Firm-Level Upgrading in Developing Countries

Eric Verhoogen
Columbia University

NBER DEV Master Lecture
July 26, 2022
Introduction

► My topic today is upgrading by firms in developing countries and its determinants.

► By upgrading I mean innovative behavior, but in a broader-than-usual sense.
 ► Innovation is often understood to refer to things that are new to the world.
 ► The empirics of innovation in rich countries relies heavily on patents, R&D spending.
 ► But LDC firms mainly aim to catch up to the world frontier, rather than push it forward.
 ► Measures of patents and R&D spending are less informative in such contexts.
 ► Upgrading encompasses this sort of catching-up, as well as new-to-the-world innovation.
Adopting a technology or product that already exists seems easier than inventing a new one.

- Gerschenkron (1962): “advantages of backwardness.”

But for many developing-country firms, these advantages have remained elusive.

- What is getting in the way?

- Restated in a positive way: What are the drivers of upgrading at the firm level?
Introduction (cont.)

▶ This seems like a first-order question for development.
 ▶ It is hard to imagine sustained increases in living standards in the absence of such firm-level upgrading.
▶ But for many years, even as micro-empirical work gained steam, the question was not a core focus of the development-economics community, outside of agriculture.

▶ One (salient to me) illustration:
Why not? Some possible answers:

1. Firm-level data hard to come by.
2. Few links to natural policy audience.
 - Reaction against ISI, interventionist development policy ("Washington Consensus").
3. Challenging to do work on firms that is "credible" by modern applied-micro standards.
 - Costly to run experiments, especially with non-micro firms.
 - Outcomes hard to measure well.
 - Firms have few fixed characteristics. What are the Xs to control for?

Non-ag firm-level empirical work was mainly being done in other fields — trade, macro, some IO.
Introduction (cont.)

Some messages today:

- Some of the skepticism in point 3 is well-placed.
 - Existing measures of productivity, the most common metric for upgrading, have issues.
- But a lot of progress has been made.
 - Direct measures of upgrading.
 - Experiments/quasi-experiments.
 - Some robust lessons (and some not so robust).
- This is fertile ground for development researchers.
 - Important questions.
 - Data frontier expanding rapidly.
 - Increasing support from policy-makers, funders, firms for experiments.
 - Shoe leather costs, understanding context crucial.

I’ll draw on a new review (Verhoogen, forthcoming).
- Focuses on non-micro, non-agricultural firms, and within-firm upgrading.
Roadmap

- Introduction
- What is upgrading?
 - Conceptual framework
 - Measurement issues
- Evidence on drivers of upgrading
 - Output-side drivers
 - Input-side drivers
 - Drivers of know-how
- Closing thoughts
Conceptual Framework

- Goal: framework/notation that can accommodate main mechanisms that have been highlighted in the literature.
 - Too general to make falsifiable predictions.
- Firm-product-technique-level production function:
 \[Y_{ijkt} = F_{ijk}(\vec{M}_{ijkt}, \lambda_{ijkt}) \]
 - \(i, j, k, t \) index firms, products, techniques, time.
 - \(\vec{M}_{ijkt} \): vector of inputs.
 - \(\lambda_{ijkt} \): “capability”, has to be “home-grown” (Gibbons, 2010; Dessein and Prat, forthcoming).
 - Different quality varieties considered different outputs/inputs; products; let \(\varphi_{ijt}, \vec{\alpha}_{ijkt} \) be output/input quality.
- Let \(J_{it}, K_{it} \) be sets of products, techniques for which the firm knows \(F_{ijk}(\cdot) \).
- Refer to \(\Lambda_{it} := \{\lambda_{ijkt}\} \), \(J_{it} \), and \(K_{it} \) together as “know-how.”
Conceptual Framework (cont.)

- Destination markets indexed by b.
- Fixed costs: $f_{ijkt}, f_{ijbt}, f_{ijt}, f_{ibt}, f_{it}$.
- Investments in know-how: $\mathcal{I}_{it}^{\Lambda}, \mathcal{I}_{it}^{J}, \mathcal{I}_{it}^{K}$.
- Inverse output-demand curve: $P_{ijbt} = D_{jb}(Y_{ijbt}, \varphi_{ijt}; \Gamma_{yt}^{y})$.
 - Γ_{yt}^{y}: external-to-the-firm factors.
- Inverse input-supply curve: $\hat{W}_{ijkt} = S_{jk}(\hat{M}_{ijkt}, \hat{\alpha}_{ijkt}; \Gamma_{t}^{m})$.
- Firm’s problem is to maximize the PDV of profits:

\[
\Pi_{i\tau} = \sum_{t=\tau}^{\infty} \delta_{t} \left\{ \sum_{b \in B_{it}^{*}} \left[\sum_{j \in J_{ibt}^{*}} \left(P_{ijbt} F_{ijk}(\hat{M}_{ijkt}, \lambda_{ijkt}) - \hat{W}_{ijkt} \hat{M}_{ijkt} - f_{ijkt} - f_{ijbt} - f_{ijt} \right) - f_{ibt} \right] - f_{it} - \mathcal{I}_{it}^{\Lambda} - \mathcal{I}_{it}^{J} - \mathcal{I}_{it}^{K} \right\}
\]

- Firm chooses destinations B_{it}^{*}, products J_{ibt}^{*}, technique k_{ijt}^{*} for each $j \in J_{ibt}^{*}$, inputs $(\hat{M}_{ijkt}), \mathcal{I}_{it}^{\Lambda}, \mathcal{I}_{it}^{J}, \mathcal{I}_{it}^{K}$ for each t.
Conceptual Framework (cont.)

- Four main dimensions of upgrading highlighted in literature:
 1. Learning.
 - Gains of know-how: capability (for some $\lambda_{ijkt} \in \Lambda_{it}$), knowledge of products (J_{it}) or techniques (K_{ijt}).
 2. Quality upgrading.
 - Increase in average quality $\bar{\varphi}_{it}$, where
 \[
 \bar{\varphi}_{it} = \sum_{b \in B_{it}^*} \sum_{j \in J_{ijt}^*} \nu_{ijbt} \varphi_{ijt}, \quad \nu_{ijbt} = \frac{Y_{ijbt}}{\sum_{b' \in B_{it}^*} \sum_{j' \in J_{ijb't}^*} Y_{ijb't}}
 \]
 3. Product innovation.
 - Production of a new product, $j \notin J_{ibt-s} \forall b \in B_{it-s}^*, s > 0$.
 4. Technology adoption.
 - Use of new technique, $k_{ijt}^* \notin K_{ijt-s}^* \forall s > 0$.

- Dimensions are related but distinct.
 - Can have quality upgrading without product innovation, technology adoption without learning etc.
LDC firms face different conditions than firms in rich countries.

- Different product demand curves/prices.
 - e.g. Poorer consumers, less willing to pay for quality.
- Different input supply curves/prices.
 - e.g. High-quality inputs, high-skill workers expensive.
- Different levels of know-how.

Upgrading may or may not be optimal.

- Foster and Rosenzweig (2010):
 "It cannot be inferred from the observation that farmers using high levels of fertilizer earn substantially higher profits than farmers who use little fertilizer that more farmers should use more fertilizer."
- Know-how is unambiguously good for the firm, but also costly to acquire.
Conceptual Framework (cont.)

- “Management” encompasses three distinct things:
 - Know-how, including entrepreneurial ability.
 - Skill of employed managers (a purchased input).
 - Management practices.
 - Practices should be thought of like any other technique (Van Reenen, 2011; Bloom et al., 2011).

- Question: can practices be ranked?
 - “Vertical” view: some practices better than others across contexts (Van Reenen, 2011; Bloom et al., 2014).
 - Claim is that \(\Pi_{i\tau}(k, \cdot) > \Pi_{i\tau}(k', \cdot) \) for all \(D_{bj}(\cdot), S_{jk}(\cdot), \Lambda_{it}, J_{it} \).
 - “Horizontal”/“contingency” view: which is best depends on the context (market conditions, know-how).
 - Ultimately an empirical question, not yet resolved.
 - Normally, if we see firms using different technologies, we don’t assume that some are making mistakes.
 - We should ask what constraints firms are facing that lead them to make the choices they do.
Measurement Issues

- Main ways researchers have attempted to capture upgrading empirically:
 - Patents/R&D expenditures.
 - Manipulable (Chen et al., 2021).
 - Unlikely to capture catching-up.
 - Total factor productivity (TFP).
 - Plus: aims directly to estimate \(\lambda_{ijkt} \).
 - Minus: methods require strong structural assumptions, have various biases (coming next).
 - Direct measures of quality upgrading, product innovation, technology adoption (including management practices).
 - Minus: upgrading on these dimensions is not necessarily optimal.
 - Minus: typically they can be observed directly only in specific (special?) sectors.
 - Plus: Don’t require strong theoretical assumptions.
 - Indirect measures of quality, based on inferences from prices, market shares.
TFP – Proxy Variables

- TFP methods have issues, some familiar, some less so.
- Issue #1: monotonicity assumption for proxy-variable strategy.
 - Standard model: Cobb-Douglas (in logs).

 \[y_{it} = \tilde{z}_{it}' \tilde{\beta} + \{ \omega_{it} + \epsilon_{it} \} \]

 where \(\tilde{z}_{it} = (k_{it} \ell_{it} m_{it})' \), \(\tilde{\beta} = (\beta_k \beta_\ell \beta_m)' \).
 - Transmission bias: \(m_{it}, \ell_{it} \) chosen after firm observes \(\omega_{it} \).
 - Proxy-variable strategies require monotonicity with scalar \(\omega_{it} \):
 - \(\iota_{it} = \iota(k_{it}, \omega_{it}) \Rightarrow \omega_{it} = \iota^{-1}(k_{it}, \iota_{it}) \) (Olley and Pakes, 1996).
 - \(m_{it} = m(k_{it}, \omega_{it}) \Rightarrow \omega_{it} = m^{-1}(k_{it}, m_{it}) \) (Levinsohn and Petrin, 2003).
 - Gandhi et al. (2020): not non-parametrically identified.
 - Use FOC for choice of inputs as additional restriction.
 - Monotonicity assumption is very strong.
 - Invalidated e.g. by heterogeneity in credit constraints, input-market frictions, or just firm fixed effects.
 - Particularly unlikely to hold in LDCs.
TFP – Price Biases

► Issue #2: output/input price biases (De Loecker and Goldberg, 2014).

► It is rare to observe physical quantities. More common to observe revenues \(r_{it} = y_{it} + p_{it} \), expenditures \(\vec{e}_{it} = \vec{z}_{it} + \vec{w}_{it} \).

► Suppose:

\[
p_{it} = \bar{p}_t + \bar{p}_{it}
\]
\[
\vec{w}_{it} = \bar{w}_t + \bar{w}_{it}
\]

► Plugging into (1), the standard regression is:

\[
\{r_{it} - \bar{p}_t\} = \{\vec{e}_{it} - \bar{w}_t\}'\bar{\beta} + \{\bar{p}_{it} - \bar{w}_{it}\}'\bar{\beta} + \omega_{it} + \epsilon_{it}
\]

► \(\text{Cov}(\vec{e}_{it} - \bar{w}_t, \bar{p}_{it}) \neq 0 \Rightarrow \text{output price bias.} \)

► \(\text{Cov}(\vec{e}_{it} - \bar{w}_t, \bar{w}_{it}) \neq 0 \Rightarrow \text{input price bias.} \)

► Recently, quantity information is becoming available (Foster et al., 2008; Atalay, 2014). But ...
TFP – Quality/Variety Biases

- **Issue #3:** quality/variety biases.

 \[
 \tilde{Y}_{it} = \tilde{M}_{it} \beta_m L_{it}^{\beta_L} K_{it}^{\beta_k} e^{\omega_{it} + \eta_i + \xi_t + \epsilon_{it}}
 \]

 \[
 \tilde{Y}_{it} = \left[\sum_{j \in \Omega^y_{it}} (\varphi_{ijt} Y_{ijt})^{\sigma_i^y / \sigma_i^y - 1} \right]^{\sigma_i^y / \sigma_i^y - 1}
 \]

 \[
 \tilde{M}_{it} = \left[\sum_{h \in \Omega^m_{it}} (\alpha_{iht} M_{iht})^{\sigma_i^m / \sigma_i^m - 1} \right]^{\sigma_i^m / \sigma_i^m - 1}
 \]

 - CES aggregators are one way to deal with unobserved mapping from inputs to outputs.
TFP – Quality/Variety Biases (cont.)

Using existing CES results, turns out that:

\[
\ln \left(\frac{\ddot{Y}_{it}}{\ddot{Y}_{it-1}} \right) = \sum_{j \in \Omega_{it}^*} \delta_{ijt} \ln \left(\frac{Y_{ijt}}{Y_{ijt-1}} \right) + \sum_{j \in \Omega_{it}^*} \delta_{ijt} \ln \left(\frac{\varphi_{ijt}}{\varphi_{ijt-1}} \right) + \frac{\sigma_i^y}{\sigma_i^y - 1} \ln \left(\frac{\chi_{it-1,t}^y}{\chi_{it,t-1}^y} \right)
\]

where \((\ast)\) means common goods:

\[
S_{ijt}^y = \frac{P_{ijt} Y_{ijt}}{\sum_{j' \in \Omega_{it}^*} P_{ij't} Y_{ij't}}, \quad S_{ijt,t-1}^y = \frac{P_{ijt} Y_{ijt}}{\sum_{j' \in \Omega_{it}^*} P_{ij't} Y_{ij't}}, \quad S_{ijt-1,t}^y = \frac{P_{ijt-1} Y_{ijt-1}}{\sum_{j' \in \Omega_{it}^*} P_{ij't-1} Y_{ij't-1}}
\]

\[
\delta_{ijt} = \frac{\left(\frac{S_{ijt,t-1}^y - S_{ijt-1,t}^y}{\ln S_{ijt,t-1}^y - \ln S_{ijt-1,t}^y} \right)}{\sum_{j \in \Omega_{it}^*} \left(\frac{S_{ijt,t-1}^y - S_{ijt-1,t}^y}{\ln S_{ijt,t-1}^y - \ln S_{ijt-1,t}^y} \right)}, \quad \chi_{it-1}^y = \sum_{j \in \Omega_{it}^*} S_{ijt}^y, \quad \chi_{it-1,t}^y = \sum_{j \in \Omega_{it}^*} S_{ijt-1}^y
\]

Summing across periods with initial normalization (in logs):

\[
\ddot{y}_{it} = \ddot{y}_{it}^{SV} + q_{it}^y + v_{it}^y
\]
TFP – Quality/Variety Biases (cont.)

▶ Similarly on input side:

\[
\ln \left(\frac{\tilde{W}_{it}}{W_{it-1}} \right) = \sum_{h \in \Omega_{it}^{m*}} \psi_{iht} \ln \left(\frac{W_{iht}}{W_{iht-1}} \right) - \sum_{h \in \Omega_{it}^{m*}} \psi_{iht} \ln \left(\frac{\alpha_{iht}}{\alpha_{iht-1}} \right) - \frac{1}{\sigma_m - 1} \ln \left(\frac{\chi_{it-1,t}^m}{\chi_{it,t-1}^m} \right)
\]

\[
S_{iht}^m = \frac{W_{iht} M_{ih't}}{\sum_{h' \in \Omega_{it}^m} W_{iht'} M_{ih't}}, \quad S_{iht-1}^m = \frac{W_{iht} M_{ih't}}{\sum_{h' \in \Omega_{it}^m} W_{iht'} M_{ih't}}, \quad S_{iht-1,t}^m = \frac{W_{iht-1} M_{ih't-1}}{\sum_{h' \in \Omega_{it}^m} W_{iht'} M_{ih't-1}}
\]

\[
\psi_{iht} = \frac{\left(\frac{S_{iht,t-1}^m - S_{iht-1,t}^m}{\ln S_{iht,t-1}^m - \ln S_{iht-1,t}^m} \right)}{\sum_{h \in \Omega_{it}^{m*}} \left(\frac{S_{iht,t-1}^m - S_{iht-1,t}^m}{\ln S_{iht,t-1}^m - \ln S_{iht-1,t}^m} \right)}, \quad \chi_{it,t-1}^m = \sum_{h \in \Omega_{it}^{m*}} S_{iht}^m, \quad \chi_{it-1,t}^m = \sum_{h \in \Omega_{it}^{m*}} S_{iht-1}^m
\]

▶ Summing across periods (again in logs):

\[
\tilde{m}_{it} = \tilde{m}_{it}^{SV} + q_{it}^m + v_{it}^m
\]
TFP – Quality/Variety Biases (cont.)

► Plug boxes (3) and (4) into production function (2):
\[
\tilde{y}_{it}^{SV} = \beta_m \tilde{m}_{it}^{SV} + \beta_\ell \ell_{it} + \beta_k k_{it} + \eta_i + \xi_t + u_{it}
\]
\[
\tilde{u}_{it} = (\beta_m q_{it}^m - q_{it}^y) + (\beta_m v_{it}^m - v_{it}^y) + \omega_{it} + \epsilon_{it}
\]
► Correlation of \(\tilde{m}_{it}^{SV}, \ell_{it}, k_{it} \) with \(q_{it}^m, q_{it}^y, v_{it}^m, v_{it}^y \) ⇒ quality/variety biases.
► Ex.: single-output/-input producer (\(\tilde{y}_{it}^{SV}, \tilde{m}_{it}^{SV} \) are log physical quantities).
 ► If higher-quality output requires more labor hours:
 \[
 \text{Cov}(\ell_{it}, q_{it}^y) > 0 \Rightarrow \text{plim}(\hat{\beta}_\ell^{OLS}) < \beta_\ell
 \]
 ► If firm uses more units when input quality ↑:
 \[
 \text{Cov}(\tilde{m}_{it}^{SV}, q_{it}^m) > 0 \Rightarrow \text{plim}(\hat{\beta}_m^{OLS}) > \beta_m
 \]
► Biases may be present even with perfect proxy for \(\omega_{it} \).
► Most sectors not homogenous, single-output/-input.
 ► Quality changes especially salient in LDCs.
de Roux et al. (2021) propose new method:

- External instruments for $\tilde{m}_{it}^{SV}, \ell_{it}$ using:
 - Exchange rates.
 - Minimum wages.
- Supplemented by “internal” instruments (lagged levels or differences).
- Jury still out on how much influence the proposal will have.

But it seems clear that standard TFP methods are on shaky ground (for differentiated-product sectors).

- Algebra above is for CES, but quality/variety likely to be confounders in other frameworks.
- de Roux et al. (2021) find empirical similar results for other aggregators.
- Quality/variety bias is not just a theoretical curiosity [evidence coming].
Growing number of studies have paid the shoe-leather costs to get direct measures of quality, technology adoption.

Several mentioned below.

Measurement of management practices has taken off, to good effect (Bloom et al., 2014).

World Bank is conducting technology surveys, which will stimulate work in this area (Cirera et al., 2020, 2022).

The way forward is to find settings that combine:

- Credibly exogenous variation.
- Direct measures of upgrading.

Caveat: given that upgrading is not necessarily optimal, we need to interpret results carefully.
Roadmap

- Introduction
- What is upgrading?
 - Conceptual framework
 - Measurement issues
- Evidence on drivers of upgrading
 - Output-side drivers
 - Input-side drivers
 - Drivers of know-how
- Closing thoughts
Selling to Richer Consumers

- Growing evidence that selling to richer consumers \(\Rightarrow\) upgrading
 - directly, by exporting
 - indirectly, by selling into value chains that sell eventually to richer consumers

- Early papers:

- Recent work is particularly convincing, has raised some important new questions.
Egyptian Rugs (Atkin, Khandelwal and Osman, 2017b)

- Randomized initial export orders among Egyptian rug producers.
- Tracked detailed quality indicators.
- Kept track of conversations between buyer (intermediary) and producers.
- Had producer weave identical rugs under laboratory conditions.
Exports ↑ ⇒ Output, Input Quality ↑

<table>
<thead>
<tr>
<th>Table VIII</th>
<th>IMPACT OF EXPORTING ON QUALITY LEVELS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control mean</td>
</tr>
<tr>
<td>Panel A: Quality metrics</td>
<td></td>
</tr>
<tr>
<td>Corners</td>
<td>2.98</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
</tr>
<tr>
<td>Waviness</td>
<td>2.99</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
</tr>
<tr>
<td>Weight</td>
<td>3.08</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
</tr>
<tr>
<td>Touch</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
</tr>
<tr>
<td>Packedness</td>
<td>3.11</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
</tr>
<tr>
<td>Warp thread tightness</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
</tr>
<tr>
<td>Firmness</td>
<td>2.98</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
</tr>
<tr>
<td>Design accuracy</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
</tr>
<tr>
<td>Warp thread packedness</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
</tr>
<tr>
<td>Inputs</td>
<td>3.07</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
</tr>
<tr>
<td>Loom</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.44</td>
</tr>
<tr>
<td>Observations</td>
<td>6,885</td>
</tr>
<tr>
<td>Panel B: Stacked quality metrics</td>
<td></td>
</tr>
<tr>
<td>Stacked quality metrics</td>
<td>2.96</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.39</td>
</tr>
<tr>
<td>Observations</td>
<td>6,885</td>
</tr>
</tbody>
</table>

Note: Panel A stacks the quality metrics and interacts treatment (ITT) or takeup (TOT) with a quality-metric indicator variable. The coefficients on the interactions provide the treatment effects separately for each metric. The TOT instruments takeup interacted with quality metric with treatment interacted with quality metric. Each regression includes baseline values of the quality metric, strata and round fixed effects, and each of these controls interacted with quality-metric. Panel B constrains the treatment effects to be equal across quality metrics; these regressions include baseline values, strata and round fixed effects. Control group means are reported in levels. Standard errors are clustered by firm. Significance: *10; **0.05; ***0.01.
Exports $\uparrow \Rightarrow$ Profits \uparrow, but TFPQ \downarrow

TABLE V
IMPACT OF EXPORTING ON FIRM PROFITS

<table>
<thead>
<tr>
<th></th>
<th>Log direct profits</th>
<th>Log (reported revenues$-$reported costs)</th>
<th>Log (constructed revenues$-$constructed costs)</th>
<th>Log hypothetical profits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ITT</td>
<td>TOT</td>
<td>ITT</td>
<td>TOT</td>
</tr>
<tr>
<td>Panel A: Profits (in month prior to survey)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.26***</td>
<td>0.42***</td>
<td>0.21***</td>
<td>0.37***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.08)</td>
<td>(0.06)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.21</td>
<td>0.22</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>Control mean (in levels)</td>
<td>929</td>
<td>929</td>
<td>931</td>
<td>931</td>
</tr>
<tr>
<td>Observations</td>
<td>573</td>
<td>573</td>
<td>644</td>
<td>644</td>
</tr>
<tr>
<td>Panel B: Profits per owner hour (in month prior to survey)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.20***</td>
<td>0.32***</td>
<td>0.17***</td>
<td>0.29***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.08)</td>
<td>(0.05)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.14</td>
<td>0.14</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>Control mean (in levels)</td>
<td>3.53</td>
<td>3.53</td>
<td>3.54</td>
<td>3.54</td>
</tr>
<tr>
<td>Observations</td>
<td>573</td>
<td>573</td>
<td>637</td>
<td>637</td>
</tr>
</tbody>
</table>

TABLE IX
IMPACT OF EXPORTING ON UNADJUSTED PRODUCTIVITY

<table>
<thead>
<tr>
<th></th>
<th>Log unadjusted output per hour</th>
<th>Log unadjusted TFP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ITT</td>
<td>TOT</td>
</tr>
<tr>
<td>Treatment</td>
<td>-0.24^{***}</td>
<td>-0.42^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td>Control mean (in levels)</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Observations</td>
<td>687</td>
<td>687</td>
</tr>
</tbody>
</table>

Notes. Table reports treatment effects for the two productivity measures: log unadjusted output per labor hour (in $\ln c_{it}$) and log unadjusted TFP. See text and Appendix for the methodology used to obtain unadjusted TFP. The TOT specifications instrument takeup with treatment. Control group means are reported in levels. Regressions control for baseline values of the variable, round and strata fixed effects. Standard errors are clustered by firm. Significance: * p<.10; ** p<.05; *** p<.01.
TABLE XI
QUALITY AND PRODUCTIVITY ON IDENTICAL-SPECIFICATION DOMESTIC RUGS (STEP 2)

<table>
<thead>
<tr>
<th></th>
<th>Master artisan</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control mean</td>
<td>(1) ITT</td>
</tr>
<tr>
<td>Corners</td>
<td>3.23</td>
<td>0.72***</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>Waviness</td>
<td>3.17</td>
<td>0.55***</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>Weight</td>
<td>3.60</td>
<td>0.62***</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>Packedness</td>
<td>3.30</td>
<td>0.77***</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>Touch</td>
<td>3.29</td>
<td>0.52***</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>Warp thread tightness</td>
<td>3.00</td>
<td>0.51***</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>Firmness</td>
<td>3.21</td>
<td>0.71***</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>Design accuracy</td>
<td>3.65</td>
<td>0.53***</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>Warp thread packedness</td>
<td>3.05</td>
<td>0.87***</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.17)</td>
</tr>
</tbody>
</table>

Control mean | (1) ITT | (2) TOT

Time (in minutes) | 247.0 | −5.67 | −8.3
 | (6.6) | (9.5) |

R-squared | 0.84 | 0.84 |
Observations | 748 | 748 |

Notes: All regressions include interactions of strata fixed effects with quality-metric indicators, except for design accuracy and warp thread tightness where only the main effects are included. All regressions use maximum likelihood estimation with clustered standard errors. Significance: ***, **, * indicate significance levels of 1%, 5%, and 10%, respectively.
Previous work (largely for convenience) had modeled upgrading as driven by shifts in output-demand curves:

\[P_{ijbt} = D_{jb}(Y_{ijbt}, \varphi_{ijt}; \Gamma^y_{bt}) \]

leading to increases in average quality (\(\bar{\varphi}_{it} \uparrow \)).

But the evidence is strong that there was learning involved, i.e. an accumulation of \(\lambda_{ijkt} \).

Interesting question (not fully answered): is the gain of capability specific to particular product-techniques (\(jk \)) or more general (i.e. applicable to other products, techniques)?
Peruvian Fishmeal (Hansman et al., 2020)

- Use quotas in main competitor countries (Denmark, Iceland, Chile) as source of variation in premium for (observed) quality.
- Positive effect on vertical integration: plants buy boats.
 - Different k (with different \hat{M}) to produce higher-φ_j.
- Integrated boats stay closer to port, deliver smaller loads \Rightarrow fresher fish.
- That firms vertically integrate suggests quality supply is an important constraint.
- Promising research direction: how contracting frictions influence upgrading decisions.
 - Information particularly asymmetric about quality.
 - Development economists well-placed to advance this agenda.
Costa Rican MNC Suppliers (Alfaro-Urena et al., 2022)

- Firm-to-firm data from tax systems opens new analytical possibilities.
- Matching design: compare suppliers to MNCs vs. suppliers to other types of firms.

- Sales, employment, TFP of new MNC suppliers ↑.
- Other buyers of new MNC suppliers:
 - Larger.
 - Higher export/import shares.
 - Longer relationships with suppliers.

- Suppliers appear to learn from (and gain reputation from) MNCs.
Competition?

- Commonly considered a primary driver of upgrading, including within firms. (Bloom and Van Reenen, 2007, 2010; Bloom et al., 2016).
- Clearly matters in some cases:
 - Das et al. (2013): Public-sector firm (SAIL) long had monopoly on rails for Indian railroads.
 - Output of rails/shift ↑ 28% (vs. non-rail items, “structurals”).

Theory not obvious: why don’t firms already optimize?
Competition? (cont.)

- Evidence less than definitive.
- Difficult to distinguish between killing off of low performers and within-firm upgrading (Holmes and Schmitz, 2010).
- Competition may reduce scale effects (Juhász, 2018),
- Competition may hinder relational contracts (Macchiavello and Morjaria, 2021).

| TABLE III |
| UNPACKING COMPLEMENTARY RELATIONAL PRACTICES |

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Received input from mill</th>
<th>Given inputs to farmers</th>
<th>RC pre-harvest z-score</th>
<th>Expect to receive a second payment</th>
<th>Has made a second payment in the past</th>
<th>RC harvest z-score</th>
<th>Expect to receive help/loan</th>
<th>Provides help/loans to farmers</th>
<th>RC post-Harvest z-score</th>
<th>RC index, farmer outcomes</th>
<th>RC index, mill outcomes</th>
<th>Placebo: short-term credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competition</td>
<td>-0.064***</td>
<td>-0.220**</td>
<td>-0.063***</td>
<td>-0.077**</td>
<td>-0.203***</td>
<td>-0.066***</td>
<td>-0.026</td>
<td>-0.180*</td>
<td>-0.283***</td>
<td>-0.237***</td>
<td>-0.215**</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.112)</td>
<td>(0.017)</td>
<td>(0.035)</td>
<td>(0.074)</td>
<td>(0.020)</td>
<td>(0.034)</td>
<td>(0.099)</td>
<td>(0.098)</td>
<td>(0.045)</td>
<td>(0.094)</td>
<td>(0.082)</td>
</tr>
<tr>
<td>Panel B: OLS</td>
<td>-0.011***</td>
<td>-0.062***</td>
<td>-0.038***</td>
<td>-0.041***</td>
<td>-0.121***</td>
<td>-0.021***</td>
<td>-0.015</td>
<td>-0.065**</td>
<td>-0.116***</td>
<td>-0.086***</td>
<td>-0.102***</td>
<td>-0.041</td>
</tr>
<tr>
<td>Competition</td>
<td>(0.005)</td>
<td>(0.022)</td>
<td>(0.006)</td>
<td>(0.013)</td>
<td>(0.038)</td>
<td>(0.007)</td>
<td>(0.014)</td>
<td>(0.033)</td>
<td>(0.029)</td>
<td>(0.016)</td>
<td>(0.029)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>Score within 5 km of mill</td>
<td>Yes</td>
</tr>
<tr>
<td>Geographic controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Mill controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Farmer controls</td>
<td>Yes</td>
<td>–</td>
<td>Yes</td>
<td>–</td>
<td>Yes</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.05</td>
<td>0.13</td>
<td>0.11</td>
<td>0.15</td>
<td>0.16</td>
<td>0.21</td>
<td>0.03</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.10</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>Observations</td>
<td>869</td>
<td>176</td>
<td>176</td>
<td>869</td>
<td>176</td>
<td>865</td>
<td>175</td>
<td>175</td>
<td>869</td>
<td>176</td>
<td>172</td>
<td></td>
</tr>
</tbody>
</table>

Also find that costs rise, quality falls with competition.
Highlights role of contracting issues.
Roadmap

- Introduction
- What is upgrading?
 - Conceptual framework
 - Measurement issues
- Evidence on drivers of upgrading
 - Output-side drivers
 - Input-side drivers
 - Drivers of know-how
- Closing thoughts
Input-Side Drivers

- So far, we have focused on “demand pull” effects.
 - Are there “input push” effects on upgrading?
- Some existing work, mainly in trade:
 - Input quality: in China, import tariffs ↓ ⇒ export prices ↑, especially to/from rich countries (Bas and Strauss-Kahn, 2015; Fan et al., 2018)
 - Input variety: availability of imported inputs ↑ ⇒ product innovation, in India (Goldberg et al., 2010), Ecuador (Bas and Paunov, 2019).
- New project: Raza ○ Khandelwal ○ Atkin ○ Chaudhry ○ Verhoogen ○ Chaudry (2022)
 - Randomized vouchers for high-quality imported rexine (artificial leather) to soccer-ball producers in Sialkot, Pakistan.
 - Firms improved quality of other inputs, produced higher-quality balls.
Input Quality Complementarities (Preliminary)

Panel A: Non-rexine Material Characteristics

<table>
<thead>
<tr>
<th></th>
<th>non-rexine material quality index</th>
<th>latex (%)</th>
<th>layers</th>
<th>butyl bladder</th>
<th>imported bladder</th>
</tr>
</thead>
<tbody>
<tr>
<td>eligible rexine</td>
<td>2.83**</td>
<td>46.3*</td>
<td>1.88*</td>
<td>0.41</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>(1.24)</td>
<td>(25.30)</td>
<td>(1.04)</td>
<td>(0.35)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>projected subsidized share</td>
<td>-1.91**</td>
<td>-28.9</td>
<td>-1.56**</td>
<td>-0.23</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>(0.92)</td>
<td>(18.96)</td>
<td>(0.72)</td>
<td>(0.29)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>baseline controls</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>non-eligible mean</td>
<td>-0.02</td>
<td>69.8</td>
<td>3.1</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>N</td>
<td>[181, 44]</td>
<td>[176, 42]</td>
<td>[179, 44]</td>
<td>[180, 44]</td>
<td>[180, 43]</td>
</tr>
</tbody>
</table>

Panel B: Non-rexine cost Breakdown

<table>
<thead>
<tr>
<th></th>
<th>bladder cost</th>
<th>latex and chemicals cost</th>
<th>layer cost</th>
<th>stitching cost</th>
<th>printing cost</th>
<th>other cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>eligible rexine</td>
<td>64.2**</td>
<td>26.1***</td>
<td>62.3</td>
<td>26.9</td>
<td>33.1***</td>
<td>43.3**</td>
</tr>
<tr>
<td></td>
<td>(27.05)</td>
<td>(10.07)</td>
<td>(39.79)</td>
<td>(24.13)</td>
<td>(10.96)</td>
<td>(19.50)</td>
</tr>
<tr>
<td>projected subsidized share</td>
<td>-42.6**</td>
<td>-16.6*</td>
<td>-41.5</td>
<td>-8.12</td>
<td>-20.2**</td>
<td>-30.0**</td>
</tr>
<tr>
<td></td>
<td>(20.44)</td>
<td>(8.73)</td>
<td>(30.24)</td>
<td>(19.95)</td>
<td>(8.05)</td>
<td>(14.13)</td>
</tr>
<tr>
<td>baseline controls</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>non-eligible mean</td>
<td>47.5</td>
<td>24.6</td>
<td>32.7</td>
<td>76.3</td>
<td>19.8</td>
<td>23.4</td>
</tr>
<tr>
<td>N</td>
<td>[172, 41]</td>
<td>[161, 37]</td>
<td>[146, 32]</td>
<td>[179, 43]</td>
<td>[145, 39]</td>
<td>[165, 38]</td>
</tr>
</tbody>
</table>

▶ **Overall costs** ↑, **ball price** ↑. (Pass-through is negative.)
▶ **Inputs can push upgrading. Not seeing persistence (so far).**
Supply of Capital?

- Perhaps surprisingly, relatively little evidence of effect of capital supply matters for within-firm upgrading outcomes:
 - Rotemberg (2019):
 - Expansion of subsidized credit in India had little within-firm effect on TFPQ.
 - Bau and Matray (forthcoming):
 - Loosening of restrictions on foreign investment in India had little within-firm effect on TFPQ. High-MRPK firms added products relative to low-MRPK.
 - Cai and Harrison (2021):
 - VAT reduction on capital goods in China increased investment but not product introductions or productivity.

- Concerns about TFP estimation apply here. Need more research using direct measures of upgrading.
Roadmap

- Introduction
- What is upgrading?
 - Conceptual framework
 - Measurement issues
- Evidence on drivers of upgrading
 - Output-side drivers
 - Input-side drivers
 - Drivers of know-how
- Closing thoughts
Drivers of Know-How

- Firms may fail to upgrade even when output-demand and input-supply conditions are favorable. Why?
- Framework points to lack of know-how: $\Lambda_{it} = \{\lambda_{ijkt}\}$, J_{it}, K_{it}.
- Factors that affect acquisition of know-how:
 - Agency issues.
 - Entrepreneurial ability/family control.
 - Learning from others (other firms, external consultants).
 - Behavioral issues?
Agency Issues

- Misalignment of incentives within firms can impede information flows, and hence learning.

- Giving cutters an incentive to share information led to adoption.
Agency Issues (cont.)

▶ Cai and Wang (forthcoming):
 ▶ Chinese auto manufacturer elicited employee’s evaluations of their supervisors.
 ▶ 20% weight in promotion/salary decisions for supervisors.
 ▶ Employees report that supervisors became nicer.
 ▶ Turnover declined, team-level productivity increased.
 ▶ Firm extended program to all plants (∼20,000 workers).

▶ Evaluation system arguably increased information flow from employees to upper-level management.
Agency Issues (cont.)

- Why didn’t firms figure out organizational innovations on their own? Possibilities:
 - Firms were unaware of new practice.
 - Firms were aware, but re-contracting costs outweighed expected benefits.

- Points to need for research to track what entrepreneurs know and what benefits they expect.
Entrepreneurial Ability/Family Control

▸ Some robust patterns:
 ▸ CEOs/managers differ in management styles, in ways that are correlated with performance (Bertrand and Schoar, 2003; Bandiera et al., 2020; Adhvaryu et al., forthcoming).
 ▸ Family-managed firms have worse performance (Pérez-González, 2006; Bertrand et al., 2008), less “structured” practices (Bloom and Van Reenen, 2007)
 ▸ Child-composition IV:
 ▸ 1st born male, or any son ⇒ family succession ⇒ lower profitability/worse performance (Bennedsen et al., 2007) lower management scores (Lemos and Scur, 2019).

▸ Then why is family control so prevalent?
 ▸ Family control may help solve agency problems in short term.
 ▸ Pakistani surgical firms with more brothers larger (Illias, 2006).
 ▸ Family have lower-powered incentives (Cai et al., 2013).
 ▸ But it may outlive its usefulness in the longer term.
Learning from Other Firms

- Cai and Szeidl (2018):
 - Randomly assigned 2,820 Chinese managers into groups that met monthly for one year (or no-meetings control).
 - Large effects on revenues (8.1%), also positive effects on profits, management practices.
 - Randomly provided information about a government grant and savings opportunity to some participants.
 - Other participants in treated groups more likely to apply.
 - Information spread more if it was non-rival (savings opportunity, not government grant).
 - Consistent results in Hardy and McCasland (2021).
Learning from Trainers/Consultants

- Strong evidence that tailored, “high-touch” advice can have positive effects on firm performance.
 - Bloom, Eifert, Mahajan, McKenzie and Roberts (2013):
 - Randomized consulting services among 17 Indian textile firms.
 - 1-month diagnostic (all), 4-month implementation (treatment)
 - Market value of services \sim $250k.
 - Clear effects on management practices, quality defects.
 - Bruhn, Karlan and Schoar (2018):
 - Randomized consulting services, provided by private consulting firms, to SMEs in Puebla, Mexico.
 - One-on-one meetings, four hours per week for one year.
 - Moderately positive effects on productivity, return on assets, (over five years) employment.
 - Iacovone, Maloney and McKenzie (2022):
 - Group/individual consulting to Colombian autoparts suppliers.
 - Positive impacts of both, group consulting more cost-effective.
Learning from Trainers/Consultants (cont.)

- Frontier issues:
 - Are some management practices better across contexts?
 - I think we still don’t know (exclusion restriction an issue in consulting experiments).
 - Better to train or encourage out-/in-sourcing?
 - Anderson and McKenzie (2022): outsourcing/insourcing marketing/finance dominate business training, are more cost-effective than consulting.
 - In framework, where is boundary between capabilities (that must be homegrown) and inputs (that can be purchased)?
 - Why are consulting/professional service markets so thin?
 - Providing info/quality ratings not sufficient (Anderson and McKenzie, 2022).
Behavioral Firms?

- I have emphasized lack of know-how as barrier to upgrading. Could also be that:
 1. Entrepreneurs hold goals besides profit-maximization.
 2. Entrepreneurs make mistakes.
- May be important! Need more evidence (Kremer et al., 2019).
- But a word of caution:
 - If behavior appears to be non-optimizing, maybe we have not understood the problems individuals face.
 - Schultz (1964) on agricultural producers: “poor but rational.”
 - Update for LDC firms: “lacking know-how, but populated by rational individuals.”
 - What looks like non-profit-maximizing behavior may reflect:
 - Agency/contracting/organizational issues.
 - Cost of acquiring know-how.
Roadmap

- Introduction
- What is upgrading?
 - Conceptual framework
 - Measurement issues
- Evidence on drivers of upgrading
 - Output-side drivers
 - Input-side drivers
 - Drivers of know-how
- Closing thoughts
Summing Up

► Should de-emphasize TFP as metric for upgrading.
 ► Better to focus on things we can measure directly: quality upgrading, technology adoption, product innovation.
 ► Will require focusing on particular sectors, building up slowly.

► Some drivers that seem to be important:
 ► Selling to rich consumers, directly or indirectly.
 ► Availability of high-quality inputs.
 ► Ability to resolve contracting frictions, within and across firms.
 ► Exposure to information from other firms, trainers/consultants.

► Key challenge is how to promote learning in firms.

► Notes of caution on competition, capital, behavioral firms.

► Possible to do “credible” work, even on larger non-agricultural firms.
Thoughts on the Way Forward

▶ Research design:
 ▶ Find sources of exogenous variation in conditions facing firms: demand and supply conditions, information flows.
 ▶ Experiments great, but quasi-experiments also useful.
 ▶ Directly observable outcomes.

▶ Some specific research questions:
 ▶ Does what you produce affect how fast you learn?
 ▶ Old idea (Prebisch, 1950; Hausmann et al., 2007), ripe for investigation at the firm level.
 ▶ How does knowledge diffuse across firms?
 ▶ Strength relative to other channels for agglomeration effects?
 ▶ What are effects of particular management practices?
 ▶ Some work here (Bandiera et al., 2011; Gosnell et al., 2020) but not extensive.
 ▶ What works and doesn’t work in industrial/innovation policy when state capacity is low?
References

References II

References III

References IV

Cirera, Xavier, Diego Comin, and Marcio Cruz (2022) “Bridging the Technological Divide.”

References VI

References VII

Schultz, T. Paul (1964) Transforming Traditional Agriculture, New Haven, CT: Yale University Press.

