



## **Direct R&D Subsidies**



NBER Innovation Boot Camp July 21st, 2022

John Van Reenen

**LSE and MIT** 





#### Innovation Policy: The "Lightbulb" Table







Source: Bloom, Van Reenen and Williams (2019, JEP)

#### **Innovation Policies: R&D Grants**

#### Academic

- See earlier lecture by Azoulay and Azoulay & Li (2022)
- Examples in Health/NIH: Azoulay et al '19; Jacob & Lefgren,
   '11

#### Private Sector

- Fairly large literature (though not as big as R&D tax credits)
- Example: Green Energy (Howell, '17 AER)
- Interactions between tax credit & direct grants (Pless, 2022)

#### **Innovation Policies: R&D Grants**

- In contrast to horizontal policies such as tax, R&D grants can be more targeted
  - Directed at specific technologies; industries; geographical areas, etc.

#### Upsides:

- Can be target to where social benefits are highest e.g. larger knowledge spillovers; climate change to tackle "double externality", etc.
- With general R&D tax credits firms focus on (marginal) private value projects

#### Downsides:

- Informational asymmetry over what projects are valuable (VCs better, so do "matched funding"? Lerner, 2022)
- Administrative costs of deciding what & who to fund
- Political economy risks: capture (Akcigit, Baslandze & Lotti, 2022); difficulty of closing down failing projects; big firms game system? (Criscuolo et al, 2019)
- Deadweight? Crowd-out private sector (although similar issues with tax)

## **Identification Challenges/Benefits**

- Unlike tax rules, grants are only awarded to specific "winners", so more variation in who receives
- But highly selected grants are consciously awarded to where agency thinks/claims they will do the most use. Estimating effects on later innov:
  - Bias upwards if successful firms more likely to get the funds
  - Bias downwards if money goes to compensate "losers"
- Comparing all winners vs. all losers unlikely to get around endogeneity biases. Solution?:
- Looking at "just winners" vs. "just losers" in a Regression Discontinuity
  Design type approach (e.g. Bronzini and Iachini, 2014, 2016 on Italian
  R&D program; Changes in funding rules generates nonlinearities, Einiö,
  2014)
  - Howell (2017) on green energy .....

## **Howell (2017, AER)**

US Department of Energy green SBIR awards

- Admin data on applications, scores and future outcomes
- Results: Phase I award doubles chances of future VC. Also increases patenting and revenue
  - Stronger effects for financially constrained firms

#### **Econometric model**

• Regression Discontinuity Design (RDD) based on normalized rank of proposal i for competition topic  $T(Rank_{iT}=0)$  for threshold)



## Positive effect on VC funding



FIGURE 3. PROBABILITY OF VENTURE CAPITAL BEFORE AND AFTER GRANT BY RANK

*Notes:* This figure shows the fraction of applicants who received VC before and after the Phase 1 grant. Ninety-five percent confidence intervals shown.

## Positive effect on innovation (cite-weighted patents)



FIGURE 2. CITE-WEIGHTED PATENTS BEFORE AND AFTER PHASE 1 GRANT BY RANK

Notes: This figure shows  $\ln (1 + Cites_i^{post})$  before and after the Phase 1 grant award decision, using the patent application date. DOE's rank is centered so  $rank_{ic} > 0$  indicates a firm won an award. Ninety-five percent confidence intervals shown.

#### **R&D Grants: Military shocks**

- Many innovations from defense spillovers.
  - In US, 60% of all Federal R&D goes to Dept. of Defense (DoD): world's largest R&D supporting entity (6% of global R&D)
  - Dual-use aspect of frontier defense technology: large spillovers to private sector (e.g. GPS, cryptography, nuclear power, jet engines, Internet,...)
- US Dept. of Defense lauded as successful Mission-Oriented Industrial Policy. from case studies (e.g. Mazzucato and Semieniuk, 2017)
  - But Howell et al (2022) show that slowdown in US defense innovation even worse than rest of economy



#### **R&D Grants: Military shocks**

- Moretti, Steinwender & Van Reenen (2022) use public R&D hikes induced by defense shocks:
  - Example: Post 9/11 ramp up in US military R&D focused more in some sectors (e.g. cyber-ICT, bio-pharma than others medical devices, transport)
  - 26 OECD countries by Industry panel data, 1987-2009
  - French firm level panel data, 1980-2015
  - Find 10% more public R&D stimulates ~5% more private sector R&D in long-run & higher TFP growth

# OPENing up Military Innovation: Causal effects of Reforms to U.S. Defense Research

Sabrina Howell (NYU), Jason Rathje (US Air Force), John Van Reenen (LSE and MIT) and Jun Wong (Chicago)













## Conventional (centralized) vs. OPEN (decentralized) R&D Grants

- Conventional program took centralized top-down approach: tightly specified calls like:
  - "Affordable, Durable, Electrically Conductive Coating or Material Solution for Silver Paint Replacement on Advanced Aircraft"
- In response to declining military innovation, US Air Force (USAF) launched OPEN reforms to R&D procurement in their Small Business Innovation Research (SBIR) program
- OPEN Reform allowed firms more freedom to propose the innovations they thought USAF needed "unknown unknowns"
- Admin data on all applicants, grant scores and outcomes 1983-2021 to implement a sharp Regression Discontinuity Design

## Findings from Howell, Rathje, Van Reenen & Wong (2022)

- New types of firms starting applying & winning: younger, smaller, based in VC hubs of Silicon Valley, Boston, etc.
- Large Positive causal effects of OPEN program on:
  - VC funding
  - Defense Department Technology adoption
  - Innovation (quality-weighted patents)
- Conventional program had <u>no</u> causal effect on these & (unlike OPEN) only increased chances of winning another SBIR contract (implies lock-in by "SBIR mills")

## Big jump in innovation near threshold of winning for Open but not for Conventional

Figure 7: Probability of Patents by Rank Around Cutoff



Note: These figures show the probability that an applicant firm had any ultimately granted patent applications within 24 months after the award decision. In both panels, the x-axis shows the applicant's rank around the cutoff for an award. A rank of 1 indicates that the applicant had the lowest score among winners, while a rank of -1 indicates that the applicant had the highest score among losers. We plot the points and 95% confidence intervals from a regression of the outcome on a full complement of dummy variables representing each rank, as well as fixed effects for the topic. The omitted group is rank=-1. We include first applications from 2017-19.

## Big jump in future VC funding near threshold of winning for Open but not for Conventional

Figure 5: Probability of Venture Capital by Rank Around Cutoff



Note: These figures show the probability that an applicant firm raised venture capital investment (VC) within 24 months after the award decision. In both panels, the x-axis shows the applicant's rank around the cutoff for an award. A rank of 1 indicates that the applicant had the lowest score among winners, while a rank of -1 indicates that the applicant had the highest score among losers. We plot the points and 95% confidence intervals from a regression of the outcome on a full complement of dummy variables representing each rank, as well as fixed effects for the topic. The omitted group is rank=-1. We include first applications from 2017-19.

## Conclusions from Howell, Rathje, Van Reenen & Wong (2022)

- Direct R&D grants effective if not too tightly specified
  - Use a ML techniques on texts of Conventional proposals since 2003-2020: nonspecific proposals successful like
     Open
  - Compare other reforms which induced new entrants, but were still top-down
- Model of costs and benefits (calibrated with some moments from results and Bhattacharya, 2021, ECMA) shows large benefits for Open compared to conventional

#### **R&D** grants: Summary

- Direct R&D grants literature smaller than that on tax credits, but rapidly growing
- RDD and other credible identification strategies suggest that R&D subsidies can be effective in crowding in private R&D and stimulating innovation
- Several studies show larger effects for young/new firms (suggestive of financial constraints and/or capture by incumbents)
- Design matters: Tightly specified programs appear less successful
- But studies do not address GE issue that large programs may just induce higher price of R&D. What about supply policies?