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Time dependent vs. state dependent pricing

(TD) Time dependent: Pr(price change) depends on time since last adjustment
• tractable, e.g. for Calvo with constant probability get Phillips curve

πt = κm̂ct + βEtπt+1 (NK-PC)
• κ = slope of the Phillips curve, rises with probability

• m̂ct = arbitrary real marginal cost ∼ output gap→ easy to embed in DSGE

(SD) State dependent: Pr(price change) depends on a state, eg price gap pit − p∗it
• better micro �t (e.g. menu cost), but hard to simulate→ no NK-PC!
• simpler experiments: e.g. permanent nominal MC shocks
• key result: “selection e�ect”, price level more �exible than Calvo

[Golosov-Lucas, Klenow-Kryvtsov, Nakamura-Steinsson, Midrigan, Alvarez-Lippi...]

This paper characterizes the analogue of the NK-PC formenu cost models 2



The Phillips curve for menu cost models: 3 main results

• Introduce generalized Phillips curve (GPC): linear map from {m̂ct} to {πt},
represented as matrix K in the space of MA(∞) coe�cients:

π = K · m̂c (GPC)

• here, π, m̂c are coe�cients of MA(∞) representation, stacked in vector
• �rst order + certainty equivalence⇒ can think of m̂c as small MIT shock

• K exists for any pricing model, including menu cost models
• Calvo NK-PC is a special case of GPC for some K

(1) Menu cost GPC = GPC of a mixture of two TD models
• gives exact sense in which SD and TD are “the same” for small shocks
• TD’s depend on steady state moments→ “exact su�cient statistics” for K

(2) Menu cost GPC ≈ Calvo NK-PC: for some κ

πt ≈ κm̂ct + βEtπt+1
• holds for all shocks m̂ct → κ is “approximate su�cient statistic” for K

• new models, same old Phillips curve (just a higher κ)
• extends Gertler-Leahy result to much larger set of models

(3) Measuring K, κ directly from the data
• can measure su�cient statistics for K straight from cross-sectional data on
price changes; no need to simulate the menu cost model
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Implications

(1) Generalized Phillips curve (GPC) K shows how to embed menu cost models
in GE, with three ways to obtain K

(2) For quantitative macro literature, approximate equivalence result
rationalizes the Calvo New Keynesian Phillips curve with better
microfoundations

(3) For literature trying to match both micro and macro, both optimism and
caution
• Optimism, because micro-based menu cost models can be taken to the macro
data using the generalized Phillips curve

• Caution, because these seem so close to the Calvo model that they su�er from
the same macro de�ciencies, like lack of internal persistence and extreme
forward-lookingness

(4) Limitation : following Phillips curve literature, aggregate analysis is mostly
�rst-order
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Pricing models and GPC



Canonical menu cost model

• Discrete time, quadratic approximation to �rm’s objective function
• Firm i chooses price gap xit = pit − p∗it:

• log price pit net of idiosyncratic optimum p∗it = p∗it−1 + εit, εit ∼ f (ε) iid
• if pit is unchanged, xit inherits random walk, xit = xit−1 − εit
• static optimum: xit = logMCt, where logMCt is MIT shock to nominal marginal
cost

min
{xit}

E0
∞∑
t=0

βt
[
1
2 (xit − logMCt)2 + ξit · 1{xit 6=xit−1−εit}

]

• ξit ∈ {0, ξ} iid random menu cost, P(ξit = 0) = λ

• λ = 0 is Golosov-Lucas (GL), λ ∈ (0, 1) is Nakamura-Steinsson (NS)

• Price index and in�ation: log Pt =
∫
xitdi, πt = log Pt − log Pt−1 5



Solution to menu cost model

• Optimal pricing policy consists of three objects: (xt, xt, x∗t )

• [xt, xt] = Ss band, x∗t = reset point

• Law of motion based on these policies:

xit follows random walk (no adjustment)

... until it leaves [xt, xt] or free adjustment is drawn

... then price gap jumps to x∗t

• Steady state: x = −x, x∗ = MCss = 0. Distribution: π(x) before adjustment.
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Ss bands and steady state price gap distribution
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General time dependent model

• Exogenous probability of adjusting after s periods without adjustment
[Whelan, Sheedy, Carvalho-Schwartzman, Alvarez-Borovičková-Shimer]

• Parametrize with survival function Φs: Prob. that price survives for s periods

• When resetting at t, �rm i solves

min
{xit}

Et
∞∑
s=0

βs
[
1
2Φs

(
xit+s − logMCt+s

)2]

• Calvo: Φs = (1− λ)s (constant adjustment hazard λ)

• Hazard rate can have any shape: increasing (e.g. Taylor model), decreasing...
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Aggregate dynamics: pass-through matrix

• Start in steady state, consider MIT shock to nominal cost {MCs}s≥0
• Both models boil down to functions Pt such that

Pt = Pt ({MCs}) ⇒ for small shocks: P̂t =
∞∑
s=0

∂ logPt
∂ logMCs

M̂Cs

• De�ne the pass-through matrix Ψ as sequence-space Jacobian with
elements Ψt,s ≡ ∂ log Pt

∂ logMCs . Then:

P̂ = Ψ · M̂C
where P̂ ≡

(
P̂0, P̂1, P̂2, . . .

)′
, M̂C ≡

(
M̂C0, M̂C1, . . .

)′
• column s = IRF of price level to small aggregate nominal cost shock at date s

• IRF to permanent shock: P̂ = Ψ · 1 [Golosov-Lucas, Alvarez-Le Bihan-Lippi, ...]

• �exible prices⇔ Ψ = I
9



Pass-through matrix for TD model Examples: Calvo and Taylor

• For TD model with survival curve {Φs}, optimal reset point at t:

x∗t =

∑
s≥0 β

sΦsM̂Ct+s∑
s≥0 β

sΦs
(Policy equation)

• Price level: (notice the same Φs appears!)

P̂t =

∑t
s=0 Φsx∗t−s∑
s≥0 Φs

(Law of motion)

Implies rank-one fake news matrix:

FΦ ≡ 1(∑
s≥0 Φs

)(∑
s≥0 β

sΦs

)


Φ0

Φ1

Φ2
...


(

Φ0 βΦ1 β2Φ2 · · ·
)
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Pass-through matrix for TD model Examples: Calvo and Taylor

• For TD model with survival curve {Φs}, optimal reset point at t:

x∗t =

∑
s≥0 β

sΦsM̂Ct+s∑
s≥0 β

sΦs
(Policy equation)

• Price level: (notice the same Φs appears!)

P̂t =

∑t
s=0 Φsx∗t−s∑
s≥0 Φs

(Law of motion)

ΨΦ ≡ 1(∑
s≥0 Φs

)(∑
s≥0 β

sΦs

)


Φ0 0 0 · · ·
Φ1 Φ0 0 · · ·
Φ2 Φ1 Φ0 · · ·
...

...
...

. . .




Φ0 βΦ1 β2Φ2 · · ·
0 Φ0 βΦ1 · · ·
0 0 Φ0 · · ·
...

...
...

. . .


Can read o� {Φs} from IRF to permanent shock:

(
ΨΦ · 1

)
t =

∑t
s=0 Φs/

∑∞
s=0 Φs
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General equilibrium aggregate dynamics: GPC Relation to Alvarez-Lippi-Souganidis

• In simple GE models, P̂ = Ψ · 1 gives IRF of price level to money shock
• In std NK models, want response of πt to real marginal cost m̂ct = M̂Ct − P̂t
• Get P̂t via �xed point equation

P̂ = Ψ ·
(
m̂c+ P̂

)
solution

P̂ =

( ∞∑
k=1

Ψk

)
· m̂c = (I−Ψ)−1 Ψ · m̂c

• Get in�ation πt using lag matrix L. Find Generalized Phillips Curve (GPC) K
π = (I− L) (I−Ψ)−1 Ψ · m̂c ≡ K · m̂c

• Models with the same Ψ also have the same K.
11



Exact equivalence: Menu cost model = 2 × TD



Are menu cost and TD models exactly the same? Calibration

• Permanent nominal shock: (x, x, x∗) all shift up by 1 (in�nitesimal unit)
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• Split up into only shift in Ss bands (“extensive margin”)→ {Φe
t }

• ... and only shift in reset point (“intensive margin”)→
{

Φi
t

}
• Let α be the long-run price level in the extensive margin experiment 12



Equivalence result

• Our �rst result shows that Φe and Φi are “structural”:
we can use them to obtain the impulse response to any other shock

Proposition
The pass-through matrix Ψ of the canonical menu cost model with any λ, ξ and
any symmetric f is the weighted average of the two TD pass-through matrices

Ψ = αΨΦe
+ (1− α) ΨΦi

• Menu cost model = 2 × TD model. Also: Menu cost GPC = GPC of 2 × TD
• Next: Proof idea + what Φe and Φi look like
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Expected price gaps Relation to Gertler-Leahy

• Key objects in the proof: expected price gaps
• Et (x) ≡ E [xt|x0 = x] is the expected price gap in t periods starting from any x
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Why does the extensive margin behave like a TD model?

• Start from log Pt = E [xit]
• Consider a shock that only a�ects x0, x0. What is its e�ect on price at t?

log Pt =

∫ x0

x0
Et (x)π (x)dx +

(
1−

∫ x0

x0
π (x)

)
︸ ︷︷ ︸

freq

Et (0)︸ ︷︷ ︸
0

Given steady state policies, transition dynamics are governed by Et (x)
[Alvarez-Le Bihan-Lippi, Alvarez-Lippi]

• For a small shock, using symmetry
d log Pt = π (x) (dx0 + dx0) Et (x)

• With many changes at dates t− s, get law of motion:
d log Pt = π(x̄)

∑
s≥0

Es (x) ·
(
dxt−s + dx̄t−s

)
15



Extensive margin policies and summary Proof

• How are dx̄t, dxt optimally determined? (Policy equation?)
• Using envelope theorem, can show:

dxt = dxt =

∑
s≥0 β

sEs (x) · M̂Ct+s∑
u≥0 β

uEu (x)

The same “virtual survival rate” matters as for l.o.m., just with extra β

• Use to rewrite law of motion as

d log Pt = 2π(x̄)
∑
s≥0

Es (x)︸ ︷︷ ︸
α

∑
s≥0 Es (x) · dxt∑

s≥0 Es (x)

• Extensive margin acts like a TD model, scaled by α, with Φe
t ≡ Et (x)/x.
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Why does the intensive margin behave like a TD model?

• Intensive margin is similar. Consider �rst shock that only a�ects x∗0.
• Mass equal to fraction freq of prices adjusts to dx∗0 rather than 0 at t = 0

• Raises price level by Et (0+ dx∗0)− Et (0) =
(
Et
)′

(0)dx∗0 and so

d log Pt = freq ·
(
Et
)′

(0)dx∗0
• With many changes at dates s ≤ t, get TD law of motion

d log Pt = freq ·
∑
s≥0

(Es)′ (0)dx∗t−s = (1− α)

∑
s≥0 (Es)′ (0) · dx∗t−s∑

s≥0 (Es)′ (0)

Meanwhile, envelope theorem shows policy is

dx∗t =

∑
s≥0 β

s(Es)′ (0) · M̂Ct+s∑
u≥0 β

u(Eu)′ (0)

• Intensive margin acts like a TD model, scaled down by (1− α), Φi
t ≡

(
Et
)′

(0). 17



Properties of the recovered mixture Golosov-Lucas Gertler-Leahy
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• ”virtual” survival functions Φe
t ,Φ

i
t + implied hazards 6= actual ones!

The di�erence is the “selection e�ect”

• Average survival function αΦe
t + (1− α) Φi

t is close to exponential in practice
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Numerical equivalence: Menu cost model ≈ Calvo



Calvo

• Ultimately interested in the menu cost GPC K = (I− L) (I−Ψ)−1 Ψ

• To compare, consider Calvo NK-PC:

πt = κm̂ct + βEtπt+1 =
∞∑
s=0

κβsEtm̂ct+s

which gives the GPC

KCalvo(κ) =

(
∂πt

∂m̂ct+s

)
t,s

=


κ κβ κβ2 · · ·
0 κ κβ · · ·
0 0 κ · · ·
...

...
... . . .


→ in�ation is purely & strongly forward looking, no “intrinsic” persistence
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Visualizing GPC for Calvo model
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• Q: how “far” are our menu cost models from a simple Calvo in practice?
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GPC in our two calibrated menu cost models
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• Menu cost GPCs “look” very similar to Calvo with di�erent slope parameters!
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Finding closest-distance Calvo model

• Let’s look for κ that minimizes

dist = min
κ

9K − KCalvo (κ) 92 / 9 K92

• if K = KCalvo(κ̃), then dist = (κ̃− κ) /κ̃

• Recall that two models that share the exact same K also share the same:
• pass-through matrix Ψ

• IRF to any shock to MC or mc
• IRF to any fundamental shock once integrated in a broader macro model

(so, they are also indistinguishable in estimation based on macro data)
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GPC vs best �tting Calvo for our two menu cost models AR shocks Smets-Wouters
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[Reported R2 from predicting πt with κm̂ct + βEtπt+1 on K simulated data]
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Quality of �t and minimizer across the parameter space ALL �t
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Extensions

• Strategic complementarities→

• Steady state in�ation→

• Infrequent shocks→

• Multi-product models→

• Multi-sector models→

• Large shocks→
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Measuring the GPC directly



Measuring the GPC exactly using Et(x)

• For K, we can measure Et(x) in the data.

• One option: use data on price changes alone + model law of motion
• To do this, �rst enrich model to allow for general cdf ξit ∼ G (·)

→ leads to a generalized state-dependent adjustment hazard Λ (x)
[Caballero-Engel, Alvarez-Lippi-Oskolkov, Karadi-Schoenle-Wursten]

• Λ(x), π(x), σε can all be backed out from data on price changes

→ recover expected price gaps Et(x) from this

• Plug into generalized decomposition

Ψ = α

∫
Λ′(x)π(x)G(x)∫
Λ′(x̃)π(x̃)G(x̃)dx̃ ·Ψ

Φe(x)dx + (1− α) ·ΨΦi

where Φe
t (x) = Et (x) /x and Φi

t =
(
Et
)′

(0) similar to before G(x) ≡
∑

t Et(x) 26



Fitted hazard function Λ(x) and (GPC)

• Apply this to Israeli price change distribution
[Bonomo-Carvalho-Kryvtsov-Ribon-Rigato]
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Conclusion



Conclusion

• Calvo:
πt = κCalvom̂ct + βEtπt+1

• Menu cost:

πt =
∑
s≥0

Kt,s · m̂cs ≈ κm̂ct + βEtπt+1, κ > κCalvo

• Sequence-space Jacobians Ψ and K give new insights!

→ Menu cost models su�er from similar shortcomings as Calvo....

... more work needed to get model that matches micro prices andmacro in�ation
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Calibration of random menu cost model Back

• For calibration, assume idiosyncratic shock distribution is φ ∼ N (0, σ)

• Given λ; calibrate ξ, σ to match:
• Average frequency of price change of 23.9% quarterly (“freq”)

• Median price adjustment of 8.5%
[regular price changes for median sector in US CPI, see Nakamura-Steinsson]

• Two benchmarks: λ = 0 (GL) and λ = 0.75 · freq (NS)

• Notes:
• only two e�ective parameters are λ/freq and ξ/σ2, ξ then determines scale
• for convenience, we reparameterize by λ/freq and freq (or duration=1/freq)
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Calvo Back
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Taylor Back
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Properties of the recovered mixture (GL) Back
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Alvarez-Lippi-Souganidis back

• Another use of Ψ : permanent cost shock but strategic complementarities
• As in Alvarez-Lippi-Souganidis (2022): parameterize by θ

• from either Kimball demand or I-O with common input

• Get P̂t via �xed point equation
P̂ = Ψ ·

(
1+ θP̂

)
solution

P̂ =

( ∞∑
k=0

(θΨ)k
)
·Ψ1 = (I− θΨ)−1 · P̂0

where P̂0 is response without strategic complementarities
• ALS use self-adjointness of Ψ to write with eigenvalues-eigenfunctions

• When θ = 1, we get the GPC K 33



Gertler-Leahy Back

• Gertler and Leahy (2008 JPE) assume the mixture distribution

φ = (1− η) · 0+ η · U [−M,M]

where M is large

• This implies
Et (x) = (1− η)t x

so
Φe
t =

Et (x)

x = (1− η)t Φi
t =

(
Et
)′

(0) = (1− η)t

so pass-through matrix Ψ is a Calvo with reset frequency 1− η
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Response of Ss bands Back

• Reason for shock at s a�ecting date 0, then sum across s and shift
• Start with upper Ss band. Value matching implies

V0 (x0) = V0 (x∗0) + ξ

Di�erentiate and use V′ (0) = dV0 (0) = 0

dV0 (x) + V′ (x)dxt = 0

• Next, envelope theorem implies

V′ (x) =
∑
t
βtEt (x)

dV0(x) = −βsEs(x)dM̂Cs
• Conclude that

dx0 =
βsEs(x̄)∑
u β

uEu(x̄)
dM̂Cs 35



Response of reset points Back

• For reset point, FOC is
V′0 (x∗0) = 0

Di�erentiate
dV′0 (0) + V′′ (0)dx∗0 = 0

• Envelope theorem again

V′′ (x) =
∑
t
βt
(
Et
)′

(x)

dV′0(x) = −βs (Es)′ (x)dM̂Cs
• Conclude that

dx∗0 =
βs (Es)′ (0)∑
u β

u (Eu)′ (0)
dM̂Cs
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Impulse responses to real marginal cost shock with ρ ∈ {0.3,0.6,0.8} Back
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Menu costs in a Smets-Wouters model Back
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Minimizer vs ALL formula across the parameter space back
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What determines κ? A su�cient statistic approach back

• Implementing with β = 0.99, �nd κ to be: performance vs model

Kur (∆p)

2 3 4

Freq (∆p)

0.2 0.40 0.17 0.09
0.3 1.02 0.40 0.22
0.4 2.26 0.77 0.40

• For reference:
• In data, quarterly Freq (∆p) ' 0.2 to 0.3 (model = 0.24)
• In data: Kur (∆p) between 3 and 4

[Alvarez-Le Bihan-Lippi, Bonomo-Carvalho-Kryvtsov-Ribon-Rigato]

• In models: Kur (∆p) is 1.3 for GL, 2.3 for NS, 2 for Midrigan

• Contrast to recent macro full-sample IV estimate of κ = 0.0031!
[Hazell-Herreño-Nakamura-Steinsson, using κ = κu

σ+φ
with σ = φ = 1]
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Strategic complementarities back

• Standard resolution to adjust size: strategic complementarities.
• These work very well with GPCs. Suppose now:

p∗complit = ζp∗it + (1− ζ) log Pt
• ζ ∈ (0, 1) implies �rms like to set price close to aggregate price level
• can microfound in GE with intermediate input share 1− ζ

Proposition
Generalized Phillips Curve scales with ζ :

Kcompl = ζK

• Note shape of Phillips curve is unchanged by ζ , e.g. no more persistence
41



Arbitrary parameters back
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Steady state in�ation of 2% - Jacobians back
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Steady state in�ation of 2% - Impulse responses

0 2 4 6 8 10 12
Quarters

0

2

4

6

8

In
fla

ti
on

Golosov-Lucas

0 2 4 6 8 10 12
Quarters

0.0

0.5

1.0

1.5

2.0

In
fla

ti
on

Nakamura-Steinsson
Menu cost
Calvo

44



Steady state in�ation of 5% - Jacobians back
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Steady state in�ation of 5% - Impulse responses
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Infrequent shocks back
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Multi-product model back
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• Midrigan model: 2 products.
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Multi-sector models back
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Multi-sector models back

Sectors Golosov-Lucas Nakamura-Steinsson Sectors Golosov-Lucas Nakamura-Steinsson

Real Norm κCalvo Real Norm κCalvo Real Norm κCalvo Real Norm κCalvo

Vehicle fuel, used cars - - - - Services (2) 0.001 1.60 0.010 0.44

Utilities 0.212 618.8 0.003 98.82 Hh. furnishings 0.002 0.97 0.010 0.26

Travel 0.071 294.6 0.001 44.13 Services (3) 0.002 0.89 0.010 0.23

Unprocessed food 0.002 23.24 0.003 5.19 Recreation goods 0.002 0.86 0.010 0.23

Transp. goods 0.001 13.31 0.004 3.27 Services (4) 0.003 0.56 0.010 0.15

Services (1) 0.001 14.07 0.004 3.42 Apparel 0.007 0.31 0.012 0.08

Processed food, other 0.001 3.23 0.009 0.90 Services (5) 0.011 0.20 0.015 0.05
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Large nominal cost shock and the price level back
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• 5% shock size with persistence ∈ {0.3,0.6, 1}.
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