NBER Innovation Research Boot Camp: Introduction

Ben Jones & Heidi Williams July 2022

_	~ ~ ~ ~	
Boot	Camp Outline	
Session Title	Time	Faculty
Introduction	Friday 9am-12pm	Ben Jones & Heidi Williams
Innovation in a Historical Perspective	Friday 1:30-4:30pm	Naomi Lamoreaux
Economics of Science and Science Funding	Saturday 9am-12pm	Pierre Azoulay
Innovation Policies 1: Patents	Saturday 1:30-4:30pm	Heidi Williams
Idea-Based Models of Economic Growth	Monday 9am-12pm	Chad Jones
Human Capital and Innovation	Monday 1:30-4:30pm	Ben Jones
Dinner Keynote: Clusters, Agglomeration, and Geography	Monday 6:30pm	Scott Stern
NBER Innovation	n Meeting (Tuesday-Wed	nesday)
Innovation Policies II: Taxes, Competition, and Labor Markets	Thursday 9am-12m	John Van Reenen
Diffusion & Wrap up	Thursday 1:30-4:30pm	Kevin Bryan & Team
Dinner Keynote: Organizations and Innovation	Thursday 6:30pm	Rebecca Henderson

- ✤ Boot Camp Outline
- Why Study Innovation?
- The Nature of Ideas
- Policies and Institutions: An Introduction
- Data & methods

- Course Outline
- ✤ Why Study Innovation?
- * The Nature of Ideas
- ✤ Policies and Institutions: An Introduction
- Data & methods

	Non-Excludable	Excludable
Non-Rivalrous	Basic Research, Calculus, National Defense	Satellite Radio, Patented Ideas
Rivalrous	Fish in Ocean	Lawyer services, Airplane seat

Not simply a matter of traditional risk, the inability to forecast innovation seems to be fundamental (Rosenberg)

Bell Labs Development of the Maser & Laser: "Bell's patent department at first refused to patent our amplifier...for optical frequencies because...optical waves had never been of any importance to communications and hence the invention had little bearing on Bell System interests" (Charles Townes, Nobel Laureate)

Bell - Western Union Patent Agreement of 1878: Western Union will agree to stay out of the telephone business if Bell agrees to stay out of the telegraph business

Nate Rosenberg's Dimensions of Uncertainty

Can think of as a lack of foresight (not just risk)

- Initial technology is developed for a narrow application
- Little understanding of potential applications or uses
- Dependence on the emergence of complementary innovations and/or the emergence of entirely new technological systems
- Inability to imagine how to satisfy human needs in a novel way

ake $a = 1$.8% and $x/y =$	= 2.7% (U.S.)	
Then the av	verage social ref	turns are:	
	U		
able 1: The	e Average Social I	Returns. by Social Dis	iscount Rate
_	~		_
	Social discount	Average Social	
	rate	Benefit-Cost Ratio	
	rate (<i>r</i>)	Benefit-Cost Ratio (ρ)	
	rate (<i>r</i>) 1%	$\frac{\text{Benefit-Cost Ratio}}{(\rho)}$ 66.7	_
_	rate (r) 1% 2%	Benefit-Cost Ratio (ρ) 66.7 33.3	_
_	rate (r) 1% 2% 3.5%	Benefit-Cost Ratio (ρ) 66.7 33.3 19.0	_
_	rate (r) 1% 2% 3.5% 5%	Benefit-Cost Ratio (ρ) 66.7 33.3 19.0 13.3	_
_	rate (r) 1% 2% 3.5% 5% 7%	Benefit-Cost Ratio (ρ) 66.7 33.3 19.0 13.3 9.5	_
_	rate (r) 1% 2% 3.5% 5% 7% 10%	Benefit-Cost Ratio (ρ) 66.7 33.3 19.0 13.3 9.5 6.7	

Extending the Baseline

The baseline calculation may be too high or too low. Introduce the corrective factor, β .

$$\rho = \beta \frac{g/r}{x/y}$$

Baseline too high? ($\beta < 1$)

- Lags
- Capital investment
- Other sources of innovation

Baseline too low? ($\beta > 1$)

- Inflation bias
- Health gains
- International spillovers

