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Today

This morning: We started scratching the surface of monetary policy in HANK

Now: We go a little deeper by exploring a few key topics in the literature
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Maturity structure



Longer maturities

• So far, model had short maturities. In practice, maturities are long.
• Think mortgage debt, bonds, etc.

• What are the implications of long maturities for monetary policy?
• First study real assets. For tractability, adopt Calvo bonds.

• Buy one bond today for qt, get stream of real payments 1, δ, δ2, · · ·
• New household problem:

Vt (λ−, e) = maxu (c) + βE
[
Vt+1

(
λ, e′

)
|e
]

c+ qtλ = (1+ δqt)λ− + eYt
qtλ ≥ a

where λ is total number of bonds (total current coupon)
• Pricing equation (no arbitrage): qt = 1+δqt+1

1+rantet
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Steady state

• In steady state 1+ δq = (1+ r)q. Can rede�ne a ≡ qλ
• Given a, r, β, steady state is exactly identical to before! Intuition?

• New useful statistic from steady state: bond duration

D =
1

1+ r
∑
s≥0

s
(

δ

1+ r

)s
=

1
1+ r

(
1

1− δ
1+r

)2
=

1+ r
1+ r − δ

• Use this result to map empirical duration D into model δ
• eg D = 18 quarters in U.S. Doepke and Schneider (2006)
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Transition dynamics

• Relabel ait ≡ qtλit, then for any t ≥ 1, we can rewrite the Bellman as

Vt (a−, e) = maxu (c) + βE
[
Vt+1

(
a, e′

)
|e
]

c+ a =
(
1+ rantet−1

)
a− + eYt

a ≥ a

• What happens at t = 0? A revaluation:

1+ r0 = (1+ rss)
1+ δq0
1+ δqss

=
1+ δq0
qss

(1)

• Handle this using the hh block in its ex-post formulation, plus (1) and

rt = rantet−1 t ≥ 1
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DAG for the long-bonds model

Our new DAG is:

shock rante
unknown Y

pricing val ha

goods mkt.
clearing (H)

rante

q r

Y

Y

C

Not so di�erent from before! Just use a SolvedBlock to get the q �rst!
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Impulse responses with longer maturities
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• δ ↑: more even distribution of s.s. “interest rate exposures” Auclert (2019)
• Intuition: low MPC rich get more capital gains, poor make capital losses
• This e�ect is enough to get us to other side of RA!
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Decomposition into direct and indirect e�ects

• These income e�ects show up as lower direct e�ects in our decomposition
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Nominal assets



Nominal assets

• So far, assets were all real. But many assets are nominal.
• Again, think mortgage debt, nominal bonds, etc.
• Creates very large exposures to in�ation risk via nominal positions
• See estimates in Doepke and Schneider (2006)

• Here: analyze consequence of one-period nominal assets.
• Assume that now:

Ptcit + Ait = (1+ it)Ait−1 + eitWtNt
Ait ≥ Pta

Note: nominal borrowing constraint relaxes with in�ation.
In practice it’s probably not so simple (eg “tilt e�ect” in mortgages)

10



Incorporating unexpected revaluation

• De�ne real asset position ait = Ait/Pt. Household problem now

Vt (a−, e) = maxu (c) + βE
[
Vt+1

(
a, e′

)
|e
]

c+ a = (1+ rt)a− + eYt
a ≥ a

where 1+ rt = (1+ it) Pt−1
Pt

• Perfect foresight Fisher equation gives again:

rt = rantet−1 t ≥ 1

but also “Fisher e�ect” (capital gain/loss) from date-0 revaluation

1+ r0 = (1+ i0)
P−1
P0

= (1+ rss)
1+ πss
1+ π0

• Even with rante rule, in�ation now directly matters for demand via expost r0 11



Aggregate implication of Fisher channel: AR(1) shock to r

• Again simple to simulate with SSJ (what is your DAG?)
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• Fisher e�ect: in�ation redistributes towards agents with lower nominal
positions, who have high MPCs. Bigger with steeper Phillips curve (lower θw)
• Would be even more pronounced with long maturities 12



Fiscal policy



Fiscal-monetary interactions

• So far, abstracted from �scal policy. But monetary-�scal interactions
potentially very important!
• Changes in r directly a�ect government budget

• Here: analyze consequences of �scal response to monetary policy

• Go back to canonical model with government and linear taxation:

Vt (a−, e) = maxu (c) + βE
[
Vt+1

(
a, e′

)
|e
]

c+ a =
(
1+ rantet−1

)
a− + (Yt − Tt) e+ τt (e)

a ≥ a

where τt (e) can be used to vary the tax incidence of shocks to mon. policy.
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Setting up a �scal rule

• Calibration as in lecture 4, with τ (e) = 0 in steady state

• Government budget constraint:

Bt = (1+ rt−1)Bt−1 + Gt − Tt + E [τt (e)]

and in steady state, E [τ (e)] = 0 and T = G+ rB.

• Consider following �scal rules
1. Constant B, all regular taxes: Tt = G+ rt−1B
2. Constant B, all spending: Gt = T − rt−1B
3. De�cit-�nance, using taxes to bring debt back, Tt = T + φT (Bt−1 − B)

4. De�cit �nance, using G spending to bring debt back Gt = G− φG (Bt−1 − B)

need φG, φT > r. Why?
Alternative: tax one type only, τt (e) = τt1e=e
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Implications of de�cit rules

• For instance with G rule, de�cits follow

Bt − B = (1− (φG − r)) (Bt−1 − B) + (rt−1 − r)Bt−1
To �rst order around the steady state (recall φG > r),

dBt = (1− (φG − r))dBt−1 + drt−1B

=
t−1∑
k=0

(1− (φG − r))k Bdrt−1−k

Past e�ect of high interest rates cumulate into current debt
• To set this up in code, again we’ll use a SolvedBlock

• recall that takes in a function H (U, Z) = 0 and turns it into a mapping U (Z)

• Here, we get B (r) so T (r) and G (r).
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Importance of �scal rule for AR(1) shocks to policy

0 5 10 15
Year (t)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

%
 d

ev
ia

tio
n 

fr
om

 s
s

Output response

Trule
Grule
Deficit_Trule
Deficit_Grule

0 5 10 15
Year (t)

1.0

0.8

0.6

0.4

0.2

0.0

pp
 d

ev
ia

tio
n 

fr
om

 s
s

Real rate shock

• Ordering of output respond corresponds to that of �scal e�ect on demand
• With longer maturities, �scal rule matters less Auclert et al. (2020)
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Investment



Investment

• So far, model only featured consumption
• But empirically, investment is a key component of response to mon. policy!

• Here: introduce investment. Reference: Auclert et al. (2020) appendix A

Ct + It = Yt = XKα
t N1−αt

• Obvious: output is a�ected di�erently now since investment responds
• Not so obvious: does consumption respond di�erently?
• Not true in RA model: purely governed by Euler equation

C−σt = β (1+ rt) C−σt+1

What about in HA?
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Detour: why we need adjustment costs

• As in any model with nom. rigidities and It, we need adjustment costs. Why?
• Without, �rm optimality implies αX (Kt+1/Nt+1)α−1 = rt + δ, so given N,

dKt+1
K =

−1
1− α

1
r + δ

drt

and since It = Kt+1 − (1− δ)Kt, initial I response is
dI0
I =

−1
1− α

1
r + δ

1
δ
dr0

Ex: with δ = 4%, r = 1%, α = 0.3, semielasticity is -715!!
• ie, 1% decline in r leads to a 715% increase in I on impact

• This is really important for all models of monetary policy with investment.
Neoclassical e�ect that is there even in models with �xed costs, etc.

• Usual solution: convex adjustment costs (e.g. quadratic)
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Model setup

• Now �nal goods �rm rents capital and labor, �exible prices,

wt = X (1− α)Kα
t N−αt rKt = XαKα−1

t N1−αt

Capital �rm owns Kt and rents it out, invests s.t. quadratic costs, so

Dt = rKt Kt − It −
Ψ

2

(
Kt+1 − Kt

Kt

)2
Kt

• Delivers standard Q theory equations, ItKt − δ = 1
Ψ (Qt − 1) and

pt = QtKt+1 =
pt+1 + Dt+1

pt
• GE asset market clearing:

At = pt

19



Neutrality result with inelastic investment

• Suppose that investment inelastic is Ψ =∞, δ = 0 (�xed K), and EIS=1.
• Result: neutrality (HA=RA). Why? Everyone a�ected in proportion. No
redistribution between or across workers and capitalists.
• Version of Werning (2015), with positive liquidity and σ = 1.
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Elastic investment: HA>RA!

• Now consider elastic investment Ψ <∞: ampli�cation!!
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Conclusion

• For the consumption response to r shock:

RA HA
no I Benchmark Same (Werning)
with I Same (Euler eq.) Ampli�cation

• This is one direct reason why we should care that MPCs are large!
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Taylor rules



Taylor rule

• So far, all monetary policy analyzed using r rule.
• In practice, Taylor rule intermediates response to many shocks
• Here, study shocks to TFP Xt in addition to monetary εt

• Since real rate is

rt = it − πt+1 + εt = i+ φππt − πt+1 + εt

We now set up the DAG with π as an unknown

• This model has all the basic elements one needs for estimation
• See tomorrow’s lecture!!
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Response to AR(1) monetary shock
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• Endogenous tightening to in�ation mitigates rt drop for given εt
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Response to AR(1) TFP shocks

0 2 4 6 8
Year (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
%

 d
ev

ia
tio

n 
fr

om
 s

s

Output response

=  1
=  1.5
=  3

0 2 4 6 8
Year (t)

2.0

1.5

1.0

0.5

0.0

pp
 d

ev
ia

tio
n 

fr
om

 s
s

Real interest rate

• De�ationary e�ect of TFP shock leads to r cut, so boost in demand
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Takeaway



Conclusion

• HANK substantially enriches the analysis of monetary policy.

• Key points:
1. Indirect e�ects much larger than RA, though no robust result that HA ≷ RA
2. Countercyclical income risk has large ampli�cation e�ects
3. Importance of maturity structure and nominal asset positions
4. Relevance of �scal-monetary interactions (esp. with short maturities)
5. Complementarity between investment and high MPCs

• The literature is growing and there is still a lot to do!
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