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This session

We just introduced the canonical HANK model.

Next: Focus on �scal policy!

• Switch o� all other shocks: TFP Xt = 1, no monetary shock rt = r = const

• Focus on �rst order shocks to �scal policy: dG = {dGt},dT = {dTt} such that

∞∑
t=0

(1+ r)−t(dGt − dTt) = 0

• Main reference for this class is Auclert et al. (2018)
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The intertemporal Keynesian cross



DAG for the economy with only �scal shocks

Switching o� monetary shocks, the DAG is simply:

shocks T,G
unknown Y

�scal ha

goods mkt.
clearing (H)

T, Y

Y, G

Z

C

In this case, H = 0 simply corresponds to:

Y = G+ C(Z)

To emphasize that C is a function, write it as C. C only a function of Z here!

Next: Analyze this equation “by hand”...
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The aggregate consumption function

• We call C the aggregate consumption function

Ct = Ct (Z0, Z1, Z2, . . .) = Ct ({Zs})

It’s a collection of∞ many nonlinear functions of∞ many Z’s!

• It usually also depends on the path of real interest rates, but those are
assumed to be constant

• Using the DAG, we can substitute out Z and write goods market clearing as

Yt = Gt + Ct ({Ys − Ts})
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Intertemporal MPCs

Yt = Gt + Ct ({Ys − Ts})

• Feed in small shock {dGt,dTt}

dYt = dGt +
∞∑
s=0

∂Ct
∂Zs
· (dYs − dTs) (1)

• Response dYt entirely characterized by the Jacobian of C function, which we
also call intertemporal MPCs

Mt,s ≡
∂Ct
∂Zs

(
= J C,Z

t,s

)
• Mt,s = how much of an income change at date s is spent at date t

• Note: All income is spent at some point, hence
∑∞

t=0(1+ r)s−tMt,s = 1
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The intertemporal Keynesian cross

• Rewrite equation (1) in vector / matrix notation:

dY = dG−MdT+MdY (2)

• This equation exactly corresponds to HYdY + HGdG+ HTdT = 0

• This is an intertemporal Keynesian cross

• entire complexity of model is in M

• with M from data, could get dY without model!
(there is a “correct” M out there, but it’s very hard to measure...)
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Bringing back memories from undergrad ...

• The intertemporal Keynesian cross is the same ... just in vectors

• Bigger theme in this workshop: HANK models are able to revive IS-LM logic
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Solving the intertemporal Keynesian cross

• How can we solve (2)? Rewrite as

(I−M)dY = dG−MdT

Can’t we just invert (I−M) ?

• Not so easy: multiply both sides by q ≡ (1, (1+ r)−1, (1+ r)−2, . . .)′

q′ (I−M)dY = 0 & q′dG− q′MdT = q′dG− q′dT = 0

both left and right hand side are “zero NPV” (why RHS?)

• General solution is then of the form

dY =
∞∑
k=0

Mk (dG−MdT) + dλ · v

where dλ ∈ R and v is right eigenvector of M with EV 1. Pick dλ such that
limt→∞ dYt = 0 9



Solving the intertemporal Keynesian cross

• We can summarize solution as

dY =M (dG−MdT)

for some linear mapM that ensures dYt → 0 as t→∞

• Note: When solving this on the computer, inverting a truncated version of
I−M will automatically give you (essentially) a truncated version ofM. So
this does not cause trouble in SSJ...

• Can we say more about the solution? Yes!
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The balanced budget multiplier

• Suppose dG = dT (balanced budget)

• Result: We always have dY = dG !

• Irrespective of all household heterogeneity, holds for any path of spending

• IS-LM antecedents: Gelting (1941), Haavelmo (1945)

• Proof is trivial: dY = dG is unique solution to

dY = (I−M) · dG+M · dY
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De�cit �nanced �scal policy

• With de�cit �nancing dG 6= dT we have

dY = dG+M ·M · (dG− dT)︸ ︷︷ ︸
dC

Consumption dC depends on primary de�cits dG− dT

• Interaction term: De�cits matter precisely when M is “large” (which will
mean very di�erent from RA model)

• Next: Go over our three examples and then compare multipliers to full HA
model
• De�ne:

• initial multiplier: dY0/dG0
• cumulative multiplier:

∑
(1+r)−tdYt∑
(1+r)−tdGt 12



Three special cases



Representative-agent model

Let’s get an intuition for all this in the RA model. Last lecture we derived
consumption function for RA model when β(1+ r) = 1

Ct = (1− β)
∑
s≥0

βsZs + ra−1

In particular
Mt,s =

∂Ct
∂Zs

= (1− β)βs

Thus iMPC matrix is given by

MRA =


1− β (1− β)β (1− β)β2 · · ·
1− β (1− β)β (1− β)β2 · · ·
1− β (1− β)β (1− β)β2 · · ·
...

...
... . . .

 =
1q′

1′q

Easy to verify that q′M = q′, and also that Mw = 0 for any zero NPV w 13



Representative-agent model
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Fiscal policy in RA model

• Let’s solve the Keynesian cross for the RA model

• Right eigenvector of M with EV 1 is 1, and so

dY =
∞∑
k=0

Mk (dG−MdT)︸ ︷︷ ︸
=dG−MdT

+dλ · 1

• Here, MdT is vector with all elements equal to (1− β)q′dT

• Choose dλ to ensure dYt → 0: dλ = (1− β)q′dT. Hence

dY = dG

• One can prove this directly, too (eg Woodford 2011).
De�cits are irrelevant in RA!
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Impulse response to dG shock in RA model
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Two agent model

• 1− µ share of agents behave like RA agent, µ are hand to mouth⇒ M matrix
is simple linear combination

MTA = (1− µ)MRA + µI

• Issue: Only strong contemporaneous spending e�ect
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iMPCs in TA model
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Fiscal policy in TA model

• In Keynesian cross:(
I−MTA

)
dY = dG−MTAdT ⇔

(
I−MRA

)
dY =

1
1− µ [dG− µdT]−MRAdT

This equation has same shape as for RA, hence:

dY =
1

1− µ [dG− µdT]

• Results from undergrad: Spending multiplier 1/(1− µ) and transfer
multiplier µ/(1− µ). So: µ is “e�ective” MPC, ignoring RA

• Can also write:
dY = dG+

µ

1− µ [dG− dT]︸ ︷︷ ︸
primary de�cit

• Only current de�cit matters. Initial multiplier can be large ∈ [1, 1
1−µ ], but

cumulative multiplier is always equal to 1! 19



Impulse response to dG shock in TA model
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Zero-liquidity model

• What are iMPCs in the ZL model?

• Feed in small shocks to after-tax income {dZt} and �gure out consumption +
assets

• Consider an average agent in state e. It saved dat−1 at date t− 1, but only
Πe←e of that still in hands of e agents at date t.

• What do they plan on saving then? Linearized date-t Euler equation:

(1+ r)Πe←edat−1 − dat + edZt = β (1+ r) ·[
Πe←e

(e)−σ−1

e−σ−1
[
(1+ r)dat + e′dZt+1

]
+ Πe←e [(1+ r)dat − dat+1 + edZt+1]

]
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Zero-liquidity model (2)

• De�ne: ρ̃ ≡ E
[
(e′/e)−σ−1 |e = e

]
and µ ≡ 1− πee

Πe←e
• Aggregate assets are dAt = πedat. Simplifying the Euler⇒

dAt+1 −
ρ+ (1+ r)ρ̃

Πe←e
dAt +

1
β
dAt−1 = ρ (1− µ) [dZt+1 − dZt]

• Denote by λ1 < 1 < λ2 the two roots of X2 − ρ+(1+r)ρ̃
Πe←e

X + 1
β = 0. De�ne

m ≡ 1− λ1
1+r .

• We can then solve for assets and consumption

dAt = (1−m) (1+r)dAt−1+(1−m) (1− µ)dZt−(1− µ) [ρ− 1+m]
∞∑
u=1

λ−u2 dZt+u

dCt = m(1+ r)dAt−1 + (µ+m (1− µ))dZt + (1− µ) [ρ− 1+m]
∞∑
u=1

λ−u2 dZt+u
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Zero-liquidity model (3)

• Here, special cases for intuition: �rst column and �rst row

• First column is purely “backward looking”: only dZ0 = 1, rest 0. Then:

M0,0 = µ+ (1− µ)m

Mt,0 = (1− µ)m ((1−m) (1+ r))t

This is a linear combination between hand to mouth with share µ and an
exponentially decaying spending pro�le. Sanity check:

∑
(1+ r)−tMt,0 = 1

• First row is purely “anticipatory”:

M0,s = (1− µ) [ρ− 1+m] (β (1−m) (1+ r))s

Again exponential. Faster decay rate than �rst column by β.
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iMPCs in ZL model see also Bilbiie (2019)
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Fiscal policy in ZL model

• Can solve above model explicitly

dYt =
1

1− µ [dGt − µdTt]︸ ︷︷ ︸
as in TA model

+
1

1− µα0dBt +
1

1− µα
∞∑
k=1

dBt+k︸ ︷︷ ︸
new terms

α0 ≡ ρ−1
[

(λ1 + λ2)− ρ−
1
β

]
> 0

α ≡ ρ−1
[

(λ1 + λ2)− 1−
1
β

]
> α0 > 0

Future �scal policy extremely powerful here, cumulative multiplier from
de�cit �nanced policy easily above 1.
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Impulse response to dG shock in ZL model
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Computing iMPCs in the HA model



iMPCs in the HA model (computed using fake news algorithm)
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Comparing iMPCs across models
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Comparison with the data
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Insights about Fiscal Multipliers



Fiscal stimulus more powerful when de�cit �nanced
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Fiscal policy is more powerful if front loaded...
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... but not in the zero-liquidity model (a �scal policy forward guidance puzzle?)
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Fiscal policy is less powerful if �nanced by lump-sum taxes (Why?)
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Fiscal policy is more powerful if income risk is countercyclical (Why?)
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Takeaway



Fiscal policy in HANK

• First exploration of shocks & policies in HANK

• One key di�erence already emerged: in HANK, households have very
di�erent iMPCs

• This matters for �scal policy:
• de�cit �nancing & front loading ampli�es initial and cumulative multipliers
• not the case in RA, and not even in TA

35



References i

References

Auclert, A., Rognlie, M., and Straub, L. (2018). The Intertemporal Keynesian Cross.
Working Paper 25020, National Bureau of Economic Research,.

Bilbiie, F. O. (2019). Monetary Policy and Heterogeneity: An Analytical Framework.
Manuscript.

Fagereng, A., Holm, M. B., and Natvik, G. J. (2021). MPC Heterogeneity and
Household Balance Sheets. American Economic Journal: Macroeconomics,
13(4):1–54.

36



References ii

Gelting, J. (1941). Nogle Bemærkninger Om Finansieringen Af O�entlig
Virksomhed. Nationaløkonomisk Tidsskrift, 3.

Haavelmo, T. (1945). Multiplier E�ects of a Balanced Budget. Econometrica,
13(4):311–318.

37


	The intertemporal Keynesian cross
	Three special cases
	Computing iMPCs in the HA model
	Insights about Fiscal Multipliers
	Takeaway
	References

