

Programme on
Innovation and Diffusion

Innovation Policies: R&D Spillovers

NBER Innovation Boot Camp
July 21st , 2022

John Van Reenen

LSE and MIT

Introduction

- R&D knowledge spillovers critical to justification for public policy intervention
- **Direct** effect of R&D on performance hard to measure, **indirect** effects even harder!
 - Direct effect is how firm i outcomes (e.g. TFP) depend on firm i inputs (e.g. R&D)
 - Indirect effect is how firm i outcomes on ALL other firm j 's inputs
 - Serious curse of dimensionality!
- And many other econometric issues with identifying peer effects, even if we only had one known peer (cf. Manski, 1993)

R&D in the production function

- R&D augmented production function:

$$q_{it} = a_0 + \alpha_L l_{it} + \alpha_K k_{it} + \alpha_G g_{it}$$

- Where $g = \ln G$; $G = R&D$ stock: e.g. $G_{it} = R_{it-1} + (1-\delta^G)G_{it-1}$
- R&D stock one of many “intangible capital stocks”
- Note that R&D “double counted.” If all R&D was scientists then $L =$ non-R&D scientists.

Impact of own firm R&D and other technologies on productivity

- Vast empirical literature, with extensive evidence of positive correlations:
 - Griliches (1998); Hall, Mairesse and Mohnen (2010); Doraszelski & Jaumandreu (2013, 2018) survey R&D effects
- Usually use panel data techniques for production functions (see Ackerberg et al, 2007 and de Loecker and Syverson, 2021 for surveys)
 - But not much use of external instruments

Approaches to estimating R&D spillovers

1. Does neighbours' R&D increase own firm productivity/innovation? Griliches (1979, 1992)
 - Neighbors' R&D (could also be other measures of innovation such as patents, etc.)
 - Issue of defining neighbors ("distance metric") and the network more generally (cf. peer effect in Manski, 1992)

Approaches to estimating R&D spillovers

1. **Does neighbours' R&D increase own firm productivity/innovation?** Griliches (1979, 1992)
 - Neighbors' R&D (could also be other measures of innovation such as patents, etc.)
 - Issue of defining neighbors ("distance metric") and the network more generally (cf. peer effect in Manski, 1992)
2. **Exit of "stars"** Azoulay et al (2010) "Superstar extinction"; Waldinger (2012); Bell, Jaravel & Petkova (2018). Usually from a co-author team. But could be from network.
3. **Patent citations:** Henderson, Jaffe, Trajtenberg (1993) focus on geography (agglomeration literature)
 - But many citations don't indicate true knowledge transfer
 - Many knowledge transfers do not need a patent citation
4. **Macro approaches:** e.g. R&D average social cost-benefit ratio (Jones & Summers, 2022); micro/macro (over)

Micro/Macro comparisons (Griliches, 1992; Jones and Williams, 1998)

Firm Level Micro

$$TFP_{it} = \phi G_{it} + \mu G_t; G_t = \sum_{j, j \neq i} G_{jt}$$

Own R&D

R&D by all other firms

Economy Level Macro

$$TFP_t = (\phi + \mu)G_t$$

Micro-econometric fixed effects models

$$TFP_{it} = \phi G_{it} + \mu G_t + \eta_i + \tau_t + \nu_{it}$$

- If include fixed effects & time dummies, can't identify μ directly
- Comparison of micro vs. macro identifies μ if control for all relevant macro variables (NB could also do firm vs. industry level)

Identifying Spillover Effects

- Consider that some units “closer” to others in sense of a distance metric (e.g. geographic)
- **Example:** Technology spillover pool for firm i is $TECH$ weighted R&D where $TECH_{i,j}$ is “technology space proximity” between firms i and j ($i,j = 1, \dots, N$)
 - $SPILLTECH_{it} = \sum_{j, j \neq i} TECH_{i,j} G_{jt}$ where G_{jt} is the R&D stock of firm j at time t
- $TECH_{i,j}$ is proximity between 2 firms ranging from perfect closeness ($TECH_{i,j} = 1$) to perfectly separate ($TECH_{i,j} = 0$)
- Many candidates for $TECH_{i,j}$: same technology class, same location, past citation patterns, scientist flows, etc.
- T is $N \times N$ matrix with elements $TECH_{i,j}$ defining network. Analogous to input-output matrix (and can use similar techniques to examine perturbations)

Productivity equation

Now spillovers **are** identified independently from time dummy & firm fixed effect

$$TFP_{it} = \phi G_{it} + \mu SPILLTECH_{it} + \eta_i + \tau_t + \nu_{it}$$

Need to specify some kind of distance metric as spillovers not identified non-parametrically (Manski, 1993, “reflection problem”)

Bloom, Schankerman & Van Reenen (BSVR, 2013, *ECMA*)

- Firm neighbors' R&D matters for its performance as well as its own R&D. Two types:
 - Knowledge spillover (Growth literature)
 - Product market rivalry (IO literature)
- Methodology for identifying the distinct effects by using two “distance metrics”
 - In **technology space** for knowledge spillovers using patent classes
 - In **product market space** using SIC-4 industry codes (firms operate in multiple industries)
 - Examples: plasma vs. LED TV screens; IBM & Motorola use some similar technologies, diff markets

Measuring Technology Spillovers

- Define Technology closeness by uncentered correlation of firm patent class distribution (Jaffe, 1986)
 - $T_i = (T_{i1}, T_{i2}, \dots, T_{i426})$ where T_{ik} is % of firm i 's patents in technology class k ($k = 1, \dots, 426$)
 - $TECH_{i,j} = (T_i \cdot T_j') / [(T_i \cdot T_i')^{1/2} (T_j \cdot T_j')^{1/2}]$; ranges between 0 and 1 for any firm pair i and j .
- Define Technology spillover pool as $TECH$ weighted $R&D$ stock.
 - $SPILLTECH_{it} = \sum_{j, j \neq i} TECH_{i,j} G_{jt}$ where G_{jt} is the $R&D$ stock of firm j at time t
- Can generate from a micro model of scientists random meetings (in conferences, etc.)

Measuring Product Market Rivalry

- Analogous construction of product market “closeness”
 - Define $S_i = (S_{i1}, S_{i2}, \dots, S_{i623})$, where S_{ik} is the % of firm i ’s total sales in 4 digit industry k ($k = 1, \dots, 623$)
 - $SIC_{i,j} = (S_i S'_j) / [(S_i S'_i)^{1/2} (S_j S'_j)^{1/2}]$
- Product market “spillover” pool defined as SIC weighted R&D:
 - $SPILLSIC_{it} = \sum_{j, j \neq i} SIC_{i,j} G_{jt}$

Generic equations

$$\ln Y_{it} = \phi_1 \ln G_{it} + \phi_2 \ln(SPILLTECH_{it}) + \phi_3 \ln(SPILLSIC_{it}) \\ + \eta_i + \tau_t + \nu_{it}$$

- **Dependent variables (Y):**
 - Productivity
 - Patents
 - Market Value
 - R&D
- Different predictions on spillovers for different equations (e.g. market value)

Combine Compustat & USPTO Patents Data

- Compustat data (all listed US firms) to measure R&D, Tobin's Q, Sales, Capital, Labor etc
- Compustat line-of business data to define sales by SIC's
 - Sample covers 623 4-digit SIC classes
- NBER patent data with US patents and citations from 1978
- Final sample of 795 firms over 20 years (unbalanced panel). Accounts for most of US industry R&D

Market Value (Tobin's Q)

Dependent variable: $\ln(V/A)$	(1)	(2)	(3)
	All	Only SPILLTEC	Only SPILLSIC
$\ln(\text{SPILLTECH}_{t-1})$	0.381** (0.113)	0.305** (0.109)	
$\ln(\text{SPILLSIC}_{t-1})$	-0.083** (0.032)		-0.050 (0.031)

-0.083**
(0.032)

Identifies magnitude of business stealing

Notes: Includes full set of controls for own R&D/capital, industry sales, time and firm dummies. Estimation period is 1981-2001. Observations=9,944. Newey-West heteroskedasticity and first-order auto-correlation robust standard-errors

Total Factor Productivity (TFP) Equation

Identifies magnitude of knowledge spillover

Dependent Variable: $\ln(\text{Sales})$	(1)	(2)
	Fixed effects	Fixed effects
$\ln(\text{SPILLTECH})_{t-1}$	0.191*** (0.046)	0.186*** (0.045)
$\ln(\text{SPILLSIC})_{t-1}$	-0.005 (0.011)	
$\ln(\text{R&D Stock})_{t-1}$	0.043*** (0.007)	0.042*** (0.007)

Note: Includes controls for labor, capital, industry sales, time dummies and industry deflators included. Estimation period is 1981-2001; Obs=9,935. Newey-West first order serial correlation and heteroskedasticity robust SEs

Endogeneity of R&D: Using tax changes to construct user costs as an IV for R&D

- Advantage of micro-data is ability to generate more exogenous variation to identify causal effects
- State specific R&D tax credits interacted with firm's initial locations
- Federal R&D tax credit rules changed a lot over time generating heterogeneous effects between firms
- Strong first stage and qualitatively similar results

Special case – symmetric firms with no R&D strategic complementarities

$$\begin{aligned}\text{Marginal Private Return} &= (Y/G)(\varphi + \lambda) \\ &= 21\%\end{aligned}$$

$$\begin{aligned}\text{Marginal Social Return} &= (Y/G)(\varphi + \sigma) \\ &= 58\%\end{aligned}$$

(Y/G) = ratio output to R&D stock

φ = prod. function coefficient of own R&D stock

σ = prod. function coefficient of SPILLTECH

λ = market value coefficient of SPILLSIC (divided by 2)

Social returns about three times higher than private.

- Full simulation involves inverting whole spillover network matrix & generates similar results

Problems/extensions

- BSVR Data ends in 2000. Lucking et al (2020) re-do through 2015 & find similar results
- Other spillovers metrics (geographic; input-output linkages; ethnic, etc. e.g. Lychagin et al, 2016)
- Industry-specific effects (find heterogeneity looking at pharma; hardware & medical instruments)
- Statistical properties of spillover terms (Marnessa, 2016)
- Non-Compustat firms in US
- R&D outside the US
- Other inputs into innovation efforts than R&D
- How to get sharper identification of spillovers ?

Conclusions

- *Both* technology spillovers and product market rivalry effects of R&D
- Technology effects dominate, so “too little” R&D overall
 - Consistent with bulk of empirical work
- But what policies can help bridge the gap between social and private returns to R&D....

Backup

Model overview

Two stage game.

Stage 1: Firms choose level of R&D, r

Firms' knowledge, k , determined by firms' R&D pool

Stage 2: Short run variable (price or quantity), x , chosen

Three firms:

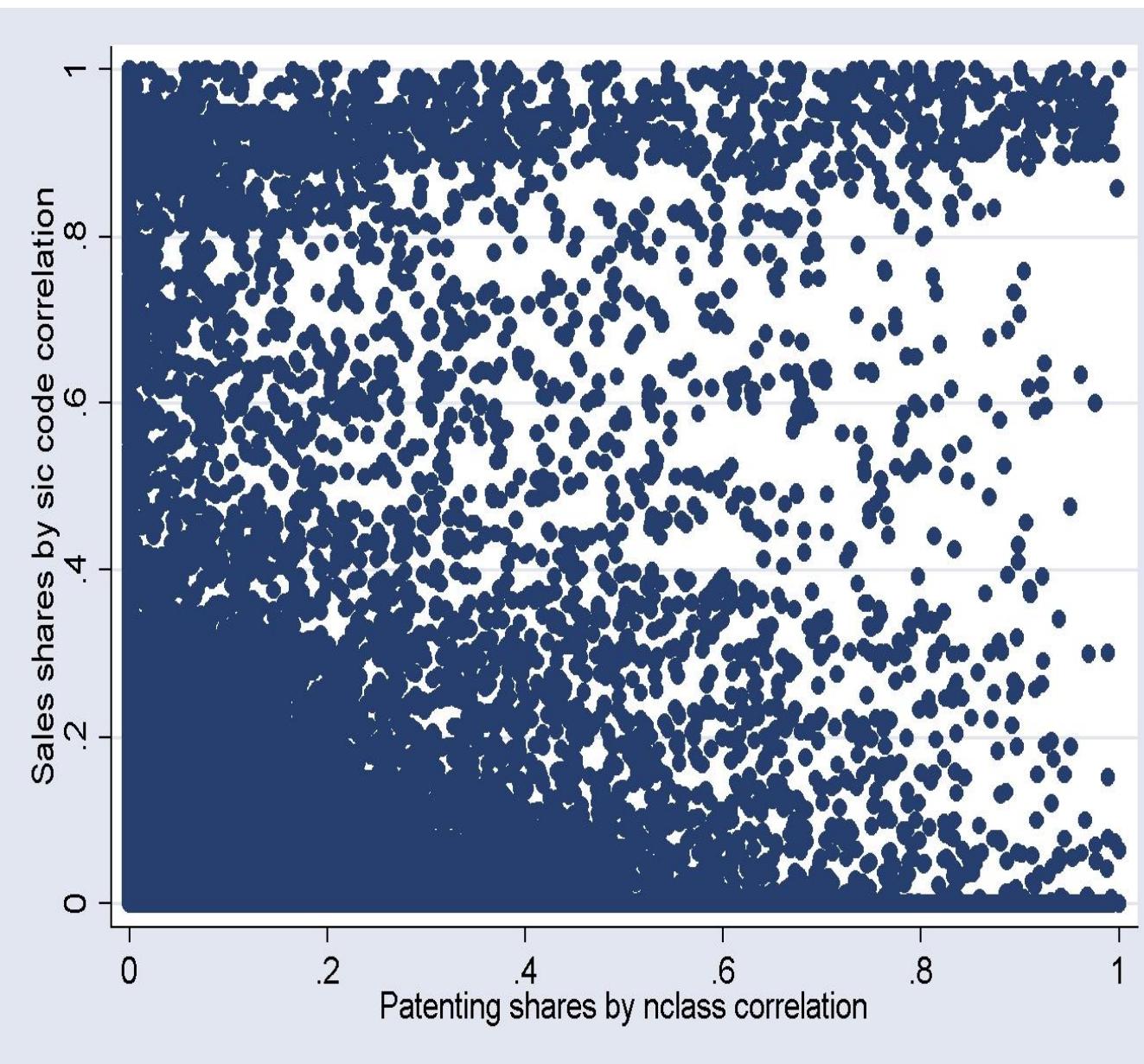
0 , τ and m .

- Firms 0 and m compete in the same product market.
- Firms 0 and τ operate in same technology area.

Can generalise to many firms with non-binary interactions

Implication: R&D by firms close to me in technology space is good for my value; R&D by product market rivals is bad for my value

Correlation between Technology and Product Market closeness



Cite-weighted Patent Count Model

Dependent var: Patent Count	(1)	(2)
	Initial conditions, static	Initial conditions, dynamic
$\ln(\text{SPILLTECH})_{t-1}$	0.468*** (0.080)	0.417*** (0.056)
$\ln(\text{SPILLSIC})_{t-1}$	0.056 (0.037)	0.043 (0.026)
$\ln(\text{R\&D Stock})_{t-1}$	0.222*** (0.053)	0.104*** (0.039)
$\ln(\text{Patents})_{t-1}$		0.420*** (0.020)

Note: Time dummies and 4 digit industry dummies included. Estimation period is 1985-1998. Negative binomial model; Obs=9,023. Standard errors clustered by firm

R&D Equations

Dep Var: $\ln(R&D)$	(1)	(2)
	Fixed Effects, static	Fixed Effects, Dynamic
$\ln(\text{SPILLTECH})_{t-1}$	0.100 (0.076)	-0.049 (0.042)
$\ln(\text{SPILLSIC})_{t-1}$	0.083** (0.034)	0.034* (0.019)

Notes: Includes controls for lagged R&D, sales, industry level sales, time and firm dummies. Estimation period is 1981-2001. Obs=8,579/8,387. Newey-West heteroskedasticity and first-order auto-correlation robust standard-errors

Examples : Computer and chip makers

	Correlation	<i>IBM</i>	<i>Apple</i>	<i>Motorola</i>	<i>Intel</i>
<i>IBM</i>	SIC		0.32	0.01	0.01
	<i>TECH</i>		0.64	0.47	0.76
<i>Apple</i>	SIC			0.02	0.01
	<i>TECH</i>			0.17	0.47
<i>Motorola</i>	SIC				0.35
	<i>TECH</i>				0.46
<i>Intel</i>	SIC				
	<i>TECH</i>				

IBM, Apple, Motorola and Intel all close in TECH

But a) *IBM close to Apple in product market (.32, computers)*
b) *IBM not close to Motorola or Intel in product market (.01)*

Comparing Empirical Results to Predictions of the Model

	<i>Partial correlation</i>	<i>Theory</i>	<i>Empirics</i>	<i>Consistency?</i>
$\partial V_0 / \partial r_T$	Market value with SPILLTECH	Positive	0.381**	Yes
$\partial V_0 / \partial r_m$	Market value with SPILLSIC	Negative	-0.083**	Yes
$\partial k_0 / \partial r_T$	Patents with SPILLTECH	Positive	0.417**	Yes
$\partial k_0 / \partial r_m$	Patents with SPILLSIC	Zero	0.043	Yes
$\partial y_0 / \partial r_T$	Productivity with SPILLTECH	Positive	0.191**	Yes
$\partial y_0 / \partial r_m$	Productivity with SPILLSIC	Zero	-0.005	Yes
$\partial r_0 / \partial r_T$	R&D with SPILLTECH	Ambiguous	0.100	-
$\partial r_0 / \partial r_m$	R&D with SPILLSIC	Positive with strategic complements	0.083**	Yes

Alternative Spillover Measures

- Mahalanobis – using co-location among patent classes to characterize distance between classes and use it in measuring distance between firms. Jaffe measure treats all classes as orthogonal to each other.
- Geography – does physical closeness of R&D labs matter for either type of spillovers?
- Plus range of other variations using different closeness metrics (e.g. Ellison-Glaser, 1997, 2010) & datasets (e.g. BVD Amadeus)

First Stage Regressions for IV results

	(1)	(2)	(3)	(4)
Dependent variable:	Log(R&D)	Log(R&D)	Log(R&D)	Log(R&D)
Second stage specification:	Tobin's Q	Patents	Productivit <i>y</i>	R&D
State Tax Credit component of R&D user cost _t	-1.665 (0.407)	-2.452 (0.435)	-0.396 (0.264)	-1.665 (0.407)
Firm Tax Credit component of R&D user cost _t	-0.721 (0.108)	-1.080 (0.146)	-0.586 (0.077)	-0.721 (0.108)
F-test of the two excluded instruments	29.59	44.88	29.80	29.59

Note: Includes controls for fixed effects, industry sales and time dummies. Ses clustered by firm

Results using R&D tax credits as an instrument: qualitatively similar

	(1)	(2)	(3)	(4)
	Tobin's Q	Patents	TFP	R&D
$\text{Ln(SPILLTECH)}_{t-1}$	1.079*** (0.192)	0.407*** (0.059)	0.206** (0.081)	0.138 (0.122)
$\text{Ln(SPILLSIC)}_{t-1}$	-0.235* (0.109)	0.037 (0.028)	0.030 (0.054)	-0.022 (0.071)

Simulation of model to quantify social and private returns to R&D

- Calculate long-run response of productivity to an exogenous increase in R&D – e.g. from a tax credit
- Private returns to R&D include own productivity impact plus the business stealing effects
- Social returns include own productivity impact plus technology spillover effects
- Complex because depends on firm-level distribution of R&D and linkages in TECH and SIC space