Monetary policy in the open economy

NBER Heterogeneous-Agent Macro Workshop

Ludwig Straub

Spring 2022

So far, we focused on closed economy models of fiscal and monetary policy.

Today: Monetary policy in an open economy. What changes?

- Exports & imports are new **source** and **destination** for demand
- Extent is controlled by $\textbf{exchange rate} \rightarrow \textbf{new transmission mechanisms}$

Slides based on Galí and Monacelli (2005) and Auclert et al. (2021) but hopefully useful to organize this literature more broadly.

Other interesting recent work in this area: de Ferra et al. (2020), Cugat (2019), Giagheddu (2020), Zhou (2022), Kekre and Lenel (2020), Guo et al. (2021)

Proceed in three steps

- 1. Introduce model that nests both HA & RA setting
 - RA model will correspond almost literally to seminal Galí and Monacelli (2005) model
- 2. Study effect of **exchange rate shocks** (due to capital flows)
 - first RA, then HA
 - will see that RA = HA for some value of trade elasticity χ
 - but likely that short run χ smaller, leading to $\mathsf{RA} \neq \mathsf{HA}$
- 3. Study effect of **monetary policy**
 - this is what Galí and Monacelli (2005) focus on
 - will see that again RA = HA for some (other) value of trade elasticity χ

1 HANK meets Gali-Monacelli

2 Capital flows and exchange rates

3 Monetary policy and exchange rates

HANK meets Gali-Monacelli

Model overview

- Discrete time, small open economy (SOE) model
 - No aggregate uncertainty + small shocks (first order perturb. wrt aggregates)
- Two goods
 - "Home": *H*, produced at home. Price P_{Ht} at home, P_{Ht}^* abroad
 - "Foreign": F, produced abroad. Price P_{Ft} at home, $P_{Ft}^* \equiv 1$ abroad
 - Consumed in bundles. Price P_t of bundle at home, $P_t^* \equiv 1$ abroad
 - Nominal rigidities in wages
- Two classes of agents
 - large mass of foreign households
 - mass 1 of domestic households, **possibly subject to idiosyncratic income risk**

Households' consumption behavior

• Foreign households have fixed real C*. Domestic HA: intertemporal problem

$$\max_{\{c_{it}\}} \mathbb{E}_{o} \sum_{t=0}^{\infty} \beta_{i}^{t} \left\{ \frac{c_{it}^{1-\sigma}}{1-\sigma} - v(N_{t}) \right\}$$

$$c_{it} + a_{it} = (1+r_{t})a_{it-1} + e_{it}Z_{t} \qquad a_{it+1} \ge 0 \qquad C_{t} \equiv \int c_{it}di$$

- $a_{it} = position in domestic mutual fund$
- with **RA**: complete markets across hh & countries $\Rightarrow C_t^{-\sigma} = \beta (1 + r_{t+1}) C_{t+1}^{-\sigma}$
- Both domestic & foreign have CES bundle, solve intratemporal problem

$$C_{Ht} = (1 - \alpha) \left(\frac{P_{Ht}}{P_t}\right)^{-\eta} C_t \qquad C_{Ht}^* = \alpha \left(\frac{P_{Ht}^*}{P^*}\right)^{-\gamma} C^*$$

• Domestic production and market clearing: $Y_t = N_t = C_{Ht} + C_{Ht}^*$

Prices and nominal rigidities

- Exchange rates: nominal \mathcal{E}_t , real $Q_t \equiv \mathcal{E}_t/P_t$, \uparrow is depreciation
- Standard nominal wage rigidity [Erceg et al. 2000, Auclert et al. 2018] $\left(\frac{\epsilon}{1} W_{t-1} (\epsilon) \right)$

$$\pi_{\mathsf{W}t} = \kappa_{\mathsf{W}}\left(\mathsf{V}'\left(\mathsf{N}_{t}\right) - \frac{\epsilon - 1}{\epsilon} \frac{\mathsf{W}_{t}}{\mathsf{P}_{t}} \mathsf{u}'\left(\mathsf{C}_{t}\right)\right) + \beta \pi_{\mathsf{W}t+1}$$

• For now, flexible prices everywhere else: at home ...

$$P_{Ft} = \mathcal{E}_t \qquad P_{Ht} = \mu \cdot W_t$$

• ... and abroad (as in producer currency pricing, PCP)

$$P_{Ht}^* = \frac{P_{Ht}}{\mathcal{E}_t}$$

• Consider dollar currency pricing (DCP) in Auclert et al. (2021)

Monetary policy and assets

- Three types of assets
 - zero net supply: nominal home & foreign bonds
 - positive supply: shares in *H* firms $v_t = (v_{t+1} + div_{t+1})/(1 + r_t^{ante})$
 - asset market clearing $A_t = v_t + NFA_t$
- Domestic central bank sets nominal rate *i*t on nominal home bonds
 - for now, it targets CPI-based real interest rate, $i_t = r_t^{ante} + \pi_{t+1}$
- Interest rate on foreign bonds is i_t^* , shocks to $i_t^* \equiv$ shocks to β abroad
- Mutual fund & foreigners invest freely in all assets
 - equalized \mathbb{E} returns \Rightarrow return on mutual fund is $r_{t+1} = r_t^{ante} \ \forall t \ge 0$
 - UIP holds

$$1 + i_{t} = (1 + i_{t}^{*}) \frac{\mathcal{E}_{t+1}}{\mathcal{E}_{t}} \qquad 1 + r_{t}^{ante} = (1 + i_{t}^{*}) \frac{Q_{t+1}}{Q_{t}}$$

Benchmark model calibration

- Calibrate $\alpha =$ 0.40 and balanced trade as in Gali-Monacelli
- Initial mutual fund portfolio invested 100% in domestic stocks
- Allow for general substitution elasticities η,γ for now
- Quarterly persistence of i_t^* and m.p. shocks ϵ_t of $\rho = 0.85$
- Standard calibration for HA part
 - EIS $\sigma^{-1} = 1$
 - target Peruvian data on MPCs and income risk

[Hong 2020]

- + β heterogeneity to get reasonable average MPC & distribution
- Note: **HA model already stationary**, no need for debt-elastic interest rate [Schmitt-Grohé and Uribe 2003]

Capital flows and exchange rates

Setup

- Consider a temporary shock $i_t^* \uparrow$
- \rightarrow Effect on path of real exchange rate: (long-run PPP)

$$dQ_t = \frac{1}{1+r} \sum_{s \ge 0} di_{t+s}^*$$

so $Q_t \uparrow$, $\frac{P_{Ht}}{P_t} \downarrow$, and $\frac{P_{Ht}}{\mathcal{E}_t} \downarrow$ (real depreciation)

 $\rightarrow\,$ Effect on demand for home goods:

$$\mathbf{Y}_{t} = (\mathbf{1} - \alpha) \left(\frac{P_{Ht}}{P_{t}}\right)^{-\eta} \mathbf{C}_{t} + \alpha \left(\frac{P_{Ht}}{\mathcal{E}_{t}}\right)^{-\gamma} \mathbf{C}^{*}$$

• Next: RA, then HA

Textbook RA complete markets model

• In **RA** : complete markets + r constant \Rightarrow $C_t = C$ (Why?)

$$\mathbf{Y}_{t} = (\mathbf{1} - \alpha) \left(\frac{\mathbf{P}_{Ht}}{\mathbf{P}_{t}}\right)^{-\eta} \mathbf{C} + \alpha \left(\frac{\mathbf{P}_{Ht}}{\mathcal{E}_{t}}\right)^{-\gamma} \mathbf{C}^{*}$$

• Linearize around SS with $Y = C = C^* = 1$:

$$dY_t = \frac{\alpha}{1-\alpha} \left(\underbrace{\eta(1-\alpha)}_{H \text{ exp. switching}} + \underbrace{\gamma}_{F \text{ exp. switching}} \right) dQ_t$$

• Define trade elasticity $\chi \equiv \eta (1 - \alpha) + \gamma$, use bold for time paths:

$$d\mathbf{Y} = rac{lpha}{\mathbf{1} - lpha} \chi d\mathbf{Q}$$

[sum of elasticities of imports and exports to P_F/P_H , cf Marshall-Lerner condition]

Representative agent: Exchange rate shock

(i_t^* shock of quarterly persistence ho= 0.85 and impact effect of 1% on Q.)

Visualization (DAG)

What changes with heterogeneous agents?

• In **HA**, C_t is affected by Z_t and r_t (through dividends):

$$Z_t = \frac{W_t}{P_t} N_t = \frac{1}{\mu} \frac{P_{Ht}}{P_t} Y_t \qquad \text{div}_t = \left(1 - \frac{1}{\mu}\right) \frac{P_{Ht}}{P_t} Y_t$$

• As usual, we can write

 $C_t = \mathcal{C}_t\left(\{\frac{Z_t, r_t}{}\}\right)$

• But since r_t is entirely determined by $\operatorname{div}_t = \left(1 - \frac{1}{\mu}\right) \frac{P_{Ht}}{P_t} Y_t$ here, we'll write

$$C_{t} = \tilde{\mathcal{C}}_{t} \left(\left\{ \frac{P_{Hs}}{P_{s}} Y_{s} \right\} \right)$$

- Two effects of the exchange rate
 - relative price $\frac{P_{Ht}}{P_t}$ falls \rightarrow **real income channel**
 - production Y_t changes \rightarrow (Keynesian) **multiplier channel**

International Keynesian cross

• To linearize, we define here $M_{t,s} \equiv \frac{\partial \tilde{C}_t}{\partial Y_s}$ (Jacobian), stacked as **M**

Theorem

dY solves an "international Keynesian cross" type equation

- Use this to solve the model & decompose sources of effects on dY
- Entire role of heterogeneity encoded in \mathbf{M} matrix, RA corresponds to $\mathbf{M} = \mathbf{0}$

Visualization (DAG)

General equilibrium neutrality result for $\chi=\mathbf{1}$

Theorem

$$\chi = 1 \qquad \Rightarrow \qquad d\mathbf{Y}^{HA} = d\mathbf{Y}^{RA} = \frac{\alpha}{1-\alpha}d\mathbf{Q}$$

Heterogeneity is **irrelevant** for output effect of exchange rate

• How to prove? Just plug guess into "international Keynesian cross":

$$\frac{\alpha}{1-\alpha}d\mathbf{Q} = \frac{\alpha}{1-\alpha}d\mathbf{Q} - \alpha \mathbf{M}d\mathbf{Q} + (1-\alpha)\mathbf{M}\frac{\alpha}{1-\alpha}d\mathbf{Q}$$

- Multiplier channel undoes real income channel
- Intuition: Marshall-Lerner condition, net exports unchanged if $\chi=\mathbf{1}$
- More generally, for $d\mathbf{Q} \ge 0$, can show $d\mathbf{Y}^{HA} < d\mathbf{Y}^{RA}$ if and only if $\chi < 1$.

Contractionary devaluations in output for low χ

• When χ is small, the fall in consumption overwhelms expenditure switching:

→ Open economy **HA** model can generate **contractionary depreciations**!

ightarrow When is this likely? If substitution away from imports is hard ... energy?

Monetary policy and exchange rates

Monetary policy and heterogeneity in open economy

- Monetary policy moves exchange rates, too
- How does monetary transmission change with HA?
- We study this by considering shocks to r_t^{ante} directly (Taylor rule very similar)

Monetary policy shocks

• Stack dr_t^{ante} , dQ_t again, into $d\mathbf{r}^{ante}$, $d\mathbf{Q}$. Generalized version of result above:

- Previous channels reappear b/c dr^{ante} moves real exchange rate dQ
- New interest rate channel, capturing direct effect of dr^{ante} on C_{Ht}
 - mainly intertemporal substitution

Visualization of the four channels (DAG)

Neutral case is now higher: $\chi = 2 - \alpha$

- Well understood from closed economy that *r* channel weaker in HA [Werning 2015, McKay et al. 2016, Kaplan et al. 2018]
- Natural to suspect that HA < RA for $\chi =$ 1, previous neutrality result breaks...

... but there is still neutrality with a higher threshold $\chi = 2 - \alpha$:

Theorem

Let $\sigma = 1$ and $\{dr_t^{ante}\}$ be any small monetary policy shock:

- $\chi = 2 \alpha \Rightarrow$ all aggregate quantities and prices are identical in HA and RA
- $\chi <$ 2 $\alpha \Rightarrow$ accommodative shocks are weaker in HA, dY^{HA} < dY^{RA}

Intuition: $\chi = 2 - \alpha$ incl. Cole-Obstfeld case $\sigma = \gamma = \eta =$ 1, where NFA = 0

Then apply closed economy neutrality result in Werning (2015)

Monetary policy channels for $\chi = \mathbf{2} - \alpha$

- Real income channel + weaker r channel undone by multiplier effect
- What if χ smaller?

Monetary policy channels with smaller χ

- With smaller χ , real income and interest rate effect pull down dY over time!
- Monetary easing "steals" demand from the future.

Conclusion

Summary

Exchange rate shocks (r^* shocks, UIP shocks):

References i

References

Auclert, A., Rognlie, M., Souchier, M., and Straub, L. (2021). Exchange Rates and Monetary Policy with Heterogeneous Agents: Sizing up the Real Income Channel. Working Paper 28872, National Bureau of Economic Research,.

- Auclert, A., Rognlie, M., and Straub, L. (2018). The Intertemporal Keynesian Cross. Working Paper 25020, National Bureau of Economic Research,.
- Cugat, G. (2019). Emerging Markets, Household Heterogeneity, and Exchange Rate Policy. *Manuscript*.

de Ferra, S., Mitman, K., and Romei, F. (2020). Household Heterogeneity and the Transmission of Foreign Shocks. *Journal of International Economics*, 124:1–18.

- Erceg, C. J., Henderson, D. W., and Levin, A. T. (2000). Optimal Monetary Policy with Staggered Wage and Price Contracts. *Journal of Monetary Economics*, 46(2):281–313.
- Galí, J. and Monacelli, T. (2005). Monetary Policy and Exchange Rate Volatility in a Small Open Economy. *Review of Economic Studies*, 72(3):707–734.
- Giagheddu, M. (2020). The Distributional Implications of Fiscal Devaluations. Working Paper 3651258, Social Science Research Network,.

References iii

- Guo, X., Ottonello, P., and Perez, D. (2021). Monetary Policy and Redistribution in Open Economies. Working Paper 28213, National Bureau of Economic Research,.
- Hong, S. (2020). MPCs and Liquidity Constraints in Emerging Economies. *Manuscript*.
- Kaplan, G., Moll, B., and Violante, G. L. (2018). Monetary Policy According to HANK. *American Economic Review*, 108(3):697–743.
- Kekre, R. and Lenel, M. (2020). Dollar Demand and International Risk Sharing. *Manuscript*.
- McKay, A., Nakamura, E., and Steinsson, J. (2016). The Power of Forward Guidance Revisited. *American Economic Review*, 106(10):3133–3158.

Schmitt-Grohé, S. and Uribe, M. (2003). Closing Small Open Economy Models. Journal of International Economics, 61(1):163–185.

- Werning, I. (2015). Incomplete Markets and Aggregate Demand. Working Paper 21448, National Bureau of Economic Research,.
- Zhou, H. (2022). Open Economy, Redistribution, and the Aggregate Impact of External Shocks. *Working Paper*.