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Introduction

• Important Q: What is the effect of AI on skills and 

organizational structure of firms?

• Database combining:

– Compustat: accounts of US publicly listed firms

– BGT: Online ads for jobs with AI-related tasks

– Cognism resume data: 535 million individuals globally 

(54% of US workforce in 2018)

– 1,218 firms between 2010-2018, focus on US workers

• Data used in authors’ earlier papers, but not yet focused on 

the key outcomes examined here
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Some Key Findings

• Growth of AI higher when large initial % of STEM and PhD 

employees

• Higher growth of AI associated with:

– Faster change towards flatter hierarchies measured by 

% of workers in junior (vs more senior) managerial 

positions

– Larger fall in unskilled (% workers without college 

degree) & faster rise in average years of education

– Bigger increase in STEM qualified workers (relative to 

e.g. social science qualification) 
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Assessment 

• Nice data – hard to get firm-level panel data on technology 

and skill mix, especially in US

• Simple, transparent approaches

• Evidence on impact on organizational form particularly 

interesting

• Results seem sensible and robust to controls for many initial 

firm characteristics 
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Conceptual Issues

1. Risk of a mechanical relationship?

2. Issues with measuring AI by labor

3. A framework?
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Conceptual Issues

1. Risk of a mechanical relationships?

– AI adoption measured by online postings on labor hiring 

(BGT) & outcomes are also based on employment 

(Cognism). Better than regressing BGT employment on 

BGT AI data, but still risks a mechanical relationship

– Example: if all AI done by STEM workers then 

unsurprising more “AI” postings (right hand side variable) 

means more STEM workers (left hand side variable) 
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Conceptual Issues

2. Issues with measuring AI by labor (related to last point)

– Much AI is embodied in capital/software not labor. Examples: 

Enterprise Resource Planning: SAP module with predictive analytics 

for demand management; cyber-security apps from Palantir. These 

big “AI” spend will not be reflected in BGT hirings. Indeed – may need 

less AI-related workers hiring as it is all done “in the box”

– Broader ICT literature uses employer surveys (e.g. Harte-Hanks use 

of ERP in Bloom, Garicano, Sadun & Van Reenen, 2014 or spending 

cumulated into ICT stock). Can we compare these surveys with your 

BGT type measure?
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Conceptual Issues

2. Issues with measuring AI by labor (related to last point)

– Much AI is embodied in capital/software not labor. Examples: 

Enterprise Resource Planning: SAP module with predictive analytics 

for demand management; cyber-security apps from Palantir. These 

big “AI” spend will not be reflected in BGT hirings. Indeed – may need 

less AI-related workers hiring as it is all done “in the box”

– Broader ICT literature uses employer surveys (e.g. Harte-Hanks use 

of ERP in Bloom, Garicano, Sadun & Van Reenen, 2014 or spending 

cumulated into ICT stock). Can we compare these surveys with your 

BGT type measure?

– Analogy with measuring software expenditure by “own account” (in-

house labor) & “shrink wrapped” (bought-in)

– Issue extends to measuring hierarchies. How does your labor 

measure of “flattening” compare to Rajan & Wulf (2006) type data 

based on org charts or WMS/MOPS measures?

– NB: This is a general issue in literature!
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Conceptual Issues
3. Possible framework 

– Production (or Cost) function with multiple labor types, AI 

and ORG as intangible capital inputs

– Derived labor demand has the kind of regressions you run

– Could also estimate the primitives: i.e. production or cost 

function. This design would exploit your (largely unused) 

Compustat

• Examples of modelling productivity:

– as function of AI interacted with STEM (plus linear terms)

– expand to include ORG to address big picture question of 

whether failures to change ORG is a reason for only small 

impact of AI on productivity
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BACK TO BASICS: THE PRIMITIVES

Output, Q, function of efficiency (A), vector of labor of skill type 

j, AI capital, organizational hierarchy (ORG) & other inputs X.

Consider two types of labor high skill (H) and low skill (L), 

abstract from ORG and X. Short-run cost function is:

𝑄 = 𝐴𝐹(𝐿𝑗 , 𝐴𝐼, 𝑂𝑅𝐺, 𝑋)

Assume labor flexible supplied at wage Wj, but other intangible 

capitals are quasi-fixed

( , ; , )H LCV W W AI Q



SHORT-RUN FACTOR DEMAND EQUATION

Approximate Cost function by flexible 2nd order form (translog) 

& by Shephard’s Lemma, can derive 𝑆𝐻𝐴𝑅𝐸𝐻 of high skilled 

labor in total labor costs: 

𝑆𝐻𝐴𝑅𝐸𝐻 = 𝛼𝑙𝑛
𝑊𝐻

𝑊𝐿
+ 𝛽𝐴𝐼 + 𝛾𝑙𝑛𝑄

Write relative wages as composed of time dummies, firm i fixed 

effect & idiosyncratic shock. Take differences:

∆𝑆𝐻𝐴𝑅𝐸𝑖𝑡
𝐻 = 𝛽∆𝐴𝐼𝑖𝑡 + 𝛾∆𝑙𝑛𝑄𝑖𝑡 + 𝜏𝑡 +∆𝑢𝑖𝑡

Hypothesis of skill-AI complementarity is 𝛽 > 0 (related to 

Hicks-Allen elasticity of complementarity) 



SHORT-RUN FACTOR DEMAND EQUATION

Further assuming homotheticity 𝛾 = 0 

Which is essentially what you estimate as one long difference. 

Could also consider ORG and other factors and have multiple 

skill groups: 

∆𝑆𝐻𝐴𝑅𝐸𝑖𝑡
𝐻 = 𝛽∆𝐴𝐼𝑖𝑡 + 𝜏𝑡 +∆𝑢𝑖𝑡

∆𝑆𝐻𝐴𝑅𝐸𝑖𝑡
𝑗
= 𝛽∆𝐴𝐼𝑖𝑡 + 𝜃∆𝑂𝑅𝐺𝑖𝑡 +𝛿∆𝑋𝑖𝑡 + 𝜏𝑡 +∆𝑢𝑖𝑡



RETURNING TO THE PRIMITIVE PRODUCTION FUNCTION

Direct Estimation using a first order approximation

∆𝑙𝑛𝑄𝑖𝑡= 𝛽𝐴𝐼∆𝑙𝑛𝐴𝐼𝑖𝑡 + 𝛽𝐻∆𝑙𝑛𝐿𝑖𝑡
𝐻 +𝛽𝐿 ∆𝑙𝑛𝐿𝑖𝑡

𝐿

+𝜌𝐴𝐼,𝐻∆[𝑙𝑛𝐴𝐼𝑖𝑡 ∗ 𝑙𝑛𝐿𝑖𝑡
𝐻 ] + 𝜌𝐴𝐼,𝐿∆[𝑙𝑛𝐴𝐼𝑖𝑡 ∗ 𝑙𝑛𝐿𝑖𝑡

𝐿 ] + 𝜖∆𝑙𝑛𝑋𝑖𝑡

Test of complementarity between high skilled workers and AI: 

𝜌𝐴𝐼,𝐻 > 𝜌𝐴𝐼,𝐿

Easy to expand with ORG linear & interactions;  more skill 

groups; more higher order terms, etc.

Can stack in system and estimate jointly
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Data Issues

1. What fraction of employees in each Compustat firm is in 

Cognism (“coverage rate”)?

– This is what you should be weighting by. Simply weighting with 

#Cognism workers conflates with size

– Worry that coverage low because Compustat firms dominated by 

multinationals with many workers outside the US (and matching 

imperfect). Better to use all global workers to boost coverage? 

– Note: Compustat values are global consolidated (e.g. R&D, etc.) 
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Data Issues

1. What fraction of employees in each Compustat firm is in 

Cognism (“coverage rate”)?

– This is what you should be weighting by. Simply weighting with 

#Cognism workers conflates with size

– Worry that coverage low because Compustat firms dominated by 

multinationals with many workers outside the US (and matching 

imperfect). Better to use all global workers to boost coverage? 

– Note: Compustat values are global consolidated (e.g. R&D, etc.) 

2. Why not ditch Compustat entirely and just do a 

Cognism-BGT match? 

– Much more representative sample (Compustat only a quarter of US 

workers); enables you to do some spatial work; firm controls currently 

a side-show.
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Data Issues

1. What fraction of employees in each Compustat firm is in 

Cognism (“coverage rate”)?

– This is what you should be weighting by. Simply weighting with 

#Cognism workers conflates with size

– Worry that coverage low because Compustat firms dominated by 

multinationals with many workers outside the US (and matching 

imperfect). Better to use all global workers to boost coverage? 

– Note: Compustat values are global consolidated (e.g. R&D, etc.) 

2. Why not ditch Compustat entirely and just do a Cognism-

BGT match? 

– Much more representative sample (Compustat only a quarter of US 

workers); enables you to do some spatial work; firm controls currently 

a side-show.

3. Change/level (?) of AI seems like a trivially small share. 

Problem of looking for needle in haystack issue?
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Econometrics

• Your previous work emphasized AI predicts employment 

growth, so could we just be picking up a growth effect? 

– Faster growing firms will tend to expand lower level workers in 

managerial hierarchy as (e.g.) adjustment costs lower

– Not necessarily part of mechanism: growing firms adopt more AI and 

expand junior managers, but no effect of AI directly on organization 

(or skills)

• Would be good to think of some designs to get closer to 

causality

– IVs like your “university connections with firms”, a Bartik style 

exposure measure (maybe from Mike Webb’s approach), etc.

– Event studies 

– Split years into 2 long differences to look at pre-trends
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Other Questions/Comments

• Any information on wages? Wage bill shares attractive summary measure as 

“price weights” the job quantities and maps back into theory

• Would be good to have some more visualizations (e.g. scatterplots of change in 

skills on change in AI)

• You mention quality of Cognism by 2018, but what about coverage over time. 

Like BGT isn’t it becoming increasingly better & therefore more selected

• How would Cognism coverage compare to LinkedIn?

• What about AI which uses outsourced workers?

• BGT is flow whereas you really want the stock

• On positive job effects of technology see https://economics.mit.edu/files/22239 & 

the classic  http://cep.lse.ac.uk/textonly/people/vanreenen/papers/jole_emp.pdf

• Note that Caliendo et al hierarchy measure includes production workers: flatter 

structure means more lowest level vs. next lowest level. You have excluded these 

workers to just look at managerial levels.

• Conceptual framework I sketch is based on see Bond and Van Reenen (2001)

Handbook of Econometrics and Caroli and Van Reenen (2001) as well as my 

lecture notes

• P.3 “flatten” not “flatter”; p.5 “investments” not “investmetns”
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Other Questions/Comments

• Would be good to compare the hierarchy measures with direct firm surveys (e.g.

WMS https://worldmanagementsurvey.org/ or MOPS)

• Caliendo et al emphasize that only a big positive shocks mean adding layer to 

hierarchy. Maybe compare across technology shocks (e.g. AI vs software vs 

robots?)

• What are the results like if you do not standardize AI

• Do you have anything on wages?

• Given small shares do you check for outliers/winsorize?

• You should look at the data in Rajan and Wulf (2006); Guadalupe and Wulf 

(2010)  and Lerner and Wulf (2007) from Howitt – also looks at delayering in 

Compustat firms. 

• How does Figure 5 compare with aggregate ACS data? Same question for some 

of other figures.

• Table 3 needs levels (mean & median) as well as changes

• How do you decide on CZ for Compustat firms which covers multiple CZs (and 

multiple countries), e.g. Wal-Mart

• Add mean of change and level of dependent variables in tables (e.g. 6)

• Fall of share medical qualifications a bit weird in Table 8
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Conclusion

• Great paper and well worth reading!

• Lots of possible extensions

• Look forward to next version
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