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Time dependent vs. state dependent pricing

(TD) Time dependent: Pr(price change) depends on time since last adjustment

e tractable, e.g. for Calvo with constant probability get Phillips curve
Tt = Iirﬁ\ct + BEtﬂt+1 (N K'PC)
® « = slope of the Phillips curve, rises with probability

® mc; = arbitrary real marginal cost ~ output gap — easy to embed in DSGE

(SD) State dependent: Pr(price change) depends on a state, eg price gap p;; — p},
® better micro fit (e.g. menu cost), but hard to simulate — no NK-PC!
® simpler experiments: e.g. permanent nominal MC shocks

® key result: “selection effect”, price level more flexible than Calvo
[Golosov-Lucas, Klenow-Kryvtsov, Nakamura-Steinsson, Midrigan, Alvarez-Lippi...]

This paper characterizes the analogue of the NK-PC for menu cost models



The Phillips curve for menu cost models: 3 main results

e Introduce generalized Phillips curve (GPC): linear map from {mc;} to {m},
represented as matrix K in the space of MA(~) coefficients:

m —K-mec (GPC)

* here, 7, mc are coefficients of MA(co) representation, stacked in vector

first order + certainty equivalence = can think of mc as small MIT shock

K exists for any pricing model, including menu cost models

Calvo NK-PC is a special case of GPC for some K

(1) Menu cost GPC = GPC of a mixture of two TD models
® gives exact sense in which SD and TD are “the same” for small shocks

® TD's depend on steady state moments — “exact sufficient statistics” for K



Implications

(1) Generalized Phillips curve (GPC) K shows how to embed menu cost models
in GE, with three ways to obtain K

(2) For quantitative macro literature, approximate equivalence result
rationalizes the Calvo New Keynesian Phillips curve with better
microfoundations

(3) For literature trying to match both micro and macro, both optimism and
caution

e Optimism, because micro-based menu cost models can be taken to the macro
data using the generalized Phillips curve

e Caution, because these seem so close to the Calvo model that they suffer from
the same macro deficiencies, like lack of internal persistence and extreme
forward-lookingness



Pricing models and GPC



Canonical menu cost model

e Discrete time, quadratic approximation to firm’s objective function

* Firm i chooses price gap xj; = pj; — p};:
* log price p;; net of idiosyncratic optimum p#, = p% . + €, € ~ f(e) iid
e if p;; is unchanged, x;; inherits random walk, x;; = X;;_, — €
® static optimum: x;; = log MC;, where log MC; is MIT shock to nominal marginal
cost

oo
. Z 1
?;I? Eo) & [2 (Xit = log MCe)® + &t - WxieAxie_1—eie}
(3 Bt

e & € {0,¢} iid random menu cost, P(§; = 0) = A
® )\ = 0 is Golosov-Lucas (GL), )\ < (0,1) is Nakamura-Steinsson (NS)

e Price index and inflation: log P = [ xpdi, 7 = log P; — log Pt_+



Solution to menu cost model

e Optimal pricing policy consists of three objects: (x;, Xt, x})
® [x;,X:] = Ss band, x; = reset point
e Law of motion based on these policies:

x;; follows random walk (no adjustment)
. until it leaves [x;, x| or free adjustment is drawn

... then price gap jumps to x;

e Steady state: x = —X, x* = MCss = 0. Distribution: 7(x) before adjustment.



Ss bands and steady state price gap distribution
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General time dependent model

e Exogenous probability of adjusting after s periods without adjustment

[Whelan, Sheedy, Carvalho-Schwartzman, Alvarez-Borovickova-Shimer]

Parametrize with survival function ®s: Prob. that price survives for s periods

When resetting at t, firm i solves

minEtZﬁ [ Xitys — log MCtys)®

{Xit} s—o

Calvo: ®; = (1 — \)° (constant adjustment hazard \)

Hazard rate can have any shape: increasing (e.g. Taylor model), decreasing...



Aggregate dynamics: pass-through matrix

e Start in steady state, consider MIT shock to nominal cost {MCs}s>o
e Both models boil down to functions P such that

A = OlogPy =
Pt = Pt ({MC. = for small shocks: P; = = MC
v =Pt ({MCs}) t _;)mogmcs s

¢ Define the pass-through matrix V as sequence-space Jacobian with

elements W, s = 7287t Then:

P=1u.MC
N N ~ ~ I~ o~ o~ /
where P = <PO,P1, P,. .. ) ,MC = (MCO,MQ, N )
e column s = IRF of price level to small aggregate nominal cost shock at date s

® |RF to permanent shock: P=V.1 [Golosov-Lucas, Alvarez-Le Bihan-Lippi, ...]

e flexible prices < W =1



Pass-through matrix for TD model

» Examples: Calvo and Taylor

e For TD model with survival curve {®}, optimal reset point at t:

¢ = Dszo BEOsMCeys
550 B°Ps
e Price level: (notice the same &5 appears!)
5, Thco PoXis
Zszo bs
Implies rank-one fake news matrix:

1 @,
(S0 %) (Zezop70:)

Fd)

I
o
—
©
o
=)
s

B2,

(Policy equation)

(Law of motion)
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Pass-through matrix for TD model

e For TD model with survival curve {®}, optimal reset point at t:

X5 = ZSzo ﬁsq)sMAC“rS
! 2520 ﬁs(bs

e Price level: (notice the same &5 appears!)

t
o _ DXy
b, _ Toeo ¥t s

(Policy equation)

(Law of motion)

Zszoq)s

®% O O - by B, [P,
. ; &, b, O - o b, B
V" =

(ZSZO ¢S) (ZSZO ﬁsfbs) 4?2 CI?1 @p ooo O (o] Cb.o

Can read off {®s} from IRF to permanent shock: (W® - 1), = 37¢_ [ &5/ 372 ) b
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General equilibrium aggregate dynamics: GPC

In simple GE models, P = W - 1 gives IRF of price level to money shock
In std NK models, want response of 7; to real marginal cost mc; = MC; — Py
Get P; via fixed point equation
P=v. (mAc - ﬁ)
solution

P= (Zwk>.rﬁ::(l—w)1w-rﬁc
R=1

Get inflation 7 using lag matrix L. Find Generalized Phillips Curve (GPC) K
a=(1-L(1-V)"V.mc=K -mc

Models with the same V also have the same K. T



Exact equivalence: Menu cost model =2 x TD




Are menu cost and TD models exactly the same?

e Permanent nominal shock: (x, X, x*) all shift up by 1 (infinitesimal unit)

Golosov-Lucas Nakamura-Steinsson
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e Split up into only shift in Ss bands (“extensive margin”) — {$¢}
e ... and only shift in reset point (“intensive margin”) — {cb’t}

e Let a be the long-run price level in the extensive margin experiment

» Calibration
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Equivalence result

e Our first result shows that ®¢ and ®' are “structural”:

we can use them to obtain the impulse response to any other shock

Proposition
The pass-through matrix ¥ of the canonical menu cost model with any X, £ and
any symmetric f is the weighted average of the two TD pass-through matrices

V= aV¥® +(1—a)v®

e Menu cost model =2 x TD model. Also: Menu cost GPC = GPC of 2 x TD
e Next: Proof idea + what ®¢ and ¢’ look like
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Expected price gaps

e Key objects in the proof: expected price gaps

e F'(x) = E[x¢|Xo = X] is the expected price gap in t periods starting from any x

Ef(x)
0.06 E%(x) l
1
E'(x) :
0.031_--— E2(x) POt \\i
— F3(x e
0.001 M
7 1
] PR I
N Pt I
—0.03{ ! T=--- ;
1 1
) 1
—0.061 ]
—0.1 0.0 0.1

Price gap 1%



Why does the extensive margin behave like a TD model?

e Start from log Pt = E [x]
e Consider a shock that only affects x,, Xo. What is its effect on price at t?

IogPt:/XXO E' (x) 7 (x) dx + (1—/xxo7r(x))i(/ol

0 0

freq

Given steady state policies, transition dynamics are governed by E (x)
[Alvarez-Le Bihan-Lippi, Alvarez-Lippi]

e For a small shock, using symmetry
dlog Pt = 7 (X) (dx, + dXo) E* (X)
e With many changes at dates t — s, get law of motion:
dlog Py = m(X) ) " E*(X) - (dX;_s + dX;_s)

s>0
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Extensive margin policies and summary

® How are dX;, dx; optimally determined? (Policy equation?)
¢ Using envelope theorem, can show:

S sso BES (X) - MCtys
> >0 BUEY (X)

The same “virtual survival rate” matters as for l.o.m., just with extra 3

e Use to rewrite law of motion as

S (y) . df
d |0g Pt - 27'('()_() Z ES ()?) Zszz:ofo (E)S()(X) a

«

e Extensive margin acts like a TD model, scaled by «, with ®¢ = E* (x)/x.
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Why does the intensive margin behave like a TD model?

¢ Intensive margin is similar. Consider first shock that only affects x.

Mass equal to fraction freq of prices adjusts to dxg ratherthanoatt =0

Raises price level by Et (0 + dx3) — Ef (0) = (E!)’ (0) dx, and so
dlog P = freq - (E') (0) dx;

With many changes at dates s < t, get TD law of motion

dlog P = freq - 3 _ (%) (0) dxi s = (1- )ZSE(ES)(és))(d)X -

Meanwhile, envelope theorem shows policy is
Ps20 B5(ES) (0) - MCeys
> uzo BU(EY) (0)

*_
dxi =

* Intensive margin acts like a TD model, scaled down by (1 - a), di = (E)’ (0).

17



Properties of the recovered mixture

Nakamura-Steinsson Nakamura-Steinsson

1.0 — Intensive margin
-=- Extensive margin | &
£ 0.81 =
g \ —:= Actual SD model | §
£06{ \% s+ Weightedavg. | £
- Ll ' g
£ 041 \ £
> \\ %)
2 - 2
3
d 0.2 . P>

0.01
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Quarters Quarters
e "virtual” survival functions ¢, ®| + implied hazards # actual ones!
The difference is the “selection effect”

* Average survival function a®¢ + (1 — ) ! is close to exponential in practice
18



Numerical equivalence: Menu cost model ~ Calvo




Calvo

e Ultimately interested in the menu cost GPCK = (1-L)(1- ¥)~'v

e To compare, consider Calvo NK-PC:
(0.)
Tt = KMCt + PRy = Z kB EtMCtys
S=0

which gives the GPC

k kB kB2
KCalvo (K,) _ aﬂ—t _ 0 K Hﬁ
OMCtys ts O 0 =«

— inflation is purely & strongly forward looking, no “intrinsic” persistence
19



Visualizing GPC for Calvo model

. Columns of Calvo GPC
- —s=0
_—] —s=10
0.10- s=20
o
.8
=
=
5 0.051
0.00 1
0 10 20 30 40

Quarters

e Q: how “far” are our menu cost models from a simple Calvo in practice?



GPC in our two calibrated menu cost models

Golosov-Lucas Nakamura-Steinsson
/] 05 /—/1 — S = 0
1.51 041 —_— s=10
— s=20
é 1.0 é 031
E E 0.21
051 0.1
00{L 0.01 L
0 10 20 30 40 0 10 20 30 40
Quarters Quarters

e Menu cost GPCs “look” very similar to Calvo with different slope parameters!
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Finding closest-distance Calvo model

e let's look for x that minimizes

dist = min ||K — K (k) [[l> / Il Klll=

e if K= K¢ (%), then dist = (k — ) /R

e Recall that two models that share the exact same K also share the same:

e pass-through matrix v
® |RF to any shock to MC or mc
® |RF to any fundamental shock once integrated in a broader macro model

(so, they are also indistinguishable in estimation based on macro data)
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GPC vs best fitting Calvo for our two menu cost models

Golosov-Lucas Nakamura-Steinsson
0.5

o < 0.31
.8 1.01 KCa/vo = 1.7l .8 ve KCa/vo =047
[ [
= Dist. =0.001 | & 02 Dist. = 0.008

0.5 R2. =1.000 011 R2. =0.998

0.0{b Wl i v

0 10 20 30 40 0 10 20 30 40
Quarters Quarters

[Reported R? from predicting 7 with kmc: + SEme 1 on K simulated data]
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Quality of fit and minimizer across the parameter space

Calvo duration

Minimizer

Minimized distance

0% free adjustments

—_
ol

— 25%

1= 500/0 O
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s
2

A 05

0.01

2 4 6
State-dependent duration

4 6
Duration
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Extensions

Strategic complementarities — @

Steady state inflation — @

Infrequent shocks — @

Multi-product models — @

Multi-sector models — @

Large shocks — @
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Measuring the GPC directly




Measuring the GPC exactly using E*(x)

For K, we can measure Et(x) in the data.

e One option: use data on price changes alone + model law of motion

To do this, first enrich model to allow for general cdf &; ~ G (+)

— leads to a generalized state-dependent adjustment hazard A (x)
[Caballero-Engel, Alvarez-Lippi-Oskolkov, Karadi-Schoenle-Wursten]

A(x), m(x), o can all be backed out from data on price changes

— recover expected price gaps Et(x) from this

Plug into generalized decomposition

V= i //\\,/( ) (X))g(x)) W Ndx 4 (1—a) - v

where ®¢(x) = Et(x) /x and ®] = (E*)’ (0) similar to before 6(x) = Y, E{(x)
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Fitted hazard function A(x) and (GPC)

e Apply this to Israeli price change distribution

[Bonomo-Carvalho-Kryvtsov-Ribon-Rigato]

e
g 1.0 0.8 I J —— Menu cost
£ 7 A -=-- Calvo
= 0.8
é 0.6
2 0.6 g
=) 5 0.4
< =t
3044 =
‘i 0.21
g 0.2
g 0.0{% : :
= 0.0 ‘ ‘ ‘ ) ‘ : :
—4 -2 0 2 4 0 10 20 30

Standardized price gap Quarter




Conclusion




Conclusion

¢ Calvo:
me = KCNOme; + BBy q

¢ Menu cost:

Tt = Z Kt,s . n/q\cs ~ /m/fct -+ ﬁEtﬂt+1, K > HCalvo
5>0
e Sequence-space Jacobians W and K give new insights!

— Menu cost models suffer from similar shortcomings as Calvo....

. more work needed to get model that matches micro prices and macro inflation
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Extra slides




Calibration of random menu cost model

e For calibration, assume idiosyncratic shock distribution is ¢ ~ A/ (0, o)

Given )\; calibrate &, o to match:

Average frequency of price change of 23.9% quarterly (“freq”)

e Median price adjustment of 8.5%
[regular price changes for median sector in US CPI, see Nakamura-Steinsson]

Two benchmarks: A = 0 (GL) and \ = 0.75 - freq (NS)

® Notes:
® only two effective parameters are \/freq and £/0?, ¢ then determines scale
e for convenience, we reparameterize by \/freq and freq (or duration=1/freq)
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Calvo

Price level
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Taylor
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Properties of the recovered mixture (GL)

Golosov-Lucas

Golosov-Lucas

S~o 1.01
B caasTh
g p
§ 0.6 % 0.8
< § 0.61
k= =
] =,
g 0.41 g 041
2 A4l 18
Z P N 0.2
021 .~
0.01
0 1 2 3 4 5 6 2 3 4
Quarters Quarters
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Alvarez-Lippi-Souganidis

e Another use of U : permanent cost shock but strategic complementarities

e As in Alvarez-Lippi-Souganidis (2022): parameterize by ¢
e from either Kimball demand or I-O with common input

Get P via fixed point equation
P=u. (1 + «9I3)
solution

P= (i (mu)’*) W= (1-0v)"" B

k=0

where Py, is response without strategic complementarities

ALS use self-adjointness of W to write with eigenvalues-eigenfunctions

When 6 = 1, we get the GPC K
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Gertler-Leahy

e Gertler and Leahy (2008 JPE) assume the mixture distribution
¢=01-n)-0+n U[-M,M]
where M is large

e This implies

SO

ot =EW __pt ol () ()= (1-n)

so pass-through matrix ¥ is a Calvo with reset frequency 1 — 7
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Response of Ss bands

Reason for shock at s affecting date o, then sum across s and shift

Start with upper Ss band. Value matching implies
Vo (Xo) = Vo (X5) + ¢
Differentiate and use V' (0) = dV, (0) =0

dVo (X) + V' (%) dX; = O

Next, envelope theorem implies

V() = 3 B (1)

t
dVo(x) = —B°ES(x)dMCs

Conclude that BER)
X P
dXo = =———-—-dMC
o YL BUEIR)
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Response of reset points

e For reset point, FOC is
Vo (x5) =0
Differentiate
dvg (0) + VvV’ (0)dxs =0

e Envelope theorem again
V' (x) =Y B (EY) (x)
t
dvi(x) = —5° (E%) (x)dMCs

e Conclude that
8° (E°) (o) .

dxg = —— 2" __dMCs
o= S, B (EvY (o)
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Impulse responses to real marginal cost shock with p € {0.3,0.6,0.8}

Golosov-Lucas

Nakamura-Steinsson

Inflation
o <

N

Inflation

o

6
Quarters

Quarters
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Menu costs in a Smets-Wouters model

Inflation

Output
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o
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Minimizer vs ALL formula across the parameter space

Minimizer
4] 0% free adjustments 2
— 25%
§3]—50%
T |— 75%
B 5| — 90%
o
=
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State-dependent duration



What determines x? A sufficient statistic approach

¢ Implementing with 3 = 0.99, find x to be:
Kur (Ap)
2 3 4
0.2 | 0.40 047 0.09
Freq (Ap) | 0.3 | 1.02 0.40 0.22
0.4 | 226 077 0.40

® For reference:

* In data, quarterly Freq (Ap) ~ 0.2 to 0.3 (model = 0.24)
® |n data: Kur (Ap) between 3 and 4
[Alvarez-Le Bihan-Lippi, Bonomo-Carvalho-Kryvtsov-Ribon-Rigatol]

® In models: Kur (Ap) is 1.3 for GL, 2.3 for NS, 2 for Midrigan

e Contrast to recent macro full-sample IV estimate of x = 0.0031!

[Hazell-Herrefio-Nakamura-Steinsson, using x = d“:“with o=¢=1]
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Strategic complementarities

e Standard resolution to adjust size: strategic complementarities.
e These work very well with GPCs. Suppose now:
xcompl

P =¢Pi+(1—()logPt
® ( € (0,1) implies firms like to set price close to aggregate price level
e can microfound in GE with intermediate input share 1 — ¢

Proposition
Generalized Phillips Curve scales with (:

Kcompl _ CK

¢ Note shape of Phillips curve is unchanged by ¢, e.g. no more persistence

A



Arbitrary parameters

Minimized distance

Minimized distance

4
1.51
—_ 37 —_~
B B
g ) é 1.01
g g
o2 &2
=) 11 A 05
01 0.01
2 4 6 4 6 8
Duration Duration
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Steady state inflation of 2%

Inflation
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Golosov-Lucas
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Steady state inflation of 2% - Impulse responses

Golosov-Lucas

Nakamura-Steinsson
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Steady state inflation of 5%

Inflation

Golosov-Lucas

- Jacobians

Nakamura-Steinsson
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]
Dist. =0.012 | & 02 Dist. = 0.011
R?. =1.000 R?. =0.998
: ol
0 10 20 30 40 0 10 20 30
Quarters Quarters

40

45



Steady state inflation of 5% - Impulse responses

Golosov-Lucas

Nakamura-Steinsson
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Infrequent shocks

Golosov-Lucas

Nakamura-Steinsson
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Multi-product model

Midrigan

o
o

Inflation
o
~

o
N

//w —— Menu cost
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e Midrigan model: 2 products.
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Multi-sector models

Golosov-Lucas

Inflation

rrir

0 10 20 30
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40

Inflation
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—— Menu cost
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Multi-sector models

Sectors

Golosov-Lucas

Nakamura-Steinsson

Sectors

Golosov-Lucas

Nakamura-Steinsson

Vehicle fuel, used cars
Utilities
Travel
Unprocessed food
Transp. goods
Services (1)

Processed food, other

Real Norm

0.212

0.071

0.002

0.001

0.001

0.001

Ccalvo

618.8
294.6
23.24
13.31
14.07

3.23

Real Norm

0.003

0.001

0.003

0.004

0.004

0.009

calvo

98.82
4413
519
3.27
3.42

0.90

Services (2)
Hh. furnishings
Services (3)
Recreation goods
Services (4)
Apparel

Services (5)

Real Norm

0.001

0.002

0.002

0.002

0.003

0.007

0.011

calvo

1.60
0.97
0.89
0.86
0.56
0.31

0.20

Real Norm

0.010

0.010

0.010

0.010

0.010

0.012

0.015

calvo

0.44
0.26
0.23
0.23
0.5
0.08

0.05
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Large nominal cost shock and the price level

Golosov-Lucas Nakamura-Steinsson
0.05 0.05
r
d

0.04 17" 0.04
o 0.031Y o 0.03
9 g
= =
& 0.02 & 0.0

oo i \

0.00 ‘ ] ] T ] 0.001 ‘ ‘ I ] !

0 2 4 6 8 10 12 0 2 4 6 8 10 12
Quarters Quarters

® 5% shock size with persistence € {0.3,0.6,1}.
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