
The canonical HANK model

NBER Heterogeneous-Agent Macro Workshop

Ludwig Straub

Spring 2022

1



This session

This morning: How to solve steady states and transitional dynamics of
neoclassical heterogeneous agent models.

Next: Introducing “HANK”.

1 The canonical HANK model

2 Three instructive special cases

3 Solving the model using blocks and DAGs

4 Summary
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The canonical HANK model



Introducing the canonical HANK model

• We now embed the standard incomplete markets consumption-saving
behavior into a New-Keynesian model

• Along the way, we will allow for a government: bonds, taxes, gov. spending

• Will mostly follow Auclert et al. (2018) (henceforth IKC), though allowing for
monetary policy, too

• Will set up the model assuming perfect foresight w.r.t. aggregate variables
(“MIT shocks”)
• always keep in mind certainty equivalence: linearizing with respect to small
MIT shocks = impulse responses in stochastic model!
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Household side

• Households solve

max
cit

E0
∞∑
t=0

βt (u(cit)− v (nit))

cit + ait ≤ (1+ rt−1)ait−1 + zit
ait ≥ a

• Real pretax income
yit =

Wt
Pt
eitnit

• Real after-tax income zit = (1− τt) yit
• time-varying proportional tax rate τt
• can capture progressive taxation as in Heathcote et al. (2017) (see IKC paper)
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Unions and sticky wages

• For our canonical HANK model, we’ll work with sticky wages (not prices)
• with sticky prices, can get countercyclical pro�ts

... redistribution from wage to pro�t earners in recession... matters in HANK!

... strange results can happen (examples: Bilbiie 2008, Broer et al. 2020)

• Microfound sticky wages extending Erceg et al. (2000) (see IKC)

+ “labor allocation rule”: which agent works what fraction of total labor Nt?

• today: assume all agents work same hours, nit = Nt

• Today: will use simple ad-hoc wage Phillips curve (details won’t matter)

πwt = κ

(
v′ (Nt)−

ε− 1
ε

(1− τt)
Wt
Pt
u′ (Ct)

)
︸ ︷︷ ︸

wedge in labor FOC of "average" agent

+βπwt+1
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Production

• Representative �rm with aggregate production function, linear in labor

Yt = XtNt

where Xt is TFP

• Assume �exible prices⇒

Pt =
Wt
Xt

⇔ Wt
Pt

= Xt

Real wage is exogenous. No pro�ts!

• Goods in�ation πt = wage in�ation πwt minus TFP growth
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Government: Fiscal policy

Government sets �scal policy, consisting of paths

• Gt of gov spending

• Tt of total tax revenue, controlled via τt

Tt = τtYt

• Bt of government bonds, uniformly bounded (no Ponzi schemes)

subject to government budget constraint

Bt = (1+ rt−1)Bt−1 + Gt − Tt
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Government: How is after tax income distributed?

• Total after-tax income is

Zt ≡ Yt − Tt = (1− τt) Yt

• Individual after-tax income:

zit = (1− τt) eit
Wt
Pt
Nt = (1− τt) eitXtNt = eit · Zt

• zit simply a share of total after-tax income Zt. Will be convenient.
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Government: Monetary policy

Monetary authority follows an interest rate rule. Allow for two kinds of rules:

• standard Taylor rule. (linearized)

it = r + φππt + εt

here: r = steady state real rate, εt = monetary shock

• real rate rule.
rt = r + εt ⇔ it = r + πt+1 + εt

Equivalent to Taylor rule with coe�cient 1 on expected in�ation.
Note: πt+1 vs πt not key (same in cts time!), key is φπ = 1

Why allow for “real rate rule”? Huge gain in tractability! All monetary policy acts
via changing real rate. Cost is small if Phillips curve is �at (πt moves little).
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De�nition of equilibrium

• All agents optimize and markets clear

Gt + Ct = Yt
At = Bt

where household aggregates are

Ct =

∫
c∗t (a−, e)dDt (a−, e)

At =

∫
a∗t (a−, e)dDt (a−, e)
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Computing the steady state

How can we �nd the steady state of this model?

1. Normalize Y = 1, calibrate r and B,G. Set T = G+ rB.

2. Can use same code as for Huggett model:
• instead of eitY now use eit · (Y − T)

• choose β to match A = B.

3. G+ C = Y holds by Walras law! Done!

11



Three instructive special cases



Special cases

Will introduce three special cases that are helpful to analyze and compare the
HA model to.

1. Representative-agent model (RA) — [Woodford 2003, Galí 2008]

2. Two-agent model (TA) — [Campbell and Mankiw 1989, Galí et al. 2007, Bilbiie 2008]

3. Zero-liquidity model (ZL) — [Werning 2015, Ravn and Sterk 2017, Bilbiie 2019]

Only di�erence across models: how Ct is determined given real rates rt and
after-tax incomes Zt.

Steady state aggregates are identical across models.
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Representative-agent model

• This is the standard NK model (with wage rigidities)

• Consumption solves

max
∞∑
t=0

βt
C1−σt
1− σ

Ct + at ≤ (1+ rt−1)at−1 + Zt
which has the solution

Ct =
βt/σq−1/σt∑
s≥0 β

s/σq1−1/σs

∑
s≥0

qsZs + (1+ r−1)a−1


where qt ≡ (1+ r0)−1 · · · · · (1+ rt−1)−1. With rt = r = β−1 − 1, this is just

Ct =
r

1+ r
∑
s≥0

(1+ r)−sZs + ra−1
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Two-agent model

• This is like an RA economy except that a fraction µ is hand-to-mouth (HTM).
Only 1− µ behave according to PIH.

• PIH agents’ consumption is determined by

cPIHt =
βt/σq−1/σt∑
s≥0 β

s/σq1−1/σs

∑
s≥0

qsZs + (1+ r−1)a−1


• HTM agents’ consumption is determined by

cHTMt = Zt

• Jointly pin down aggregate consumption

Ct = (1− µ)cPIHt + µcHTMt
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Zero-liquidity model

• Here, assume only two states, eit ∈ {e, e} (this is wlog here) and a = 0

• What if we shrink liquidity Bt down to a = 0? (e.g. via smaller β)

• Eventually, all agents must have zero assets, and thus cit = zit

• Does that mean all Euler equations fail? Consider:

z−σit ≥ β(1+ rt)Et
[
z−σit+1

]
⇔ Z−σt ≥ β(1+ rt)E

[
(e′)−σ

e−σ
∣∣∣e]︸ ︷︷ ︸

ρ(e)

Z−σt+1

• The last Euler equation to fail as we reduce β is that of e, since ρ(e) > ρ(e)
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Zero-liquidity model (2)

• For the steady state, this means that β(1+ r)ρ(e) = 1.

• Now imagine we have small shocks to rt, Zt. What describes Ct here?

• It turns out the model is a little simpler if agents in state e have no
borrowing constraint.

• Moreover, notice that, to �rst order, it is without loss to assume all agents in
e have the same wealth at and consumption ct. Then:

ct + at = (1+ rt−1)Πe←eat−1 + eZt

c−σt = β(1+ rt)
[
Πe←e (eZt+1 + (1+ rt)at)−σ + Πe←ec−σt+1

]
Ct = πect + (1− πe − Πe←eπe)eZt + Πe←eπe (eZt + (1+ rt−1)at−1)
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Solving the model using blocks and
DAGs



Blocks

• Throughout this workshop, we will see that it is very useful to break models
into “blocks”

• This language is often loosely used in practice, we will formally de�ne them
• reference is Auclert et al. (2021)

• We will denote sequences of variables, e.g. {rt}, as vectors r = (r0, r1, . . .)′.
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De�ning blocks and models

Block: mapping from sequences of inputs to sequences of outputs.

Examples:

• Household block: r, Z→ C,A
• Fiscal policy block: r, T,G,Y→ B, Z
• Goods market clearing block: Y,C,G→ H ≡ C+ G− Y

Model: combination of blocks

• some inputs are exogenous shocks, e.g. r, T,G
• some inputs are endogenous unknowns, e.g. Y
• some outputs are targets that must be zero in GE, e.g. H [#targets = #unknowns]

Most macro models can be written this way. Will help us solve them e�ciently!
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DAGs

Require that models have no cycles→ draw as directed acyclic graphs (DAGs).

shocks r, T,G
unknown Y

�scal ha

goods mkt.
clearing (H)

T, Y r

Y, G

Z

C

• Model is composite mapping: (Y, r, T,G)→ H.

• GE response of Y to shocks satis�es H = 0.
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Side note: DAGs are not unique

• E.g. instead of feeding in G and T shocks, could feed in G and B shocks

• Could use asset market rather than goods market clearing

shocks r, T,G
unknown Y

�scal ha

goods mkt.
clearing (H)

B, Y r

Y, G

Z

C

• We’ll use this approach later in the tutorial.
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Solving for output response to shocks

shocks r, T,G
unknown Y

�scal ha

goods mkt.
clearing (H)

T, Y r

Y, G

Z

C

• Imagine we change the path of government spending G. How is Y a�ected?

• We need to �nd Y such that
H(Y,G) = 0

• First order shock dG⇒ use implicit function theorem:

dY = − (HY)−1 · HG · dG

All we need is H’s Jacobians HY and HG ...
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How do we get the Jacobians?

shocks r, T,G
unknown Y

�scal ha

goods mkt.
clearing (H)

T, Y r

Y, G

Z

C

First step is to compute individual blocks’ Jacobians, e.g. J Z,Y, J C,Z, J H,Y, J H,G

• If block is analytical (SimpleBlock), its derivative is analytical too
• e.g. J Z,Y = I or J H,G = I

• If block has heterogeneous agents (HetBlock), solve Jacobian numerically
• e.g. solve J C,Z using fake news algorithm

Then “chain” the Jacobians together:

HY = J H,Y + J H,C · J C,Z · J Z,Y HG = J H,G 22



SSJ work�ow (will use this many times!)

These ideas are at the heart of the work�ow in our Sequence-Space Jacobian
toolbox:

1. De�ne individual blocks: SimpleBlock, HetBlock, SolvedBlock
• SolvedBlock allows to solve out recursions, e.g. solve an Euler equation

2. Combine the blocks into a model

3. Set steady state parameters and solve the model at the steady state.

4. Solve for the responses of the model directly, code handles all Jacobians.
• e.g. solve_impulse_linear automatically computes dY = − (HY)−1 · HG · dG
• but can also compute HY, HG individually, or even J C,Z,J Z,Y etc
• this will be helpful to inspect the model’s mechanics!
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Summary



Summary

We introduced a canonical HANK model:

• Standard incomplete markets households

• Standard New-Keynesian supply side, but sticky wages + �ex prices

• Real rate rule for now (relax later)

Outlined how we can solve this model ...

• Set up as blocks. Many blocks = a model

• SSJ toolbox solves out Jacobians, chains them, uses implicit function
theorem to compute IRFs

Next: Analyze �scal policy in this model. Tomorrow: Monetary policy.
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