

Inequality Sensitive Treatment Effect Estimation

Eduardo Zambrano, Cal Poly

Roadmap

- Compare outcome distributions associated with different treatments when the evaluator is **inequality averse**
- Extend the comparison to the case when there is **uncertainty about the outcome distributions** associated with each treatment
- Incorporate these considerations into an empirical strategy based on the theory of **optimal treatment assignment**

Two treatments and their outcome distributions

An inequality neutral evaluator

Inequality aversion

Calibrating inequality aversion

- **Setting:** Everyone's income (but person 1's) is growing without bound.
- **Result 1** (with Marc Fleurbaey): In this setting, if an evaluator will always protect a fraction $\lambda \in (0, 1)$ of person 1's income, the evaluator's Social Preferences admit the representation

$$SWF(y) = \sum_{i=1}^n \left[\frac{y_i^{1-\gamma}}{1-\gamma} \right],$$

with $\gamma = 1 - \frac{1}{\log_n \lambda}$.

Egalitarian Equivalent

- Let $\mathcal{EE} = \mathcal{EE}(y)$ be such that the evaluator is indifferent between

$$(y_1, y_2, \dots, y_n)$$

and

$$\underbrace{(\mathcal{EE}, \mathcal{EE}, \dots, \mathcal{EE})}_{n-times}.$$

Egalitarian Equivalent

Incorporating uncertainty

Incorporating uncertainty

Statistical extension

- **Setting:** Absent inequality, the evaluator acts as if there is only one (representative) individual.
- **Result 2:** In this setting, the evaluator chooses among treatments by comparing the profiles

$$(\mathcal{EE}^1(y), \dots, \mathcal{EE}^m(y))$$

across treatments.

Incorporating data

- **Result 3:** If the evaluator's identification strategy allows the state to be *point-identified*, the problem reduces to the comparison of point estimates of the egalitarian equivalent for each treatment.

Egalitarian Equivalent Treatment Effect (EETE) at \hat{s}

$$\tau(\hat{s}) = \mathcal{EE}^{\hat{s}}(y(1)) - \mathcal{EE}^{\hat{s}}(y(0))$$

Under *partial identification*, the evaluator selects the treatment with the most favorable egalitarian equivalent profile across the set of partially identified states.

Empirics

- Angrist 1990.
- Bloom et. al. 1997.
- Meager 2022.

Intellectual merit

- Guidance for the choice of W
- Guidance for how to incorporate W into an econometric framework
- Understanding the potential problems associated with using non- $\mathcal{E}\mathcal{E}$ representations of W in the econometric framework
- Understanding how optimal treatment assignment varies with the choice of W

Broader impact

- Inequality matters!
- Development of ready-to-use code in R and other languages
- Exposing undergraduate and MS students in my MSI to frontier research topics

Thank you!!