Monetary policy topics

Heterogeneous-Agent Macro Workshop

Spring 2022

Today

This morning: We started scratching the surface of monetary policy in HANK

Now: We go a little deeper by exploring a few key topics in the literature

Roadmap

- Maturity structure
- 2 Nominal assets
- **3** Fiscal policy
- 4 Investment
- 5 Taylor rules
- **6** Takeaway

Maturity structure

Longer maturities

- So far, model had short maturities. In practice, maturities are long.
 - Think mortgage debt, bonds, etc.
- What are the implications of long maturities for monetary policy?
- First study real assets. For tractability, adopt Calvo bonds.
 - Buy one bond today for q_t , get stream of real payments $1, \delta, \delta^2, \cdots$
- New household problem:

$$egin{array}{lll} V_t\left(\lambda_-,e
ight) &=& \max u\left(c
ight) + eta \mathbb{E}\left[V_{t+1}\left(\lambda,e'
ight)|e
ight] \ c + q_t \lambda &=& \left(1 + \delta q_t
ight) \lambda_- + e Y_t \ q_t \lambda &\geq& \underline{a} \end{array}$$

where λ is total number of bonds (total current coupon)

• Pricing equation (no arbitrage): $q_t = rac{1 + \delta q_{t+1}}{1 + r_t^{ante}}$

Steady state

- In steady state $1 + \delta q = (1 + r) q$. Can redefine $a \equiv q\lambda$
 - Given \underline{a} , r, β , steady state is exactly identical to before! Intuition?
- New useful statistic from steady state: bond duration

$$D = \frac{1}{1+r} \sum_{s \ge 0} s \left(\frac{\delta}{1+r}\right)^s = \frac{1}{1+r} \left(\frac{1}{1-\frac{\delta}{1+r}}\right)^2 = \frac{1+r}{1+r-\delta}$$

- Use this result to map empirical duration D into model δ
 - eg D = 18 quarters in U.S. Doepke and Schneider (2006)

Transition dynamics

• Relabel $a_{it}\equiv q_t\lambda_{it}$, then for any $t\geq$ 1, we can rewrite the Bellman as

$$egin{array}{lcl} V_t\left(a_-,e
ight) &=& \max u\left(c
ight) + eta \mathbb{E}\left[V_{t+1}\left(a,e'
ight)|e
ight] \\ c+a &=& \left(1+r_{t-1}^{ante}
ight)a_- + eY_t \\ a &\geq& \underline{a} \end{array}$$

• What happens at t = 0? A revaluation:

$$1 + r_{0} = (1 + r_{ss}) \frac{1 + \delta q_{0}}{1 + \delta q_{ss}} = \frac{1 + \delta q_{0}}{q_{ss}}$$
 (1)

• Handle this using the hh block in its ex-post formulation, plus (1) and

$$r_t = r_{t-1}^{ante} \quad t \geq 1$$

6

DAG for the long-bonds model

Our new DAG is:

Not so different from before! Just use a SolvedBlock to get the q first!

Impulse responses with longer maturities

- $\delta \uparrow$: more even distribution of s.s. "interest rate exposures" Auclert (2019)
- Intuition: low MPC rich get more capital gains, poor make capital losses
- This effect is enough to get us to other side of RA!

Decomposition into direct and indirect effects

• These income effects show up as lower direct effects in our decomposition

Nominal assets

Nominal assets

- So far, assets were all real. But many assets are nominal.
 - Again, think mortgage debt, nominal bonds, etc.
 - Creates very large exposures to inflation risk via nominal positions
 - See estimates in Doepke and Schneider (2006)
- Here: analyze consequence of one-period nominal assets.
- Assume that now:

$$P_t c_{it} + A_{it} = (1 + i_t) A_{it-1} + e_{it} W_t N_t$$

 $A_{it} \ge P_t \underline{a}$

Note: nominal borrowing constraint relaxes with inflation. In practice it's probably not so simple (eg "tilt effect" in mortgages)

Incorporating unexpected revaluation

• Define real asset position $a_{it} = A_{it}/P_t$. Household problem now

$$V_t(a_-,e) = \max u(c) + \beta \mathbb{E} \left[V_{t+1}(a,e') | e \right]$$
 $c + a = (1 + r_t) a_- + e Y_t$
 $a \geq \underline{a}$

where $1 + r_t = (1 + i_t) \frac{P_{t-1}}{P_t}$

• Perfect foresight Fisher equation gives again:

$$r_t = r_{t-1}^{ante} \quad t \geq 1$$

but also "Fisher effect" (capital gain/loss) from date-o revaluation

$$1 + r_0 = (1 + i_0) \frac{P_{-1}}{P_0} = (1 + r_{ss}) \frac{1 + \pi_{ss}}{1 + \pi_0}$$

ullet Even with r^{ante} rule, inflation now directly matters for demand via expost $r_{
m o}$

Aggregate implication of Fisher channel: AR(1) shock to r

Again simple to simulate with SSJ (what is your DAG?)

- **Fisher effect**: inflation redistributes towards agents with lower nominal positions, who have high MPCs. Bigger with steeper Phillips curve (lower θ_w)
- Would be even more pronounced with long maturities

Fiscal policy

Fiscal-monetary interactions

- So far, abstracted from fiscal policy. But monetary-fiscal interactions potentially very important!
 - Changes in *r* directly affect government budget
- Here: analyze consequences of fiscal response to monetary policy
- Go back to canonical model with government and linear taxation:

$$\begin{array}{rcl} V_t\left(a_{-},e\right) & = & \max u\left(c\right) + \beta \mathbb{E}\left[V_{t+1}\left(a,e'\right)|e\right] \\ c + a & = & \left(1 + r_{t-1}^{ante}\right)a_{-} + \left(Y_t - T_t\right)e + \tau_t\left(e\right) \\ a & \geq & \underline{a} \end{array}$$

where $\tau_t(e)$ can be used to vary the tax incidence of shocks to mon. policy.

Setting up a fiscal rule

- Calibration as in lecture 4, with $\tau\left(\mathbf{e}\right)=$ 0 in steady state
- Government budget constraint:

$$B_{t} = (1 + r_{t-1}) B_{t-1} + G_{t} - T_{t} + \mathbb{E} [\tau_{t}(e)]$$

and in steady state, $\mathbb{E}\left[\tau\left(e\right)\right]=\mathsf{o}$ and $T=\mathsf{G}+r\mathsf{B}$.

- Consider following fiscal rules
 - 1. Constant B, all regular taxes: $T_t = G + r_{t-1}B$
 - 2. Constant *B*, all spending: $G_t = T r_{t-1}B$
 - 3. Deficit-finance, using taxes to bring debt back, $T_t = T + \phi_T \left(B_{t-1} B \right)$
 - 4. Deficit finance, using G spending to bring debt back $G_t = G \phi_G (B_{t-1} B)$

need $\phi_G, \phi_T > r$. Why?

Alternative: tax one type only, $\tau_t(e) = \tau_t \mathbf{1}_{e=\overline{e}}$

Implications of deficit rules

• For instance with G rule, deficits follow

$$B_t - B = (1 - (\phi_G - r))(B_{t-1} - B) + (r_{t-1} - r)B_{t-1}$$

To first order around the steady state (recall $\phi_{\sf G} > r$),

$$dB_{t} = (1 - (\phi_{G} - r)) dB_{t-1} + dr_{t-1}B$$
$$= \sum_{k=0}^{t-1} (1 - (\phi_{G} - r))^{k} Bdr_{t-1-k}$$

Past effect of high interest rates cumulate into current debt

- To set this up in code, again we'll use a SolvedBlock
 - recall that takes in a function $\mathbf{H}(\mathbf{U},\mathbf{Z}) = \mathbf{0}$ and turns it into a mapping $\mathbf{U}(\mathbf{Z})$
 - Here, we get $\mathbf{B}(\mathbf{r})$ so $\mathbf{T}(\mathbf{r})$ and $\mathbf{G}(\mathbf{r})$.

Importance of fiscal rule for AR(1) shocks to policy

- Ordering of output respond corresponds to that of fiscal effect on demand
- With longer maturities, fiscal rule matters less Auclert et al. (2020)

Investment

Investment

- So far, model only featured consumption
 - But empirically, investment is a key component of response to mon. policy!
- Here: introduce investment. Reference: Auclert et al. (2020) appendix A

$$C_t + I_t = Y_t = XK_t^{\alpha}N_t^{1-\alpha}$$

- Obvious: output is affected differently now since investment responds
- Not so obvious: does consumption respond differently?
- Not true in RA model: purely governed by Euler equation

$$C_t^{-\sigma} = \beta \left(1 + r_t \right) C_{t+1}^{-\sigma}$$

What about in HA?

Detour: why we need adjustment costs

- As in any model with nom. rigidities and I_t , we need adjustment costs. Why?
- Without, firm optimality implies $\alpha X (K_{t+1}/N_{t+1})^{\alpha-1} = r_t + \delta$, so given N,

$$\frac{dK_{t+1}}{K} = \frac{-1}{1-\alpha} \frac{1}{r+\delta} dr_t$$

and since $I_t = K_{t+1} - (1 - \delta) K_t$, initial I response is

$$\frac{dI_{o}}{I} = \frac{-1}{1-\alpha} \frac{1}{r+\delta} \frac{1}{\delta} dr_{o}$$

Ex: with $\delta =$ 4%, r = 1%, $\alpha =$ 0.3, semielasticity is -715!!

- ie, 1% decline in *r* leads to a 715% increase in *l* on impact
- This is really important for all models of monetary policy with investment. Neoclassical effect that is there even in models with fixed costs, etc.
- Usual solution: convex adjustment costs (e.g. quadratic)

Model setup

Now final goods firm rents capital and labor, flexible prices,

$$W_t = X (1 - \alpha) K_t^{\alpha} N_t^{-\alpha} \qquad r_t^K = X \alpha K_t^{\alpha - 1} N_t^{1 - \alpha}$$

Capital firm owns K_t and rents it out, invests s.t. quadratic costs, so

$$D_t = r_t^K K_t - I_t - \frac{\Psi}{2} \left(\frac{K_{t+1} - K_t}{K_t} \right)^2 K_t$$

• Delivers standard Q theory equations, $rac{I_t}{K_t} - \delta = rac{1}{\Psi} \left(Q_t - 1
ight)$ and

$$p_t = Q_t K_{t+1} = \frac{p_{t+1} + D_{t+1}}{p_t}$$

• GE asset market clearing:

$$A_t = p_t$$

Neutrality result with inelastic investment

- Suppose that investment inelastic is $\Psi = \infty$, $\delta = 0$ (fixed K), and EIS=1.
- **Result**: neutrality (HA=RA). Why? Everyone affected in proportion. No redistribution between or across workers and capitalists.
- Version of Werning (2015), with positive liquidity and $\sigma =$ 1.

Elastic investment: HA>RA!

• Now consider elastic investment $\Psi < \infty$: amplification!!

Conclusion

• For the *consumption* response to *r* shock:

	RA	НА
no I	Benchmark	Same (Werning)
with <i>I</i>	Same (Euler eq.)	Amplification

• This is one direct reason why we should care that MPCs are large!

Taylor rules

Taylor rule

- So far, all monetary policy analyzed using *r* rule.
 - In practice, Taylor rule intermediates response to many shocks
 - Here, study shocks to TFP X_t in addition to monetary ϵ_t
- Since real rate is

$$\mathbf{r}_{t} = \mathbf{i}_{t} - \pi_{t+1} + \epsilon_{t} = \mathbf{i} + \phi_{\pi}\pi_{t} - \pi_{t+1} + \epsilon_{t}$$

We now set up the DAG with π as an unknown

- This model has all the basic elements one needs for estimation
 - See tomorrow's lecture!!

Response to AR(1) monetary shock

ullet Endogenous tightening to inflation mitigates r_t drop for given ϵ_t

Response to AR(1) TFP shocks

Deflationary effect of TFP shock leads to r cut, so boost in demand

Takeaway

Conclusion

- HANK substantially enriches the analysis of monetary policy.
- Key points:
 - 1. Indirect effects much larger than RA, though no robust result that $HA \geqslant RA$
 - 2. Countercyclical income risk has large amplification effects
 - 3. Importance of maturity structure and nominal asset positions
 - 4. Relevance of fiscal-monetary interactions (esp. with short maturities)
 - 5. Complementarity between investment and high MPCs
- The literature is growing and there is still a lot to do!

References

- Auclert, A. (2019). Monetary Policy and the Redistribution Channel. *American Economic Review*, 109(6):2333–2367.
- Auclert, A., Rognlie, M., and Straub, L. (2020). Micro Jumps, Macro Humps: Monetary Policy and Business Cycles in an Estimated HANK Model. Working Paper 26647, National Bureau of Economic Research,.
- Doepke, M. and Schneider, M. (2006). Inflation as a Redistribution Shock: Effects on Aggregates and Welfare. Working Paper 12319, National Bureau of Economic Research,.

References ii

Werning, I. (2015). Incomplete Markets and Aggregate Demand. Working Paper 21448, National Bureau of Economic Research,.