
Session 1: Introduction
Part 2: Heidi Williams

The material covered in these slides is partially drawn from: Bryan, Kevin and Heidi Williams
(2021) ”Innovation: Market Failures and Public Policies,” Chapter 13 in the Handbook of Indus-
trial Organization Volume 4, edited by Kate Ho, Ali Hortacsu, and Alessandro Lizzeri.
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Why a Boot Camp on Innovation? (Take #2)

Innovation: the invention, development, and diffusion of new goods,
services or production processes.

Economic problem that depends on active choices of agents who
respond to incentives

Historically, not treated as a primarily economic concern
I Prior to 1960, 11 articles in AER, QJE, ECTA (combined) had

“invention” or “innovation” in title
I Development and diffusion of new ideas thought to be psychological,

sociological, or simply serendipitous
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What about the economics of innovation?

“Economics of innovation” inspired by mid-century developments in
industrial practice, government policy, and economic theory:

1 Rise of large-scale industrial research labs [Hounshell and Smith 1988]

2 Successful directed wartime science efforts
I Led to Vannevar Bush’s Science, The Endless Frontier [Bush 1945]

3 Schumpeter (1942): creation and diffusion of new goods was a
fundamental economic problem

I Contrast with Neoclassical welfare analysis, which holds technological
frontier constant
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1951 SSRC Conference: a progress report

In response to newfound interest in innovation, a 1951 conference
“Quantitative Description of Technological Change” was held at Princeton
and supported by the Social Science Research Council

Publication of the conference proceedings was abandoned because
“the papers [were] in most cases of a very exploratory character”
[Godin 2008]

At the time, data on government R&D were close to nonexistent, very
few papers had analyzed patents to study corporate innovation, and
the link between these efforts and economic growth was unclear

4 / 54



Solow (1957): “black box” of innovation

Share of long-run economic growth unexplained by changes in capital
and labor inputs (TFP, total factor productivity) as high as 85%

By construction, TFP is an unmeasured residual

However, subsequent work adjusting for labor quality and capital
utilization suggested much of “Solow residual” reflects technological
progress
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Changes in TFP and GDP over time in the US
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Notes: This figure displays 10-year smoothed averages of annual changes in TFP and GDP. TFP
here is the standard decomposition aside from adjusting for changes in labor and capital
utilization (e.g., “labor hoarding” with shorter hours during recessions). Source: Fernald (2012).
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1962 NBER Conference: a progress report

Core questions of innovation research agenda:

How do inventors choose the rate and direction of the research
investments they pursue?

What market structure leads to high levels of innovation?

Is innovation optimally generated with laissez faire incentives?

Raised in groundbreaking 1962 in NBER conference volume on the Rate
and Direction of Inventive Activity and related papers published by the
economists who attended the event [NBER 1962, Machlup 1962, Nelson 1959,

Schmookler 1962 and 1966]

Despite 60 years of extensive research since the 1962 conference, these
questions remain largely open.

Particularly true for many key policy-relevant questions
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Rest of my time today

1 10,000 foot view of ‘research on research’ data
2 What makes empirically analyzing innovation policy questions

challenging, and how have economists made progress in measurement
and empirical analysis?

I Example: Measuring spillovers
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Institutional roadmap

Basic and applied scientific research: Public and private

Policies aimed at shaping private (and sometimes public) R&D:
I R&D tax credits
I Intellectual property rights, including patents
I Competition policy
I Labor market policies, including high-skill immigration and

non-compete agreements
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Optimistic view of the data: Many things are measured!

Training: Proquest, mathematical genealogy, NSF SED

Research funding: NSF/NIH grants, UMETRICS

Scientific papers: Web of Science, OpenAlex, PubMed, preprints

Patents: USPTO bulk data, PatentsView, EPO DOCDB

Commercialization: clinical trials, agricultural field trials, start-ups,
VC funding, university licensing, SAB participation

Useful for documenting facts, which are often invaluable contributions in
shaping our understanding of what questions are worth trying to answer

Example: Immigrants’ contribution to US science / innovation
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Pessimistic view of the data:
The most important things feel impossible to measure well

Hard to know the costs of mis-aligned incentives and poorly designed
policies: ‘missing’ scientists and inventors / ‘missing’ ideas

Good science is like good art: Know it when you see it

By construction, spillovers are slippery to try to measure!

Many or most of the key policy-relevant questions require not only
measuring these quantities, but also constructing counterfactuals rather
than simply documenting descriptive facts

Example: “Should” (if their goal is to produce the highest impact
science) science funders fund people or projects?
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Example of measurement challenges: Spillovers

Knowledge spillovers are frequently cited as the central market failure
justifying government intervention in markets for innovation

Strikingly: evidence of existence and magnitude is quite thin

Krugman (1991): “knowledge flows... are invisible; they leave no
paper trail by which they may be measured and tracked”
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Measuring innovation: patent data

Zvi Griliches was a pioneer in quantifying innovation during the 1960s,
spurring multiple efforts to gather patent data into usable form

“In this desert of data, patent statistics loom up as a mirage of
wonderful plentitude and objectivity. They are available; they are
by definition related to inventiveness, and they are based on what
appears to be an objective and only slowly changing standard”
[Griliches 1990]

Key patent-related datasets have built on efforts by Hall, Jaffe, and
Trajtenberg (2002) to link Compustat data and granted US patents, and
the USPTO’s expansion of public access to administrative data
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Measuring innovation: limitations of patent data

Despite Griliches’ own enthusiasm about the potential of patent data, he
(and others) cautioned:

“Inventions may be the wrong unit of measurement... and may be a
misleading quantum” [Griliches 1962]

Measuring innovation using patent data has limitations:

Many inventions are not patented and the propensity to patent a
given invention appears to vary tremendously across industries [Cohen

et al. 2000, Levin et al. 1987]

Patents vary in their quality and value [Pakes 1986, Schankerman and Pakes

1986]
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Measuring innovation: returning to spillovers

Knowledge flows may sometimes leave paper trails

Patent citations – acknowledgements of the use of knowledge in
subsequent patents – may capture relationships between inventions

I Imperfect measure: citations can serve a legal purpose (disclosing prior
art) and can be added by patent examiners (not applicants)

Literature has focused on using patent citations to measure
technological and geographic distance

I Jaffe (1986) uses technological distance - based on USPTO-assigned
technology classes - to estimate a firm’s “potential spillover pool” in
patent data

I Jaffe, Trajtenberg, and Henderson (1993) uses geographic distance
between firms to examine whether patent citations are localized

One central issue that arises is the distinction between testing for the
existence of spillovers versus quantifying the magnitude of spillovers.
[Bloom et al. 2013]
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Inference challenges

Even if we can agree on a measure of innovation, in order to understand
how policy shapes inventive activity, we need to construct the appropriate
counterfactuals

Where there is ample variation within a single policy lever (e.g., tax
rates) across similar geographic units (e.g., states), generating
counterfactuals is relatively straightforward

I For example: inventor mobility in response to tax rates.

Contrast with: uniformity of patent terms in the United States
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Estimating spillovers

Three broad types of methods:
1 Case studies: Griliches (1958)

I Feature: possible to do very careful accounting
I Criticism: “picking winners”

2 Production function approach: B-S-V (2013)
I Feature: more representative than case studies
I Criticism: difficult to find plausible identification

3 Patent citations: Jaffe-Henderson-Trajtenberg (1993)
I Feature: paper trail!
I Criticism: strategic and examiner-added citations

Two excellent (slightly dated) overviews: Griliches (1979, 1992)
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Griliches (1979): Which firms receive spillovers?

Citations: direct method of inference

“Trick” in search for spillovers is to define a dimension over which
knowledge spillovers are mediated

I Input-output matrices
F Is this even relevant to knowledge spillovers?

I Industry (e.g. Bernstein and Nadiri 1989)
F No natural ordering of two-digit SIC codes
F Griliches (1979): “...is ‘leather’ closer to ‘food’ or ‘textiles’?”

General issue of testing vs. quantification

Griliches (1992):
“...detect the path of the spillovers in the sands of the data.”
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Where do you look for spillovers?

Focus of recent literature:

1 Technological distance: Jaffe (1986),
Bloom-Shankerman-Van Reenen (2013)

2 Geographic distance: Jaffe (1989),
Jaffe-Henderson-Trajtenberg (1993)

I Footnote: closely linked to agglomeration literature

Consistent finding: social returns to R&D higher than private returns

Lucking et al. (2018): firm-level data and production function-based
approach suggest net positive knowledge spillovers
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1 Geographic spillovers: Jaffe et al. (1993)

2 Technological spillovers
Jaffe (1986)
Bloom et al. (2013)
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Jaffe-Henderson-Trajtenberg (1993)

Important contribution for two reasons:

1 Tackled question of whether knowledge spillovers had a
geographically localized component in a way that took seriously how
to construct an appropriate counterfactual

2 Developed a new measurement technique – patent citations – which
subsequently became very widely used
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Motivation

Policy question: does the research at federal laboratories and US
universities affect US international competitiveness?

Growth literature: often assumes within-country spillovers

Alfred Marshall on agglomeration:
1 Pooling of demand for specialized labor
2 Development of specialized intermediate goods industries
3 Knowledge spillovers among firms within industries

Krugman (1991): give up on (3) - no paper trail!
I Measurement insight: patent citations do leave a paper trail
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What are patent citations?

Legal function: delimit scope of property right conveyed by patent

Applicant has legal duty to disclose to disclose “prior art”

Some citations may be internalized (contracted)

Patent examiners can add citations (likely not spillovers)

Almost certainly an incomplete metric of spillovers
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Core idea

Are patent citations geographically localized relative to a “counterfactual”
geographic distribution of citations?

Key question: how to construct a counterfactual

Example: Stanford and semi-conductors

J-H-T solution: “control” samples of patents
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J-H-T: Construction of control patents

Key idea: compare the geographic location of patent citations with the
geographic location of the originating patent they cite

Concern: would expect some geographic matching without spillovers

Approach: construct a “control patent” for each citing patent, from
the same patent class in the same application year; compare location
of control patent with that of originating patent

I Subsequent criticisms: imperfect match method
I Idea/data still a key contribution
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Defining geography

Patent data include:
I Country of residence of each inventor
I City and state of residence for US inventors
I But: patents can have multiple inventors

Procedure used here:
1 Assigned 98% of US inventors to SMSAs
2 Assigned locations to patents based on pluralities of inventors
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Table 3: test of localization
Share of co-located citations, relative to control sample (t-test)

27 / 54



Thoughts on J-H-T test of localization

Headline estimate: Citations 5-10 times as likely to come from same
SMSA as control patents (2-6 times as likely excluding self-citations)

Two cohorts of originating patents: 1975 and 1980; stronger evidence
for localization in 1980 [Unsolicited advice: Probably not a good structure. From

the paper: “It is impossible to tell from this comparison whether...” But one possibility is

that early citations are more localized.]

Including vs. not including self-citations [Which is more of interest?]

Really need to take seriously what patents and citations mean
[Since this paper, there have been some efforts to validate these as metrics]
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1 Geographic spillovers: Jaffe et al. (1993)

2 Technological spillovers
Jaffe (1986)
Bloom et al. (2013)
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Jaffe (1986)

Very influential paper

Developed a technological distance measure which enabled him to
estimate spillovers from other firms’ R&D

F = (F1, ...,Fk): technological position of the firm
I Fk : share of firm’s research budget devoted to k, but confidential
I Instead: leveraged technological classifications assigned by USPTO

F Related to but different from industries
F Schmookler example of patent subclass for “dispensing of solids,”

including both toothpaste tubes and manure spreaders

Data: early version of the NBER patent data
http://www.nber.org/patents/

https://sites.google.com/site/patentdataproject/Home
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Jaffe (1986): Proximity measure

Leveraged Compustat-USPTO merge (1700 firms; 260,000 patents)

A firm’s ”potential spillover pool” is defined as a weighted sum of
other firms’ R&D in technology space

Formally, Jaffe defines a measure of proximity between firm i and firm
j , Pij as the uncentered correlation of Fi , Fj

I Equal to 1 when i = j and 0 if no technological overlap

Potential spillover pool Si weights other firms’ R&D Rj by Pij :
Si =

∑
j 6=i PijRj

I Note: Assumes constant appropriability across technological areas
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Jaffe (1986): Key results (Table 5)
For a firm with mean log(R&D), the elasticity of patents wrt others’ R&D
is ∼ 1.1 (if everyone increased their R&D by 10%, total patents would
increase by 20%, with more than one-half increase coming from spillovers)
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Jaffe (1986): caveat in introduction

“From a purely technological point of view, R&D spillovers constitute an
unambiguous positive externality. Unfortunately, we can only observe
various economic manifestations of the firm’s R&D success. For this
reason, the positive technological externality is potentially confounded
with a negative effect of others’ research due to competition. It is not
possible, with available data, to distinguish these two effects.”

Concern: technology neighbors may be product competitors
⇒ also exists a product rivalry / business stealing effect

Potential confound in estimating knowledge spillovers

But also of independent interest!
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Bloom, Schankerman, and Van Reenen (2013)

B-S-V pick up this thread from Jaffe

Key contribution: develop a framework to separately identify effects
of technology spillovers and product market spillovers

Empirical insight: distinguish a firm’s position in technology space
from a firm’s position in product market space using data on
distribution of patenting across technology classes together with
detailed data on sales activity across four-digit industries

Tackle reflection problem by leveraging R&D tax credit variation

Undertake an assessment of over- vs. under-investment in R&D
I Derive social and private rates of return to R&D, measured in terms of

output gains generated by a marginal increase in R&D
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Technology vs. product market space

Perhaps surprisingly, significant variation in these two dimensions

Example:

IBM, Apple, Motorola, and Intel all close in technology space
(revealed by patenting, confirmed by research joint ventures)

IBM and Apple compete in the PC market

Intel and Motorola compete in the semi-conductor market

Little product market competition between the two pairs
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B-S-V: big picture

Main take-away: social returns to R&D are 2-4x private returns

Heavy, thoughtful, well-written paper

Won’t cover all of the moving parts
(can read web Appendices A through G on your own!)

Will walk through the main parts of the analysis
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One-slide summary of analytical framework

Present a simple analytical framework which generates a series of
comparative statics that they can then take to the data:

1 R&D of non-technology/product market neighbors should have no
influence on firm 0’s decisions or market value.

2 Firm 0’s R&D positively related to R&D by technology neighbors in
other product spaces as long as diminishing returns to knowledge
production are not “too strong.”

3 Firm 0’s R&D a function of R&D done by product market neighbors
in other technology spaces: sign depends on whether competition
makes output strategic complements or strategic substitutes – that is,
whether increase in one firm’s R&D raises marginal profits to other
firm’s R&D.
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Measurement

Technological proximity: SPILLTECH
I Knowledge is transmitted when scientists are exposed to each other
I Mahalanobis extention: incorporate proximity in idea space

Product market proximity: SPILLSIC

Data:
I Firm-year level panel data from Compustat for 1980-2001
I Matched to USPTO data from the NBER (426 classes)
I Compustat Segment gives sales by four-digit industry
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Figure 1: SPILLTECH and SPILLSIC (0.469)

Surprisingly, good amount of variation
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Econometrics

Generic equation B-S-V would like to estimate:

lnQit = β1 lnGit + β2SPILLTECHit + β3 lnSPILLSICit + β4Xit + uit

Three issues:

1 Unobserved heterogeneity. Firm (ηi ) and time (τt) FEs

2 Endogeneity. Tax-policy instruments for R&D, use predicted values
weighted up by SIC and TECH distance as instruments for spillover
variables in second stage equation.

3 Dynamics. Baseline models static, also explore dynamics
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Market value equation

Griliches (1981): to mitigate endogeneity lag key RHS variables

ln

(
V

A

)
it

= φ

((
G

A

)
it−1

)
+ γ2 lnSPILLTECHit−1

+ γ3 lnSPILLSICit−1 + γ4X
V
it + ηVi + τVt + νVit

V : market value of firm

A: stock of non-R&D assets

G : R&D stock

φ
((

G
A

)
it−1

)
: sixth-order polynomial

Consistent with theory, TECH associated with an increase in market value,
SIC associated with a decrease in market value
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Table 3: market value equation
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Patent equation

Negative binomial model with pre-sample mean scaling

Pit = exp |λ1 lnGit−1 + λ2 lnSPILLTECHit−1

+ λ3 lnSPILLSICit−1 + λ4X
P
it + ηPi + τPt + νPit |

Consistent with theory, TECH variable comes in strongly positive, whereas
the SIC variable is smaller and statistically insignificant
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Table 4: patent equation
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Productivity equation

Productivity equation uses output Y as outcome:

lnYit = ψ1 lnGit−1 + ψ2 lnSPILLTECHit−1

+ ψ3 lnSPILLSICit−1 + ψ4X
Y
it + ηYi + τYt + νYit

As with patent equation, TECH variable comes in strongly positive,
whereas the SIC variable is smaller and statistically insignificant
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Table 5: productivity equation
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R&D equation

Letting R represent flow of R&D:

ln

(
R

Y

)
it

= α2 lnSPILLTECHit−1 +

+ α3 lnSPILLSICit−1 + α4X
R
it + ηRi + τRt + νRit

Estimated coefficient on TECH not robust across specifications;
IV ⇒ association between R&D, SIC driven by common shocks

47 / 54



Table 6: R&D equation
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Table 7: model matches data remarkably well
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Many robustness checks

See web appendices A through G :)
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Estimates of the private and social returns to R&D

Use estimate to calculate spillovers

Requires swallowing a lot of assumptions, but this calculation is really
going after the “big question” of interest

51 / 54



Marginal social and private returns to R&D

Marginal social return (MSR) to R&D for firm i

Increase in aggregate output generated by a marginal increase in firm
i ’s R&D stock (including changes in other firms’ R&D)

Footnote: does not fully capture consumer surplus

Marginal private return (MPR) to R&D for firm i

Increase in firm i ’s output generated by a marginal increase in firm i ’s
R&D stock

Special case: firms symmetric, no strategic complementarities

Full-blown model in Appendix G
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Wedge between social and private returns to R&D

Depends on importance of technology spillovers in production function
(φ2) vs. rivalry effects in market value equation (γ3)
⇒ social rate of return can be ≷ private rate of return

MSR: 58%

MPR: 21%

Implies MSR is 2-3 times larger than MPR
⇒ under-investment in R&D

Table 9 presents results for full (non-simplified) model
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Thoughts on B-S-V

Headline estimate: Implies MSR is 2-3 times larger than MPR

On the important/compelling frontier
[Great question to think about working on yourself;

when not teaching, looking into this question for pharmaceuticals...]

Instrument is correlated between geographically co-located firms
[Problematic, or no?]

Pretty surprising that R&D tax credits work in this context
[Would be interested in a finer-grained analysis]
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