estimated z-score for firm f , and let
µf = ∆f /sf denote its population counterpart. Then

zf |µf ∼ N(µf , 1)

µf ∼ Gµ(µ)

I Efron (2016) proposes to approximate Gµ with distribution in smooth
exponential family

I Parameterize density with flexible spline

I Estimate spline parameters by penalized maximum likelihood

I Implemented in deconvolveR R package (Narasimhan and Efron,
2020)

I Requires choosing penalization tuning parameter. Sensible
approach: calibrate to match unbiased variance estimate
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Flexible Deconvolution: NPMLE

I Alternative approach: Non-parametric maximum likelihood estimator
(NPMLE; Robbins, 1950; Kiefer and Wolfowitz, 1956)

I NPMLE picks mixing distribution to maximize likelihood of observed data:

Ĝµ = max
G∈G

F∑
f =1

log
(∫
φ (zf − µ) dG(µ)

)

I Solution is a discrete distribution with at most F mass points

I Koenker and Mizera (2014) develop an approximation that is
straightforward to compute with modern convex optimization methods

I Implemented in REBayes R package (Koenker and Gu, 2017)

I See Koenker (2016) for a comparison of the Efron (2016) and NPMLE
approaches
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From z-scores to Levels

I Suppose we have an estimate Ĝµ of the distribution of z-scores

I To recover the distribution of ∆f = µf sf , need a change of variables

I Suppose µf is independent of sf , and let gµ and hs denote the densities
of µf and sf

I Density of contact gaps is then

g∆(x) =
∫ 1

s
gµ(x/s)hs(s)ds

I Plug in estimated density ĝµ of z−scores and empirical distribution of
standard errors to compute ĝ∆
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Histogram of Race Contact Gap Estimates
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Deconvolved Distribution of Race Contact Gaps
Figure A12: Deconvolution of firm-level racial discrimination without support restriction

   Implied firm mean
     gap: 0.0164 
   Implied between
     firm SD: 0.0183

Observed gaps
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Notes: This figure presents non-parametric estimates of the distribution of firm-specific white-
Black contact rate di↵erences. The red histogram shows the distribution of estimated firm
contact gaps. Blue line shows estimates of the population contact gap distributions. The
population distributions are estimated by applying the deconvolveR package (Narasimhan and
Efron, 2020) to firm-specific z-score estimates, then numerically integrating over the empirical
distribution of standard errors to recover the distribution of contact gaps. The penalization
parameter in the deconvolution step is calibrated so that the resulting distribution matches the
corresponding bias-corrected variance estimate from Table 4.
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Deconvolution Imposing Shape Restriction: ∆f ≥ 0
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NPMLE Deconvolution Estimates for RaceFigure E7: NPMLE estimates of marginal distributions of firm-level discrimination
a) Race b) Gender
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Notes: This figure presents non-parametric maximum likelihood estimates of the distribution of firm-specific contact gaps estimated using the
approach in Koenker and Gu (2017). Panel (a) presents estimates for white-Black contact rate di↵erences, where we impose the restriction that all
contact gaps are weakly positive, and panel (b) presents estimates for male-female di↵erences. Red histograms show the distribution of estimated
firm contact gaps. Blue lines shows estimates of population contact gap distributions. Population distributions are estimated allowing a non-
parametric bivariate distribution for the mixing distribution of contact gaps and standard errors. The figures plot the marginal distribution of
contact gaps. Since the distribution is discrete, the blue lines plot the probability mass function in below, while the histogram reports the share of
sample firms in each bin.
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Histogram of Gender Contact Gap Estimates
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Deconvolved Distribution of Gender Contact Gaps
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NPMLE Estimates for GenderFigure E7: NPMLE estimates of marginal distributions of firm-level discrimination
a) Race b) Gender
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Notes: This figure presents non-parametric maximum likelihood estimates of the distribution of firm-specific contact gaps estimated using the
approach in Koenker and Gu (2017). Panel (a) presents estimates for white-Black contact rate di↵erences, where we impose the restriction that all
contact gaps are weakly positive, and panel (b) presents estimates for male-female di↵erences. Red histograms show the distribution of estimated
firm contact gaps. Blue lines shows estimates of population contact gap distributions. Population distributions are estimated allowing a non-
parametric bivariate distribution for the mixing distribution of contact gaps and standard errors. The figures plot the marginal distribution of
contact gaps. Since the distribution is discrete, the blue lines plot the probability mass function in below, while the histogram reports the share of
sample firms in each bin.
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Lorenz Curves Derived from Efron (2016) Ĝ ’s
Lorenz curves: Top 20% of firms explain ∼50-60% of lost contacts
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Accounting for Precision-Dependence

I Note: if µf is independent of sf , then effect sizes are increasing in
standard errors

I ∆f = µf sf , so E [∆f |sf ] = µ̄sf

I Can test whether this approximation is reasonable

I Other approaches to dealing with dependence:

I Treat sf as a covariate that shifts location and/or scale of G

I Variance-stabilizing transformation: Find function t(·) such that
Var(t(∆̂f )|∆f ) is approximately constant (e.g. Brown, 2008)

I Estimate bivariate distribution of (∆f , sf ), e.g. with NPMLE

Chris Walters (UC Berkeley) Empirical Bayes Methods



Separate Deconvolutions for Low vs. High sf
Figure E4: Conditional deconvolutions of firm-level discrimination distributions
a) Race b) Gender
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Notes: This figure presents non-parametric estimates of the distribution of firm-specific contact gaps estimated separately for firms with above /
below median standard errors. Panel (a) presents estimates for white-Black contact rate di↵erences, and panel (b) presents estimates for male-female
di↵erences. Red histograms show the distribution of estimated firm contact gaps in each group. Blue lines show estimates of population contact
gap distributions for each group. The population distributions are estimated by applying the deconvolveR package (Narasimhan and Efron, 2020)
to firm-specific z-score estimates within group, then numerically integrating over the group’s empirical distribution of standard errors. A common
penalization parameter is used in the deconvolution step for both groups and calibrated so that the resulting marginal distribution matches the
corresponding bias-corrected variance estimate from Table 4. In panel (a), the density of population z-scores is constrained to be weakly positive
in each group.
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Marginal Distribution from Separate Deconvolutions
Figure E5: Marginal distributions of firm-level discrimination from conditional approach

a) Race b) Gender
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Notes: This figure presents non-parametric estimates of the marginal distribution of firm-specific contact gaps corresponding to the group-specific
estimates in Figure E4. Panel (a) presents estimates for white-Black contact rate di↵erences, and panel (b) presents estimates for male-female
di↵erences. Red histograms show the distribution of estimated firm contact gaps. Blue lines shows estimates of population contact gap distributions.
The marginal density is compute as the average of the group-specific densities in Figure E4.
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Firm-level Posteriors

I With an estimate of the mixing distribution Ĝ in hand, move on to EB
step 3: posterior estimates of firm-level discrimination

I EB posterior mean for ∆f :

∆̂∗f = sf ×
∫
xφ(zf − x)ĝµ(x)dx∫
φ(zf − x)ĝµ(x)dx

I Compare distributions of:

I Unbiased estimates ∆̂f

I Contact gaps ∆f , as implied by Efron (2016) Ĝ estimate

I EB posterior means ∆̂∗f
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Distribution of Race Contact Gaps
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Histogram of Posterior Means

EB approach: Treat deconvolved density as prior to form posterior means
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Large-Scale Inference

I As with schools, we may have objectives other than minimizing
MSE of discrimination estimates

I May want to make decisions about how to classify specific firms

I Which firms are discriminating at all (∆f 6= 0)?

I Which firms are in the top quintile of discrimination
(∆f > G−1(0.8))?

I Such decisions are closely related to multiple-testing problems
(“large-scale inference;” Efron, 2012)

I Next, consider robust EB methods for classifying discriminators
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Multiple Testing

I Suppose we conduct a hypothesis test for each firm, yielding a list
of p-values {pf }Ff =1

I Example: one-tailed t-test of H0 : ∆f = 0 vs. HA : ∆f > 0

I Test statistic: zf = ∆̂f /sf

I P-value: pf = 1− Φ (zf )

I Decision rule: reject all hypotheses with p-values less than p̄

I How many mistakes do we expect to make?
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False Discovery Rates

I By Bayes rule, the expected share of non-discriminators among firms with
p-values below p̄ is:

Pr [∆f = 0|pf ≤ p̄] =
Pr [pf ≤ p̄|∆f = 0] Pr[∆f = 0]

Pr [pf ≤ p̄]

=
p̄π0

Fp(p̄)

I This quantity is the False Discovery Rate (FDR) for our decision rule
(Benjamini and Hochberg, 1995)

I If we can limit FDR to q̄, we should expect 100q̄% of firms classified as
discriminators to have ∆f = 0
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Estimating FDR

FDR(p̄) =
p̄π0

Fp(p̄)

I P-values are uniformly distributed under the null, so
Pr [pf ≤ p̄|∆f = 0] = p̄

I Denominator is marginal CDF of p-values, estimable from empirical share
below p̄

I Difficulty is estimating π0 = Pr[∆f = 0], the population share of true nulls

I π0 is a feature of G : π0 =
∫

1[∆ = 0]dG(∆)

I π0 is not point-identified: can’t tell the difference between worlds
where a mass of firms have ∆f exactly 0 vs. vanishingly small

I Efron (2016) continuous approximation automatically implies π̂0 = 0
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Bounding π0

FDR(p̄) =
p̄π0

Fp(p̄)

I Conservative approach: plug in π0 = 1 (Benjamini and Hochberg, 1995)

I Still implies low FDR if many p-values close to 0 (Fp(p̄) >> p̄)

I But we can do better

I Logically inconsistent to have π0 = 1 but Fp(p̄) >> p̄

I π0 can’t be 1 if mean or variance of G 6= 0

I We can borrow strength from the ensemble of tests to bound π0
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Bounding π0

I At any point u, density of p-values is mixure of true nulls (uniform) and
false nulls (something else):

fp(u) = π0 + (1− π0)f1(u)

I Since f1(u) ≥ 0, we have π0 ≤ fp(u) for any u, so minimum density of
p-values bounds π0 (Efron et al., 2001):

π0 ≤ min
u

fp(u)

I We expect density of false nulls to be concentrated toward zero =⇒
tightest bound near 1. Storey (2002) proposes tail-density estimator:

π̂0 =

∑F
f =1 1{pf > λ}pf

(1− λ)F

I Higher λ means tighter bound but noiser estimate – Storey et al. (2004)
propose bootstrap procedure to select λ

I Armstrong (2015) provides confidence interval for π0
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q-values for FDR Control

I Given estimated bound π̂0, control FDR using q-values (Storey,
2003):

qf = F̂DR(pf ) =
pf π̂0

F̂p(pf )

I q-value ≈ EB equivalent of p-value

I Rather than controlling Pr[Rejectf = 1|∆f = 0], use Bayes rule
+ ensemble of tests to control Pr[∆f = 0|Rejectf = 1]

I If firm f ’s q-val is qf and we reject all hypotheses with p-vals lower
than pf , we should expect at most 100qf % of rejections to be
mistakes
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P-value Histogram from One-Tailed Tests of H0 : ∆f ≤ 0Multiple testing: Goal is to control False Discovery Rate
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False Discovery Rate of rule rejecting nulls
with p̂f below p is:

FDR (p) = Pr (∆f = 0|p̂f < p) =
pπ0

Fp̂ (p)

Base decisions on q̂f = F̂DR(p̂f )

e.g., if q̂f = 0.05 then we expect at least 19
out of every 20 firms with p-values below p̂f
to have ∆f 6= 0.

Chris Walters (UC Berkeley) Empirical Bayes Methods



π̂0 = 0.39 =⇒ At Least 61% of Firms Discriminate
Against Black ApplicantsMultiple testing: At least 60% of firms discriminate against Black names

π̂0 =
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Efron et al. (2001) upper bound:

π0 ≤ min
p∈[0,1]

fp̂ (p)

Storey (2002) estimator: for λ ∈ [0, 1)

π̂0 (λ) =

∑108
f =1 1 {p̂f > λ}
(1− λ) 108

Because true nulls over-represented close to
1, tighter bound, more variance as λ→ 1
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23 of 108 Firms Have qf ≤ 0.05

Contact gap Posterior
Firm Industry estimate Std. err. p -value q -value mean

1 Auto dealers/services 0.0952 0.0197 0.0000 0.0001 0.0835
2 Auto dealers/services 0.0507 0.0143 0.0003 0.0061 0.0354
3 Auto dealers/services 0.0738 0.0220 0.0005 0.0073 0.0489
4 Auto dealers/services 0.0787 0.0249 0.0010 0.0103 0.0498
5 Apparel stores 0.0733 0.0250 0.0022 0.0158 0.0448
6 Other retail 0.0469 0.0159 0.0020 0.0158 0.0286
7 Other retail 0.0605 0.0219 0.0033 0.0176 0.0365
8 General merchandise 0.0520 0.0187 0.0031 0.0176 0.0314
9 Auto dealers/services 0.0613 0.0240 0.0060 0.0194 0.0370
10 Other retail 0.0560 0.0214 0.0050 0.0194 0.0337
11 Eating/drinking 0.0560 0.0222 0.0064 0.0194 0.0339
12 Auto dealers/services 0.0540 0.0215 0.0068 0.0194 0.0327
13 Food stores 0.0511 0.0204 0.0069 0.0194 0.0310
14 General merchandise 0.0427 0.0170 0.0068 0.0194 0.0259
15 Furnishing stores 0.0400 0.0159 0.0066 0.0194 0.0242
16 Wholesale nondurable 0.0386 0.0158 0.0080 0.0199 0.0235
17 Apparel manufacturing 0.0350 0.0142 0.0078 0.0199 0.0213
18 Building materials 0.0373 0.0157 0.0093 0.0218 0.0229
19 Health services 0.0544 0.0240 0.0132 0.0292 0.0339
20 Furnishing stores 0.0400 0.0183 0.0152 0.0322 0.0252
21 Eating/drinking 0.0340 0.0159 0.0172 0.0346 0.0217
22 General merchandise 0.0423 0.0210 0.0229 0.0439 0.0277
23 Insurance/real estate 0.0278 0.0140 0.0257 0.0472 0.0183
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EB for Decision-Making

I What feature of posterior should we use for decisions? As usual, depends
on our objectives

I Suppose an auditor is interested in investigating discriminators, with
utility function

U(δ) =
F∑

f =1

δf
(

∆
1/ρ
f − c

)

I δf ∈ {0, 1} is investigation indicator, c is investigation cost, ρ ≥ 1 indexes
risk aversion

I With prior G and evidence E = {∆̂f , sf }Ff =1, expected-utility maximizing
rule is:

δ∗f = 1
{
EG

[
∆

1/ρ
f |E

]
> c
}
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EB for Decision-Making

I When ρ = 1, δ∗f = 1 {∆∗f > c}

I Risk-neutral auditor investigates based on posterior mean

I When ρ→∞ , δ∗f = 1 {PrG [∆f = 0|E] < 1− c}

I Risk-averse auditor investigates based on local false discovery rate
– motivates FDR cutoff rule

I q-value decision rule motivated by optimizing against least-favorable
G (highest π0) in identified set

I See Kline and Walters (2021) for minimax approach to job-level
discrimination with partial identification of G
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Detection Frontiers Implied by Efron (2016) ĜFigure 11: Detection tradeoffs
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Notes: This figure illustrates the expected number of contacts per thousand Black applications
sent that would be saved if discrimination were eliminated at all firms below a ranking threshold.
We consider four rankings: infeasible ranking by true contact gaps (∆f ), ranking by posterior
means (∆̄f ), ranking by linear shrinkage estimates (∆̃f ), and ranking by q-values (q̂f ). The
dashed black line shows the results of ranking firms randomly.
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Thanks

I Feel free to contact us with questions or issues:

I Jiaying: jiaying.gu@utoronto.ca

I Chris: crwalters@econ.berkeley.edu

I Data and code for employment discrimination application available
online:

I https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/HLO4XC

I Try it out yourself!
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