
The Changing Economics of Knowledge Production

Simona Abis and Laura Veldkamp

Columbia University, NBER and CEPR*

August 6, 2021

Abstract

Big data technologies change the way in which data and human labor combine to create

knowledge. Is this a modest technological advance or a data revolution? Using hiring

and wage data from the investment management sector, we show how to estimate �rms'

data stocks and the shape of their knowledge production functions. Knowing how much

production functions have changed informs us about the likely long-run changes in output,

in factor shares, and in the distribution of income, due to the new, big data technologies.

Using data from the investment management industry, our results suggest that the labor

share of income in knowledge work may fall from 29% to 21%. The change associated

with big data technologies is two-thirds of the magnitude of the change brought on by the

industrial revolution.

Machine learning, arti�cial intelligence (AI), or big data all refer to new technologies that

reduce the role of human judgment in producing usable knowledge. Is this an incremental

improvement in existing statistical techniques or a transformative innovation? The nature of

this technological shift is similar to industrialization: In the 19th and 20th centuries,

industrialization changed the capital-labor ratio, allowing humans to use more machines,

factories and sophisticated tools to be more e�cient producers of goods and services. Today,

machine learning is changing the data-labor ratio, allowing each knowledge worker to leverage
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more data, to be a more e�cient producer of knowledge. Given the myriad of di�erences

between the industrialization era and today's knowledge economy, and the early stage of data

technology adoption, how might one compare the magnitude of today's change with its

historical counterpart? Economists model industrialization as a change in production

technology: a move from a technology with starkly diminishing returns to capital, to one with

less diminishing returns. The size of the industrial revolution can therefore be summarized by

the magnitude of the change in the production parameter that governs diminishing returns.

That same statistic can be estimated for knowledge production, using old and new data

technologies. Measuring how much big data technology adoption changes the diminishing

returns to data and comparing this to the change that took place during the industrial

revolution informs us about whether this is a useful, but common innovation, or the next

economic revolution.

The �nance industry is a particularly useful laboratory for studying trends in knowledge

production because it is an early adopter of new, big-data technologies. Using labor market

data from the investment management sector, we estimate two production functions � one for

classical data analysis and one for machine learning. The decline in diminishing returns to data

shows up as an exponent on data in the production function that is closer to one: We estimate

that the data exponent rose from 0.711 to 0.791. The 0.08 increase in the parameter governing

diminishing returns implies that knowledge-producing �rms should optimally have more data

per worker, or equivalently, fewer workers for a given size data set. This change also a�ects

wages. It predicts an 8% decline in the share of �rm pro�ts paid to labor. Such a change in

the pro�t share could matter for income inequality. The �ip side of the declining labor share

is an 8% increase in the share of knowledge pro�ts paid to data owners. In other words, new

data technologies structurally increase the value of data as an asset and enrich those who own

the data. Finally, the magnitude of these shifts represent a change in production that is about

two-thirds of the size of the change experienced during the industrial revolution.

Estimating old and new knowledge production functions is challenging, because for most

�rms, we do not know how much data they have, nor how much knowledge they create, nor

do they announce which technology or what mix of technologies they employ. What we can

observe is hiring, skill requirements and wages. A simple model of a two-layer production

economy teaches us how to infer the rest. The two layers of production are as follows: Raw

data is turned into usable, processed data (sometimes called information) by data managers;

processed data and data analyst labor combine to produce knowledge. Thus, we use hiring

of data managers to estimate the size of the �rm's data stock, the skills mix of analysts to

estimate the mix of data technologies at work, and we bypass the need to measure knowledge

by using wage data to construct income shares, which inform us about the returns, and the rate
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of diminishing returns, to each factor.

To estimate production functions, it is imperative that we precisely categorize job postings

and match postings by employer. Unlike other work that measures machine-learning-related

employment (e.g., Acemoglu and Restrepo (2018)), our work demands a �ner partition of jobs.

We need to distinguish between workers that prepare data to be machine-analyzed, workers

that primarily use machine learning, and workers that use statistical skills that are of a previous

vintage. We also need to know whether data managers are being hired by the same �rm that is

also hiring machine-learning analysts.

Because di�erent industries have di�erent job vocabularies, we can categorize jobs more

accurately by focusing on one industry: �nance, more speci�cally we focus on investment

management. Since investment management is primarily a knowledge industry, with no

physical output, it is a useful setting in which to tease apart these various types of knowledge

jobs. According to Webb (2019) and Brynjolfsson, Mitchell, and Rock (2018a), �nance is also

the industry with the greatest potential for arti�cial intelligence labor substitution. We use

Burning Glass hiring data, including the textual descriptions of each job, to isolate �nancial

analysis jobs that do and do not predominantly use machine learning, as well as data

management jobs, for each company that hires �nancial analysts. We adjust the number of

job postings by a probability of job �lling. That product is our measure of a company's

desired addition to their labor force. This series of worker additions, along with job

separations by job category, enables us to build up a measure of each �rm's labor stock.

The next challenge is to estimate the amount of data each �rm has. We consider data

management work to be a form of costly investment in a depreciating data asset. Therefore, we

use the job postings for data managers, the job �lling and separation rates for such jobs, and an

estimate of the initial data stock to construct data in�ows (investments), per �rm, each year. To

estimate the 2015 initial stock of data of each investment management �rm, we estimate which

stock best rationalizes the �rm's subsequent hiring choices. Speci�cally, we choose an initial

stock of data that minimizes the distance between each �rm's actual hiring and the optimal

amount of hiring in each category, dictated by the �rm's �rst order conditions. Combining this

initial stock, with a data depreciation rate and a data in�ows series gives us an estimate of the

size of the data stock that every investment management �rm has in its data warehouse.

Armed with data stocks, labor forces in each category, and wages from PayScale, we estimate

the data and labor income shares. These income shares correspond to the exponents in a

Cobb-Douglas production function. We estimate a constant-returns Cobb-Douglas speci�cation

because we are exploring the analogy that AI is like industrialization and this is the type

of production function most often used to describe industrial output. Therefore, we model

knowledge production in a parallel way to industrialization, to facilitate comparison, while
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recognizing the non-rival nature of data. By comparing the estimated exponent for classical data

analysis and machine-learning data analysis, we can assess the magnitude of the technological

change.

This approach bypasses two forces: The role of capital and the potential for increasing

returns. Typically, knowledge is combined with capital, real or �nancial, to generate pro�ts,

in a production function that might exhibit increasing returns. The start of Section 1 shows

how we could incorporate either feature in our model of �rm pro�ts, without changing how we

estimate the production of knowledge. As long as there exists some amount of knowledge that

produces $1 in pro�t, at each point in time, we can estimate how data and labor combine to

create that amount of knowledge, without taking a stand on how that knowledge will be used

to create pro�t.

Our data reveals a steady shift underway in the employment of knowledge workers in the

investment management sector. We see a steady increase in the fraction of the workforce skilled

in new big data technologies. However, while the declining labor share might lead one to expect

fewer knowledge workers, we �nd an increase in the size of the sector large enough so that even

though the share shrinks, the number of workers and their pay rises. Even for workers with

the old skills, jobs are still abundant. The number of old technology jobs in the sector has not

fallen; it simply represents a smaller share of employment. While AI job postings were a tiny

fraction of all analysis jobs through 2015, by the end of 2018, about 1/7th of all �nancial analysts

in investment management �rms had big data or AI-related skills. This shifts we measure are

just the �rst few years of adoption of this new technology. But they indicate the direction of a

transformation that we expect to continue for years to come.

Related Literature Models of the role of data in the process of economic growth (Jones and

Tonetti, 2020; Agrawal, McHale, and Oettl, 2018; Aghion, Jones, and Jones, 2017; Farboodi

and Veldkamp, 2019) share our model-based approach but equate data and knowledge. In

these theories, �rms accumulate a stock of useable knowledge that enhances productivity or

facilitates prediction. In contrast, this study unpacks how raw data is transformed into that

valuable output-enhancing knowledge.

On the topic of big data technologies, many recent working papers use labor market data

to investigate how machine learning and arti�cial intelligence are a�ecting labor demand.

They primarily use a di�erence-in-di�erence approach. Acemoglu and Restrepo (2018),

Babina, Fedyk, He, and Hodson (2020) and Deming and Noray (2018) identify industries

and/or regions that are more exposed to machine learning-related technology. Then,

controlling for other labor-related variables, they report how many jobs have been lost or

gained, relative to unexposed regions or industries. Others o�er useful inputs in this exercise
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by reporting the number of AI jobs postings or patents by industry and occupation

(Cockburn, Henderson, and Stern, 2018; Alekseeva, Azar, Gine, Samila, and Taska, 2020).

Agrawal, Gans, and Goldfarb (2017) and Agrawal, Gans, and Goldfarb (2018) argue that

machine learning is likely to be a general purpose technology, because of the breadth of

industries in which it is being adopted. Structural estimation like Kogan, Papanikolaou, and

Song (2021) shares this focus on technology employment or income risk, but uses a

measurement approach more similar to ours.

In our approach, the number of jobs gained or lost due to machine learning is an important

piece of evidence; it informs our work. But labor demand is not our main question. It is

just one piece of our puzzle. Because our focus is on how the technology a�ects knowledge

production, we need to use a di�erent, structural approach. The literature on automation and

robotics asks similar questions about production of physical goods (Berg, Bu�e, and Zanna,

2018). Our focus is on knowledge production, rather than manual task automation. The

scope for computers to replace human thought and judgment may be quite di�erent from their

ability to replicate repetitive physical movements. Others examine the productivity gains or

potential discrimination costs that follow the adoption of AI techniques in providing credit

(Fuster, Goldsmith-Pinkham, Ramadorai, and Walther, 2018), in equity analysis (Grennan and

Michaely, 2018), or in deep learning more generally (Brynjolfsson, Rock, and Syverson, 2017).

These insights are also distinct from the question of how knowledge production is changing.

Should we fear the robot revolution?, Journal of Monetary Economics. explore elasticities of

substitution between robots and manual workers.

Measuring data and its value is a complement to work that estimates the value of intangible

assets (Crouzet and Eberly, 2020; McGrattan, 2020). However, the di�erence in our main

question necesscitates a di�erent approach. The objective of previous work was decomposing

the sources of value in a �rm. Using Q theory, they backed out features of a production function

from asset prices and book values. We are interested in how much two technologies, often both

used within the same �rm, di�er. A hiring-based approach is more suitable for our question

because we can identify workers using one technology or another. We cannot tell what �rm

value is attached to each mode of production, within the same �rm. It is the skills required

in posted jobs that reveals what technologies the �rm is using. Such shifts in production are

also related to the changes in the labor share of income documented by (Karabarbounis and

Neiman, 2014).

In what follows, Section 1 sets up a three-equation model that is the basis of our estimation

and derives optimality conditions that we use to infer parameters from our data. Section 2

describes the data and how we use it to assemble variables that correspond to objects in the

model. Section 3 presents the estimation results, explores changes in employment, wages, and
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the cross-�rm heterogeneity which informs our estimated parameters. We also estimate the

value of �rms' data stocks. Section 4 concludes.

1 A Model for Measurement

The objective in writing down this model is not to provide insight into new economic

mechanisms, nor it is to provide the most realistic, detailed description of �nancial knowledge

production. Rather, the goal is to write down a simple framework that maps objects we

observe into those that we want to measure. It needs to relate hiring to labor as well as

quantities and prices of labor to data stocks and knowledge production. There are three types

of workers: AI (arti�cial intelligence) analysts, old technology (OT) analysts, and data

managers. We use AI as a shorthand to denote a diverse array of big data technologies. The

data managers create structured data sets, which, along with labor, are the inputs into

knowledge production. Among data managers we also include workers who select, purchase

and integrate externally produced data sets into the �rm's databases. We de�ne as data (D)

only information that is readily available for analysis. This production process is illustrated in

Figure 1.

Figure 1: Production process for knowledge

The new technology knowledge production function is:

KAI
it = AAIt Dα

itL
1−α
it , (1)

where Dit is structured data, Lit is labor input for data analysts with machine-learning skills,

and KAI
it is the knowledge generated using the new technology. The old technology knowledge

production function is:

KOT
it = AOTt Dγ

itl
1−γ
it , (2)

where lit is labor input for data analysts with traditional analysis skills, KOT
it is the knowledge

generated using the old technology. AAIt and AOTt are time-varying productivity parameters.
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We use a Cobb-Douglas production function for knowledge because it o�ers a clear mapping

between incomes shares and the production function parameters and it facilitates our comparison

between new data technologies and the changes induced by industrialization. A Cobb-Douglas

approach is also supported by Jones (2005). Our speci�cation does embody the non-rival nature

of data: both technologies make use of the same data set, at the same time.

Data management and Data Stocks. Data inputs for analysis are not raw data. They need

to be structured, cleaned and machine-readable. This requires labor. Suppose that structured

data, sometimes referred to as �information," is produced according to λ1−φit , where λit is labor

input for data managers.1 Labor with diminishing marginal returns can turn raw or purchased

data into an integrated, searchable data source that the �rm can use. New processed data is

added to the existing stock of processed data. But data also depreciates at rate δ. Overall,

processed data follows the dynamics below:

Di(t+1) = (1− δ)Dit + λ1−φit = Di0(1− δ)t +
t∑

s=0

(1− δ)t−sλ1−φis . (3)

If we estimate the rate of diminishing returns to data management labor λit, initial data Di0

and the depreciation rate δ, we can recover Dit from data management labor λit.

Equilibrium We are interested in a competitive market equilibrium where all �rms choose

the three types of labor to maximize �rm value. We can express this problem recursively, with

the �rm's data stock as the state variable. In this equilibrium, each �rm i solves the following

optimization problem:

v(Dit) = max
λit,Lit,lit

AAIt Dα
itL

1−α
it + AOTt Dγ

itl
1−γ
it − wL,tLit − wl,tlit − wλ,tλit +

1

r
v(Di(t+1)) (4)

where Di(t+1) = (1− δ)Dit + λ1−φit , (5)

and v(Dit) is the present discounted value of �rm i's data stock at time t. Note that we have

implicitly normalized the price of knowledge to 1. This is not restrictive because knowledge

does not have any natural units. In a way, we are saying that one unit of knowledge is however

much knowledge is worth $1. Seen di�erently, our A parameters measure a combination of

productivity and price. We cannot disentangle the two and do not need to for our purposes.

1One might be tempted to add a productivity term ADM to the data production function. However, such
a term would not be identi�ed. The reason is that data does not have natural units. Multiplying production
and initial data by a constant is just a change of units of data. Multiplying Dit by a constant simply creates a
constant that can be included in AAI and AOT . So if we re-interpret those parameters as productivity, relative
to the productivity of data production, the rest of the estimates are unchanged.

7



Discussion of Model Assumptions Increasing returns to knowledge. Of course, one

might object to assuming constant returns to scale, within each type of knowledge production.

However, keep in mind that this is not di�erent from what the growth literature does with

idea production. Idea or technology production is typically produced using constant, or even

diminishing returns. Then the ideas or technologies themselves enter into goods production in

a way that creates increasing returns. In our setting, the analog to the increasing returns in

growth models would be a �nal goods sector that produced with increasing returns to scale in

knowledge, capital and labor: (�nal outputit) = (KOT
it + KML

it ) capitalζ labor1−ζ . For our

measurement exercise, we do not need to take a stand on this form of �nal goods production.

But our exercise does not rule out increasing returns to knowledge.

Mapping knowledge into pro�ts. The knowledge produced through the process we describe

maps neatly into the informative signals that noisy rational expectations models give to their

investors. One could write a larger model where the knowledgeKi represents the signal precision

of investor i who will form an optimal portfolio, based on that information about future asset

payo�s. In such a model, expected utility (risk-adjusted expected pro�t) is linear in Ki (Van

Nieuwerburgh and Veldkamp, 2009). The objective in our problem is to maximize Ki. If instead

that objective were maximize a linear coe�cient times Ki, nothing would change.

Decreasing returns to information in �nancial markets. The value of information declines

as others acquire more of it (Glode, Green, and Lowery, 2012). This is a form of aggregate

decreasing returns. This implies that an advance in data technology would cause the mapping

from knowledge Ki to risk-adjust pro�ts to decline over time. Such a linear time e�ect will be

absorbed by the linear productivity multiplier AAIt or AOTt .

Same type of data used for both technologies. Finally, this structure also implies that the

nature of the data inputs is the same for both types of analysis. This simpli�es measurement,

but the obvious counterfactual would be: Machine learning can make use of a broader array of

data types than traditional analysis. One way to interpret this is that it is the source of greater

decreasing returns to data from the old technology. Suppose that data is ordered, from easily

usable to di�cult to use. Once the easiest data is incorporated, the next additional piece of

data for traditional analysis has very low marginal value. For machine learning, that next piece

of data has higher marginal value. Thus, the di�erence in the usability of data could be the

primary reason for the di�erence in returns to data.

No labor matching frictions. When we measure jobs, we will account for the fact that not all

job postings result in a worker being hired. We adjust for the job �lling rate. What is important

is that labor matching frictions not dissociate wages from �rms' marginal values. Obviously,

�rms would never pay more than the marginal product of a worker for a wage because then

�ring them is a dominant strategy. Matching frictions might result in less pay. But this is a
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competitive and liquid market. The �nance industry pays its data workers particularly well so

that they can �ll jobs quickly. Addressing this concern is part of why the focus on �nance is

useful.

Omitted inputs. Of course, physical capital, human capital or management skill, land or

other realistic inputs are omitted from the production function. One of the de�ning features of

the knowledge economy is that it is less capital-intensive and more data-intensive in production.

The two factor structure we use maintains the parallel with the early two-factor, capital and

labor production.

In our measurement, these omissions will bias up the value of the exponents on both data

and labor, for both technologies. The factor shares that are paid to land and management skill,

now are paid to data and labor. This does not alter our conclusions unless those omitted inputs

vary systematically across �rms with di�erent data-labor ratios and across technologies.

Optimal �rm hiring and wages. The �rst order condition with respect to new technology

(AI) analyst labor Lit is

(1− α)KAI
it − wL,tLit = 0, (6)

which says that total payments to new technology analysis labor wL,tLit are a fraction (1− α)

of the value of knolwedge output from AI analysis, KAI
it . The �rst order condition with respect

to old tech analyst labor lit is

(1− γ)KOT
it − wl,tlit = 0. (7)

This says that the total payments to old technology analysis labor wl,tlit are a fraction (1− γ)

of the value of total output KOT
it . Taking the ratio of the two �rst order conditions implies that

(1− α)KAI
it

(1− γ)KOT
it

=
wL,tLi,t
wl,tli,t

(8)

This ratio varies by time t and it measures how much knowledge production technology has

changed. The �rst order condition with respect to data management labor λit is

1

r
v′(Di(t+1))(1− φ)λ−φit = wλ,t. (9)

If the marginal value of data today and tomorrow are similar, we can solve for v′(D) and replace

λ1−φ by the change in the data stock, to get2

(αKAI
it + γKOT

it )(1− φ)

r − (1− δ)
Di(t+1) − (1− δ)Dit

Dit

− wλ,tλit = 0. (10)

2See appendix for step-by-step derivation.
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Intuitively, total payments to data management wλ,tλit are a portion of (αKAI
it +γKOT

it )(1−φ),

pdv (Gordon growth), or total output times the percentage increase in the data stock.

Using these expressions for optimal labor choices, we can derive an expression for the optimal

stock of data for a �rm. This is an expression we will use to impute the initial data stock of each

�rm. We start with (10) and substitute in λ1−φit , in place of Di(t+1) − (1− δ)Dit. Next, we need

to replace KAI
it and KOT

it which are the unobserved knowledge produced with each technology.

To do this, we use the �rst order conditions for AI and OT labor, (6) and (7), to substitute

wage per worker expressions; KAI
it = wL,tLi,t/(1 − α) and KOT

it = wl,tli,t/(1 − γ). This yields

an expression that relates �rm i stock of data to production function exponents and observable

hiring and wages:

Dit −

(
α

1−αwL,tLi,t + γ
(1−γ)wl,tli,t

)
(1− φ)

r − (1− δ)
λ−φit
wλ,t

= 0. (11)

2 Data and Estimation

Why look at the investment management industry? Our model is about knowledge

production generally, in any industry. But as we turn to estimating this model, we use asset

management industry labor and data estimates. One reason we do this is that the investment

management industry is primarily a knowledge industry, where information is processed to form

forecasts about asset returns and pro�table portfolios. But the main reason is that �nance is

an early adopter of AI and big data technology. If we want to study the nascent adoption of

this new technology, it is helpful to look in corners of the economy where adoption is most

substantial. In independent studies with di�erent methodologies, Felten, Raj, and Seamans

(2018) and Brynjolfsson, Mitchell, and Rock (2018b) both came to the conclusion that the

�nance/insurance industry was the one with the greatest potential for labor substitution with

AI. Acemoglu, Autor, and Hazell (2019) document that �nance has the third most number of

AI job postings, behind information and business services.

Finally, the �nancial industry is a useful laboratory because �nance jobs are typically �lled.

JOLTS data tell us that �nance is an industry with one of the highest vacancy conversion rates

into new employment, presumably because the �nance sector pays more than others. Thus,

when they want a worker with a speci�c set of skills, they can buy them. Since our work relies

on job postings, it is helpful if many of these postings are, in fact, �lled.

Of course, one could argue that we could include the investment management industry, as

well as all other industries, to broaden our sample and sharpen our estimates. The problem

with this approach is that distinguishing which workers combine data and labor to produce

knowledge is tricky. Determining which workers use which technology is even more delicate.

10



Di�erent industries use di�erent vocabularies to describe this type of work. The type of work

that the investment management industry calls an analyst, the retail industry might call an

online marketing expert. Both are using data and labor to make predictions that will enhance

their company's pro�t. But because the language used to describe jobs di�ers, one needs a

separate dictionary/model to identify relevant jobs in each context. Therefore, restricting our

analysis to the asset management sector allows us to obtain a cleaner sample of job postings

and improve the accuracy of our estimates.

Labor demand Our data is the job postings data set collected by Burning Glass, from

January 2010 through December 2018. These postings are scraped from more than 40, 000

sources (e.g. job boards, employer sites, newspapers, public agencies, etc.), with a careful focus

on avoiding job duplication. Acemoglu, Autor, and Hazell (2019) show that Burning Glass data

covers 60-80% of all U.S. job vacancies. The �nance and technology industries have especially

good coverage. It includes jobs posted in non-digital forms as well. Importantly, for a large

portion of job postings, the data reports employer names, as well as the sector, job title, skill

requirements, and sometimes the o�ered salary range. In addition to the structured data �elds,

we also make use of the full text of the job posting, as written by employers.

In order to construct this data set of interest we proceed in three steps. (1) We subset the

data to candidate jobs of interest in the �nancial industry. (2) Among the candidate �nance

jobs, we identify the ones belonging to one of the following categories: data managemers, AI

analysis or old tech analysis. (3) We match job postings to employers. This procedure leads to

the identi�cation of 308, 600 job postings categorized as AI, old tech or data management. The

unique number of employers goes from 442 in January 2015 to 739 in December 2018. The total

number of unique employers is 812. Next, we provide more detail on each of these three steps.

Step 1: We use the jobs' NAICS, O*NET and proprietary Burning Glass codes to restrict the

Burning Glass data set to candidate jobs in the �nancial industry. More speci�cally, we �rst drop

all job postings that do not belong to one of the following 2-digit NAICS codes: 'Professional,

Scienti�c, and Technical Services', 'Finance and Insurance', 'Information' and 'Management of

Companies and Enterprises'. We also keep all jobs for which the NAICS code is not available.

Next we compile lists of O*NET codes and Burning Glass proprietary codes (BGT Occupation

Group, BGT Career Area) of job categories that should clearly not be contained in our sample3.

After eliminating all jobs belonging to those categories, we are left with a sample of candidate

�nance jobs.

Step 2: For all jobs in the candidate Finance sample, we then use the full text of the

3Examples of excluded 6-digit O*NET codes that were still present in the sample: 'Bookkeeping', 'Accounting,
and Auditing Clerks', 'Customer Service Representatives', 'Cashiers', 'Retail Salespersons' ...
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selected job postings in order to identify analysis jobs and data management jobs. We de�ne

'data management' jobs as those requiring skills related to the cleaning, purchasing, structuring,

storage and retrieval of data. What de�ne as �analysis jobs" those jobs that combine structured

data with skilled labor. We call these analysts because they analyze data in di�erent ways.

They are not necessarily what the �nancial industry calls analysts. Within the analysis jobs

we further distinguish between those that mostly require old (Old Technology - OT ) or new

(Arti�cial Intelligence - AI) skills.

This classi�cation is obtained by developing a dictionary of words and short phrases that

indicate 'data management' or 'data analysis', and then counting the relative frequency of these

words or expressions in each pre-processed job text.4 Among the 'data analysis' keywords we

further identify those clearly indicative of the old and new technologies and we assign jobs to

'Old Tech - OT' or 'Arti�cial Intelligence - AI' depending on the relative frequency of words of

the two types present in the posting. The full dictionaries used are available in Appendix A.1.

While this step is similar in nature to the decompositions by Acemoglu and Restrepo (2018)

or Babina, Fedyk, He, and Hodson (2020), working with one type of job in a single industry

allows us to partition the data more precisely. The approach of these authors is to search for

machine learning related skills in the standardized skills list provided by Burning Glass. Babina,

Fedyk, He, and Hodson (2020) additionally capture AI-relatedness by looking at how frequently

all structured skills mentioned in a given job appear jointly with basic AI skills. This approach

does not work for our exercise: Burning Glass' skills list is not detailed enough to distinguish

between di�erent types of data analysis in investment management. Misclassi�cation that might

wash out in a job counting exercise is more serious for us. We need to match data and labor

stocks �rm-by-�rm. This is why we analyze the full text of the job posting. Analyzing the

full text, rather than using the Burning Glass skills list, greatly improves our classi�cation by

allowing us to account for the frequency of mentions of each type of skill.5

Step 3: To match the categorized job postings to the right employers, we use a �master�

list of investment management �rms and identify among the categorized job posting those that

most likely belong to the employers of interest, through fuzzy matching of employer names.

Appendix A.2 provides a detailed description of that process. This procedure allows to map all

relevant job postings to the employers of interest, so identifying their labor demand. We further

restrict the sample to employers that posted at least 5 'Old Technology' or 'Machine Learning'

4We pre-process the text of each job posting by �rst removing symbols, numbers and stop-words (e.g. is, the,
and, etc.) and then stemming each word to its root using the Porter stemmer algorithm (thus, e.g. 'mathematic',
'mathematics', ... = 'mathemat' ).

5For instance a job that mentions 'Machine Learning' 10 times withing the job text and then also states
"Masters in Statistics also accepted", in our approach would be clearly classi�ed in the 'AI' category. Looking
at the skills lists, instead, the categorization of the job would be ambiguous as it would appear to require both
old and new technology skills in the same proportion: 'Statistics' and 'Machine Learning'.
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jobs throughout the entire period of interest (2010-2018).

There is some entry in our data set. 77% of �rms are in our data set in 2015. The remaining

23% appear for the �rst time in 2016-2018. That does not mean these 23% are all new �rms.

Instead, many of them are existing �rms that enter our data set when they hire data workers

for the �rst time.

Figure 2: Keywords in the full text of the categorized machine learning, old technology and data
management jobs. Larger fonts indicate a higher word frequency. Burning glass job postings,
2010-2018.

Figure 2 illustrates the frequency of all keywords in the job postings categorized as belonging

to each type. Note that even if all 'data analysis' and 'data management' keywords are included

in all three word clouds, the keywords speci�c to the assigned category have a signi�cantly

higher relevance. The word overlap illustrates why counting word frequency is important. At

the same time, the signi�cant di�erences between the word clouds validates our approach. If

a clear distinction between the three types of job postings did not exist, the most frequently

mentioned words in each category would be less distinct.

Sample job postings To provide a clear idea of how this methdology classi�es jobs, we list

three sample job postings here, one each of old technology, AI or big data-related skills, and

data warehousing. In this example, all three jobs are posted by the �rm Two Sigma. The text

of the �rst job reads:

�We are looking for world-class quantitative modelers to join our highly motivated

team. Quant candidates will have exceptional quantitative skills as well as

programming skills, and will write production quality, high reliability, highly-tuned

numerical code. Candidates should have: a bachelor's degree in mathematics
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and/or computer science from a top university; an advanced degree in hard science,

computer science, or the equivalent (a �eld where strong math and statistics skills

are necessary); 2 or more years of professional programming experience in Java and

C, preferably in the �nancial sector; strong numerical programming skills; strong

knowledge of computational numerical algorithms, linear algebra and statistical

methods; and experience working with large data sets. (...) �

This job is classi�ed as old tech because it uses words such as �mathemat� (x1), �math� (x1),

�statist� (x2), �algebra� (x1), and does not contain words related to AI or data management

skills.

This �rst posting contrasts with the text of the second job, which reads:

�As machine learning and data-driven business intelligence have permeated

industries, an abundance of new datasets and techniques have created

opportunities for granular measurement of increasingly varied aspects of our

economy. Two Sigma is looking to hire a highly creative & motivated Lead Data

Scientist to further scale our long-standing e�orts to leverage these advancements

to measure and predict the world's �nancial outcomes.

Two Sigma's data engineering platform enables us to harness some of the world's

most complex & challenging content, as we structure and integrate new datasets

into a diverse ecosystem of syndicated �nancial and industry-speci�c data

products. Two Sigma's data scientists are focused on joining, enriching, and

transforming datasets into novel creative measures of economic activity. (...) �

This job is harder to classify. It contains the word �statist� (x2), indicative of old tech. It

also contains data-management-related vocabulary, �data engin� (x1), �data sourc� (x1), and

�support data� (x1). But what ultimately gets this job classi�ed as AI is the higher frequency

of AI-related words: �data scienc� (x4), �data scientist� (x5), �machin learn� (x1). An algorithm

that just looked for the presence of skills or words, without measuring their frequency, would

likely misclassify this job, and many others like it.

Finally, the text of the third job reads:

� (...) Technology drives our business it's our main competitive advantage and as a

result, software engineers play a pivotal role. They tackle the hardest problems

through analysis, experimentation, design, and elegant implementation. Software

engineers at Two Sigma build what the organization needs to explore data's

possibilities and act on our �ndings to mine the past and attempt to predict the

future. We create the tools at scale to enable vast data analysis; the technology we
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build enables us to engage in conversation with the data, and search for knowledge

and insight. (...) You will be responsible for the following: Capturing and

processing massive amounts of data for thousands of di�erent tradable instruments,

including stocks, bonds, futures, contracts, commodities, and more; (...) �

This job is classi�ed as data management because of the words, �explor data possibl,� �enabl

vast data analysis,� �data specialist,� and �data team.�

Wages Many, but not all jobs in Burning Glass list a salary range. Because listed salaries are

not representative, we obtained salary data from PayScale.6 PayScale collects real-time detailed

salary information through crowdsourcing. On their website individuals complete a survey about

their current position in order to obtain a report detailing how their salary compares to that

of other individuals with similar characteristics (education, skills, work experience, ...). People

may use this service when renegotiating their salary, when looking for other positions or when

deciding what additional training to obtain. PayScale has so far obtained more than 65 million

salary pro�les in more than 365 industries.

Importantly for our estimation, among other information, individuals are asked to disclose

their job title, their total compensation (including bonus) and a list of the top three skills

required in their job. The timeliness of this crowd-sourced information, together with its

granularity, allowed us to identify 11,041 salary pro�les for our job categories of interest in the

investment management industry. More speci�cally, we were able to identify 5,639 Data

Management salary pro�les, 2,817 pro�les by Old Tech analysts and 2,585 by AI analysts.

Appendix B details the procedure utilized in identifying and categorizing these pro�les.

Every month we then computed the mean salary across all salary pro�les in each of our three

job categories of interest. We �nally smoothed salaries using a 12 months rolling window.

Figure 3 illustrates the salary time-series obtained in this manner and then utilized in the

structural estimation. The key insight is that AI jobs consistently pay more � around $20,000

more per year � than traditional analyst jobs. This suggests that AI workers make more

productive use of their data. This di�erence in wages is a key input that determines the

di�erence in production function estimates.

Cumulating hiring to get labor. The data series we need in order to estimate production

is the labor force working in a given month, for both knowledge and data processing workers.

We do not observe the stock of labor. Therefore, we use the following procedure to estimate

labor from observed job postings by �rm. The number of observed job postings for the three

6www.payscale.com. Data last updated December 2020.
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Figure 3: Average wages. AI analysts earn about $20k more per year than data managers and
old technology analysts. Job postings from Burning Glass matched to wage data from PayScale. Wage
refers to annual, total compenstion.

categories of interest is displayed in Figure 4, together with the number of employers hiring in

each category.

Job postings are not the same as net hiring. One might be concerned that AI workers, in

particular, are so scarce that many postings go un�lled and/or that workers jump from job-

to-job. There are two key di�erences between postings and net hiring: the probability that

a vacancy is �lled and the probability that an employed worker separates from their job. We

adjust for both of these using data on vacancy �ll rates and job separation rates from the Bureau

of Labor Statistics (BLS).

Each month, the BLS reports the job posting, job �lling and separation rate for each

occupation. The three occupation brackets present in the �nal sample are: 'Finance and

Insurance', 'Professional, Scienti�c and Technical Services' and 'Information'. Since we want

to map our job postings into expected hires, we multiply each job posting number by the

fraction of job postings that results in a new hire (h).

Of course, machine learning jobs are not an occupation. We need a way to map our

technology-based job classi�cation into the BLS occupation classi�cation. Fortunately, most

Burning Glass job posting have a listed occupation. Of course, di�erent postings have di�erent

classi�cations, even within machine learning, old technology or data management jobs. Thus,

we measure the proportion of jobs in each of our samples that belongs to each occupation.

Each month we compute a vector of occupation weights for machine learning jobs, one for old

tech jobs and one for data management jobs that is the fraction of jobs in each category that
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Figure 4: Job postings and Labor Stocks: Panel 1 shows the fraction of employers hiring in each
category. Panel 2 shows the stock of labor in each category, measured as a cumulated number
of job postings, adjusting for �lling and separation rates as in (12).

belongs to each occupation. We multiply this weight vector by each of the �ll and separation

rates that month, to get the imputed �ll and separation rates for machine-learning �nancial

analysis jobs (hAIt and sAIt ), the imputed �ll and separation rates for old technology �nancial

analysis jobs (hOTt and sOTt ) and those for data management jobs (hDMt and sDMt ). See

Appendix A.3 for more detail on how BLS data is mapped into our job categories and how h

and s are derived from BLS reported rates.

For type = [AI,OT,DM ], if stypet are separation rates by type-month, and htypet are the

fraction of posted vacancies �lled by type-month and jtypet are Burning Glass job postings by

type-month, we cumulate labor �ows into stocks as follows:

Lit = (1− sAIt )Li(t−1) + jAIit h
AI
t , (12)

lit = (1− sOTt )li(t−1) + jOTit hOTt , (13)

λit = (1− sDMt )λi(t−1) + jDMit hDMt . (14)

To use this cumulative approach, we need to know the initial number of workers of each

type (Li0, li0 and λi0). Unfortunately, that information is not available, but we know that the

initial number of workers becomes less relevant the further we are from initialization. For this

reason we start the initialization from zero for all job types and we use the �rst 5 years of data

[2010− 2014] as a burn-in period. We then use the last 4 years [2015− 2018] for the structural
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estimation of the model's parameters.7

Data Management λit AI analysts LAIit Traditional analysts LOTit
mean 53.73 2.33 32.37
stdev 441.17 29.78 204.84

minimum 0 0 0
median 5.72 0 3.63

maximum 11409.26 1765.88 4420.53
Observations 33,392 33,392 33,392

Table 1: Labor Stock Summary Statistics.

The right panel of Figure 4 shows the imputed labor stocks for each job type. AI workers

in investment management are still a small fraction of the overall labor supply, suggesting that

the transition to a new model of knowledge production is just in its beginnings. However, what

looks like a small uptick on this axis looks like an explosion when we zoom in. Prior to 2015,

hiring in AI is mostly �at. From 2015 to 2018, the stock of AI labor increases about 13-times

from 350 to 4537 AI analysts.

Table 1 reports the summary statistics for the stock of each type of labor. What is salient in

all three categories is the large disperion. This is helpful because the cross-�rm heterogeneity will

allow us to estimate the technology parameters. Our �nal data set contains 33, 392 employer-

month observatiobs. These will be used in the structural estimation of the model's parameters.

Cumulating data management to get structured data stocks We measure each �rm's

stock of data in each period by adding the data management inputs to the depreciated stock of

yesterday's data:

Dit = (1− δ)tDi0 +
t∑

s=0

(1− δ)t−sλ1−φis . (15)

We �x the depreciation rate of data at δ = 0.03, which is a 3% depreciation rate per month.

We also report results for 1% and 10% deprecation. This represents some high-frequency data,

whose value lasts for fractions of a second, as well as longer term data used to value companies.

In future iterations, we will experiment with other values for depreciation.

To use this approach, we need information about �rms' initial data stocks. We estimate this

initial stock, by �nding the initial stock that makes all subsequent data levels closest to the

7Incorporation of 2019-2020 Burning Glass data is in process. Five years of burn-in time appears su�cient
because when we instead assume that initial labor stock in each category is in steady state (i.e. all hiring is to
replace expected separations), we observe much higher labor for the �rst 5 years, and then convergence with the
zero initial labor series.
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�rm's optimal level. Speci�cally, the initial data stock of each �rm is the Di0 that best �ts the

sequence of the �rm's data optimality condition (11).

If we estimate this recursive system of data stocks, production parameters and data inputs

for every �rm in our sample, the problem quickly becomes unmanageable. At the same time,

we do not want to lose the interesting cross-�rm heterogeneity. Therefore, instead of estimating

Di0 for each �rm in our sample, we compute it for the average �rm and use a rule to map the

average into a �rm's initial data. We use the initial data stocks to estimate the production

function parameters. Then, given the parameters, we can recover the best-�t initial data and

cumulate up a data stock for each �rm easily.

Speci�cally we express the Di0 of each �rm as a function of a unique average data stock by

setting each �rm's initial data proportional to the average data stock and to their cumulative

hiring in data management from 2010-2015. In other words, we take the estimated data

management labor stock in 2015, λ2015,i and raise it to the production function exponent to

turn it into an amount of data produced: λ1−φ2015,i, and then choose a constant ι so that the

average initial data stock is the estimated average stock: (1/N)
∑

i ιλ
1−φ
2015,i = D̄0.

Then we can express equation 15 as follows:

Dit = (1− δ)tιλ1−φ2015,i +
t∑

s=0

(1− δ)t−sλ1−φis . (16)

where ι is a function of D̄0. For each �rm we then cumulate up the data management �ows

to construct a stock of data.

The initial data stock that best explains the sequence of data management hiring is the D̄0

that minimizes the sum of squared errors or the right hand side of (11), for each �rm i.

Data depreciation The rate of data depreciation depends on the time-series properties of

the variable being forecasted, as well as on the nature of data management. If data is being

used to foreacst �rm earnings, for example, and �rm earnings are quite stable over time, with

high persistence and small innovations, then data from a few months ago is still quite useful for

predicting today's earnings. Because interest rates are even more persistent and less volatile,

data used for forecasting interest rates would retain its value even more. However, if data is

being used to forecast order �ow, which has a persistence of only a few days, then order �ow

data from a month ago is nearly worthless. Customer data, with �xed customer characteristics,

might not depreciate at all. Firms' data sets are a mixture of these di�erent types of data. To

get some sense of a reasonable depreciation rate, we base our �rst depreciation estimate on the

properties of earnings data, because earnings lies in between the extremes of highly transitory

and highly persistent data.

19



From Farboodi and Veldkamp (2019), we know that the data depreciation rate is 1−ρ2(ρ2 +

σ2
θDit)

−2, where ρ is the persistence of the AR(1) process for earnings and σ2
θ is the variance of its

innovations. Farboodi, Matray, Veldkamp, and Venkateswaran (2020) report these coe�cients

for averge small value, large value, small growth and large growth equities. For amounts of data

that increase earnings forecast precision between 0 and 10 times their initial precision, they �nd

depreciation rates that range from 58% to 91% annually, for all four types of assets. In our

monthly model, that is the equivalent of 5-7.5% per month.

However, what matters for the structural estimate of data is not really how much data

depreciates, but how much the output of data management labor depreciates. If what data

workers do is to collect each data point, one at a time, and add them to the data set, then

depreciation of data is the relevant depreciation rate. But data workers would never hand-

collect a stream of data like this. They automate the collection of a particular type of data.

Each month, each day or each microsecond, their system automatically pulls the next piece

of data. That matters because a unit of data management labor now doesn't depreciate just

because the data series is not persistent. In this view of data management, depreciation is

hardware breaking, data links changing, or software needing updates. That type of depreciation

sounds very much like the standard capital depreciation of macro theory. Typical estimates of

12% per year (1% per month) might then seem to be more appropriate. Standard accounting

practice is to amortize data warehouses like software, over 36 months. That translates to a

depreciation rate of 3% per month.

Given this range of estimates, we explore depreciation rates of 1%, 3% and 10% monthly,

with the understanding that rates around 1-3% more accurately re�ect the automated way in

which data is collected.

Estimating production functions The key variables of interest are the two production

function exponents, α and γ from (1) and (2). There are four variables we need to estimate:

α, γ, the exponent φ on data management in the structured data production function (3), and

�nally, we need the initial average data stock D̄0. For three of our moment conditions, we use

the �rst order conditions for each of the three types of labor (6), (7) and (10), for the fourth,

we use the optimal data stock condition, (11).

When we estimate the machine learning labor �rst order condition, we use only �rms that

employ some machine learning workers and some data management workers. Requiring that the

�rm currently employs a type of worker does not imply they hired someone that month. Rather,

it means that some worker was hired at some time in the past. If we do not exclude these �rms,

our production exponent estimate would be heavily in�uenced by the many observations with

zero labor and abundant data, or vice-versa. Similarly, when we estimate the traditional labor
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�rst order condition, we use only observations from �rms that have, at some point, hired a data

manager and a traditional analyst.

We also need to solve for the productivity parameters AAIt and AOTt . Given a set of guessed

parameters (α, γ, φ and D̄0), we solve for AAIt , AOTt using the �rst order conditions 6 and 7

computed on cross-sectional averages. In other words, the A parameters reconcile the average

magnitudes of knowledge with average wages, while the production exponents are identi�ed o�

of the cross-�rm heterogeneity.

We then substitute the computed productivity parameters into the four conditions and

compute a vector of residual using the full time-series and cross-sectional variation. The residual

vector contains (33, 392× 4) observations.

Finally we use non-linear least squares to iterate over di�erent combinations of α, γ, φ

and D̄0. The algorithm converges when it �nds the combination of parameters that yields the

smallest sum of squared errors.

As a check on convergence, we also re-estimate the parameters using a grid search method.

This is viable because many of our parameters, like the production exponents are bounded

between zero and one. While it takes longer to run, our grid search does identify the same

solution.

3 Results

The results are broken into four parts. The �rst part is the main results, with our estimates of

the production function parameters. Our baseline results reveal that the size of the change in

knowledge production is about two-thirds the size of the industrial revolution in goods

production. The second part explores why we come to this conclusion. It explains why the

data-labor ratios for �rms that do lots of AI and those that do not are key statistics for

identifying production function exponents. Third, we relate our �ndings to a literature on

labor-replacing technological change. We document that labor demand in this sector is rising

with technology adoption. That may not be causal. But there is no evidence of technology

crowding workers out. Finally, we use our structural model to value the data that �nancial

analysis �rms are accumulating.

3.1 Main Result: Comparing Changes in Knowledge Production to

Industrialization

Our main question is: What are the production function exponents from each technology? Table

2 reports these main results. The exponents α and γ represent the diminishing returns to data
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in the old and new technologies. The fact that α > γ means that the rate of diminishing returns

to data is less with the new AI technology. In other words, new data technology has signi�cantly

raised the productivity of analyzing larger data sets. That is not surprising. The fact that the

exponent rose by 0.08, which is 11% of its previous value, suggests that the rise is substantial.

With standard errors one hundredth of that size, the change is statistically signi�cant, at any

reasonable threshold.

δ = 1% δ = 3% δ = 10%
AI Analysis α 0.894 0.791 0.702

(0.0005) (0.0009) (0.0013)
Old Technology Analysis γ 0.634 0.711 0.678

(0.0017) (0.0007) (0.0004)
Data Management φ 0.152 0.147 0.142

(0.0012) (0.0008) (0.0008)

Table 2: Main Result: AI Reduced the Share of Knowledge Income Paid to Labor
(α > γ). The estimates are for the exponents on data in the knowledge production functions
in (1) and (2) and the production of structured data in (3). Data covers 2015-19 from PayScale
and Burning Glass. Standard errors in parentheses.

The other parameter we estimate is the average initial data stock, which is (1425, 808, 226)

for δ = (0.01, 0.03, 0.1). From here on, we present results for the medium depreciation case of

δ = 3% and report results for the other two cases in the appendix.

The labor �rst order conditions (6) and (7) tell us that these exponents also govern the

distribution of income to factor owners. Our results imply that owners of data have gained

enormously from this technological change. While they used to be paid 71% of the value of the

knowledge output, they can now extract 79% of that value. In addition, since more knowledge

is being produced, this is 79% of a larger revenue number. This �nding is consistent with the

overall economic trend of a decrease in the labor share of income (Karabarbounis and Neiman,

2017).

Of course, owners of data had to pay data managers to build these data sets, just like owners

of capital had to pay for the investment in their capital stocks. But once they own these data

stocks, they get the income associated with their factor.

How can we gauge the size of this change in knowledge production? Since this paper is

pursuing an analogy between knowledge production with big data technologies and the change

in physical production in the industrial revolution, a historical comparison seems most relevant.

Klein and Kosobud (1961) estimate that between 1900 and 1920, the labor share of income fell

from 0.909 to 0.787. Since the labor share of income corresponds to one minus the exponent
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on capital in the production function, this estimate suggests that the capital exponent in the

production function rose by 0.122. Our rise of 0.080 is about two-thirds of the industrial

revolution value. That simple comparisons suggests that the magnitude of the technological

change in the big data revolution is somewhat smaller, but still comparable to that of the

industrial revolution.

The data depreciation rate matters for this conclusion. If data management is mostly

maintenance of physical infrastructure and thus depreciates like physical capital, at a rate

around 12% per year or 1% per month, then the e�ect of AI is twice as large as the industrial

revolution. When assuming a very high depreciation rate of data management (10% monthly)

we still obtain a decrease of 0.024, which represents a �fth of the industrial revolution value.

What data features identify production parameters? Our exponents are estimated,

not calibrated to particular features of the data. So all data features matter. However, some

are particularly informative. One feature of the data that is particularly helpful to identify

production function exponents is the sensitivity of data stocks to changes in AI analysis labor

versus changes in OT analysis labor.

Just like the shift to industrialization has been characterized as a shift to a more capital-

intensive form of production, our estimates suggest that AI is analogous � a more data-intensive

form of knowledge production. Instead of more machines per person, this shows up as more

data per analysis worker.

We can use our structural model to explain the relationship between production exponents

and data-labor covariances. Consider a �rm that produces using only old technology analysis.

The analysis labor �rst order condition for this �rm is (1 − γ)Kit = wltlit. Now imagine an

economy where a �rm would just rent data for one period, at rate rD, and have it automatically

cleaned and integrated in its data repository. The data �rst order condition would then be

γKit = rDDit. One could then divide the optimal data condition by the optimal labor condition

to get Dit/lit = γ/(1 − γ)(wl/wD). Similarly, for a �rm that rented data and produced only

with the AI technology, the optimal data-labor ratio would be Dit/Lit = α/(1 − α)(wL/wD).

In this simpli�ed model, a sensitivity of data stocks to increases in AI labor that is higher than

the sensitivity to increases in OT labor (after adjusting for wage di�erences) would reveal how

much larger the production exponent α is than γ.

The model we wrote down di�ers because data is produced with data management labor, is

a long-lived asset and can be used for both AI and OT analysis. The data �rst-order condition

in our richer model is (11). If a �rm did only old tech analysis (AAI = wl = 0), then this
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condition would reveal and optimal data-labor ratio for a pure OT �rm:

Dit/lit = γ/(1− γ) · (wl/wλ) · (1− φ)λ−φ/(r + δ − 1).

For a pure AI �rm, the optimal data-labor ratio is

Dit/Lit = α/(1− α) · (wL/wλ) · (1− φ)λ−φ/(r + δ − 1).

Just as before, if the AI �rm has a higher sensitivity of optimal data stocks to labor changes

than the OT �rm, after correcting for wages and λ, it tells us that the exponent α > γ.

We examine sensitivies to changes, rather than the data-labor ratio directly because our

model is richer than these examples. Speci�cally, �rms can operate both technologies at the

same time, with di�erent intensities. Therefore, the data stock of a �rm re�ects both its AI

data needs and its OT data needs. But this math illustrates why the sensitivity of data changes

to labor changes of both kinds is particularly informative about the exponent that governs

diminishing returns and income shares.

Figure 5: AI �rms have larger data sets. AI �rms are de�ned as those that hire any AI workers, over all
months of observations. Source: Burning Glass, 2018 data.

Figure 5 sets the stage by plotting the distribution of data for �rms that do AI analysis and

�rms that do not. In this exercises, the threshold for a �rm �doing AI� analysis is hiring any AI

workers during our estimation period 2015-2018. Notice the di�erence in scale of the two plots.

The AI �rms are accumulating orders of magnitude more data. This di�erence does not speak

to causality. Our model predicts that more AI workers prompt a �rm to accumulate more data

and vice-versa. Both of these forces are embodied in our optimality conditions and both inform

our estimation. This bi-directional causality shows why a structural estimation is essential for
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our purposes.

Figure 5 also illustrates the enormous heterogeneity in �rms' data stocks. In particular,

there is a right tail of �rms with troves of data. This heterogeneity is helpful for identi�cation

of our parameters.

The moment our model suggests is important is the sensitivity of data to each type of

analysis labor. Of course, data stocks are something we impute from �rms' hiring choices. The

hallmark of a �rm accumulating more data is its hiring of data management workers. Evidence

of the relationship between AI, OT and data accumulation shows up in the cumulated hiring

decisions of �rms. The �rms we estimate to have large data sets are �rms that hire more data

management workers. This is supported by the fact that such �rms also hire more analysts to

work with their data. This is apparent in Figure 6 where both plots show an upward slope, a

positive relationship between analyst and data manager hiring.

The key feature of this data is the slope of the relationship between data and analyst labor

that is steeper for AI analysts than for OT analysts. The left panel of �gure 6 representing AI

labor has a steeper slope (more sensitivity) than the right panel, representing OT labor. This

di�erence in sensitivities is a feature of the hiring data that informs us about how much more

data intensive AI-based knowledge production is becoming.

Figure 6: Firms with more structured data hire more AI analysts (left panel) and more
traditional analysts (right panel). The left panel excludes Goldman Sachs and JP Morgan simply because
their hiring is an order of magnitude larger than others. Excluding them makes the rest of the data set more
visible. Source: Burning Glass, 2015-2018.

3.2 Is Data Replacing Labor?

One of the main concerns people have with new data technologies like AI is that they might

be labor replacing. Our results show how even labor-replacing technologies can expand labor
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demand.

Figure 4 illustrates the aggregate stock of analysis labor. Despite our �nding that knowledge

production is becoming less labor-intensive, we see that there are more and more workers doing

analysis. Production can be less labor-intensive and still have more labor demand because

production of knowledge is rising. The expansion is made possible by the improvement in

analysis productivity. So even though AI is labor-replacing, in the sense that it requires less

labor per unit of data, it is also labor-demand-enhancing because it causes the whole sector to

grow.

The growing labor force is not an artifact of our parameter estimates. It is also not dependent

on most model assumptions. The growing labor result comes from simply counting up the new

hires and adjusting for BLS-reported departures. Much of this increase comes from there being

more �rms in our sample. But the growth of �rms working with �nancial data is hardly a sign

of low labor demand.

Both old tech and AI-skilled analysts become more abundant. AI jobs grew at a faster rate

(from 350 to 4537). However, they account for only about 35% of the increase. The rest comes

from more hiring of old technology analysts. While old technology productivity may not have

improved much, these workers are made more productive by the abundance of structured data.

3.3 Estimating the Value of Data

One of the big questions in economics and �nance today is how to value �rms' data stocks. Four

of the �ve largest �rms in the U.S. economy, by market capitalization, have valuations that are

well beyond the value that their physical assets might plausibly justify. These �rms have future

expected revenues based on their accumulated stocks of data. Our structural estimation o�ers

a straightforward way to compute this value.

Once we have estimated production parameters and data stocks, we can put them back into

our value function, and approximate the value of each �rm's stock of data in each month. This

value is in nominal dollar units, since those are the units of the wages we use. Figure 7 plots

this aggregate value. This is our estimate of the value function in (4) for the aggregate stock of

data.

The units of Figure 7 are hundreds of billions of U.S. dollars. Over the time period, 2015-

2018, we see a rise in the value of this data stock from about $ 320 billion to about $ 400 billion,

a 25% increase in value.

Where does this increase in value come from? The �rst source is simply the accumulation

of data. But for most �rms, this increase is modest. A second contributor to the increase in

the value of data is the increase in �nancial analysts that work with data (Figure 4). The more

workers there are, the higher is the marginal value of data and the more valuable the stock of
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Figure 7: Estimated Value of the Aggregate Stock of Data, in hundreds of billions of current
U.S. dollars, and the Productivity of Financial Analysts, 2015-2018. Productivity is the estimated
values of AAI and AOT for AI and old technology analysts, as de�ned in equations (1) and (2).

data is.

Finally, �rms are becoming more productive at using data. More productivity also

contributes to the rise in the value of data. The right panel of Figure 7 reports our estimates

of the analysis productivity parameters, AAI and AOT , for each month. While productivity

with the old technology shows a moderate upwards trend over time, the productivity of

working with the new (AI) data technologies displays a clearly steeper upwards trend, with a

jump in 2018. This productivity jump is additional evidence of the transformative power of

new, big data technologies.

4 Conclusion

Modern discourse describes new big data technologies as the next industrial revolution, or

more speci�cally, as the industrialization of knowledge production. What does that mean?

Industrialization was the adoption of new production technologies that involved less human

input and less diminishing returns to capital. In other words, the key feature of industrialization

is that factor shares changed. Thus if big data technologies are the industrialization of knowledge

production, they should o�er less diminishing returns to data.

We explored this hypothesis by modeling the production of knowledge, in the same way

economists model industrial production. Instead of mixing capital and labor with a Cobb-

Douglas production function to produce goods, we described how labor and data can be mixed

with a Cobb-Douglas production function to produce knowledge. Then, just as 20th-century

economists estimated the exponents of the industrial production function using labor income

27



shares, we similarly measure the exponents of the knowledge production function using wages

and labor �ows in a particular type of knowledge production, �nancial analysis. We �nd a

substantial change in the production function, of magnitude comparable to the change due to

industrialization. Thus, describing this change as a new industrialization seems to be a fair

comparison.

Adoption of AI and big data technologies, as well as the accumulation of stocks of data vary

widely by �rm. The �rms with more data are more prone to hire more big-data or AI workers.

This supports the idea that this is a technology that is changing the factor mix of production.

This �nding has important implications for the future of the income distribution: It changes

the future labor share of income. In a model that did not have constant returns to scale, such

a change would alter the optimal size of a �rm: Firms with less diminishing returns to data

may well take on a larger optimal size. It also tells us that knowledge will be signi�cantly more

abundant going forward.

Two extensions of the model would be useful next steps. One would be to relax the

assumption of constant returns to scale in knowledge production. It is possible that doubling

data and doubling data workers more than increases the production of knowledge. It is also

possible that there is a form of knowledge crowd-out, where it gets harder and harder to

produce new knowledge (Bernard and Jones, 1996). We use constant returns because it

facilitates a comparison with industrialization, which typically used such production functions.

Constant returns also yields a clear mapping from labor shares to production function

exponents. In the absence of constant returns, there is considerable dispute about the best

way to determine market wages or factor shares. Getting caught up in that debate would

distract from the simple main message of this paper.

Another extension would be to consider market power. Owners of data extract rents

because data is not perfectly substitutable. Knowledge producing �rms also produce

di�erentiated products that allow them to pro�t. Market power does interact with equilibrium

wages. Correcting for it would complicate the mathematics of the model, but could also

sharpen the production function estimates.

Of course, this estimation was for workers doing one type of work in one sector. In other

sectors, big data might be more or less of a change to output. It may also be too early to tell

since machine learning is not widely adopted in most other sectors. Much work in this area

remains to be done to understand the magnitude and consequences of the technological changes

in data processing that we are currently experiencing.
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Not-for-Publication Appendix: Measurement Details, Model

Derivations and Robustness Results

A Measurement

A.1 Categorizing Jobs

Jobs are �rst categorized into 'data management' (DM) and 'data analysis' by looking at the relative frequency of

the 'data management' vs. 'data analysis' keywords listed below in the full text of the underlying job postings.

Jobs identi�ed as 'data analysis' are further categorized (where possible) as AI or old technology (OT), by

looking at the relative frequency of the AI and OT keywords listed below - these are subsets of the 'data

analysis' keywords.

All keywords lists are obtained by �rst tabulating all Burning Glass skills present in the selected sample and

identifying skills that best map to the types of jobs described by the model. We then also inspected the text

of selected job postings requiring most of the selected skills in order to re�ne the keywords and phrases to best

re�ect the format in which they are most frequently present in the text.

Before computing relative frequencies both the keywords lists and the underlying text are pre-processed and

stemmed to their root using the Porter stemmer.

Data Management keywords : 'Apache Hive', 'Information Retrieval', 'Data Management Platform

(DMP)', 'Data Collection', 'Data Warehousing', 'SQL Server', 'Data Visualization', 'Database Management',

'Data Governance', 'Data Transformation', 'Extensible Markup Language (XML)', 'Data Validation', 'Data

Architecture', 'Data Mapping', 'Oracle PL/SQL', 'Database Design', 'Data Integration', 'Teradata', 'Database

Administration', 'BigTable', 'Data Security', 'Database Software', 'Data Integrity', 'File Management',

'Splunk', 'Relational DataBase Management System', 'Teradata DBA', 'Data Migration', 'Information

Assurance', 'Enterprise Data Management', 'SSIS', 'Sybase', 'jQuery', 'Data Conversion', 'Data Acquisition',

'Master Data Management', 'Data Capture', 'Data Veri�cation', 'MongoDB', 'Data Warehouse Processing',

'SAP HANA', 'Data Loss Prevention', 'Data Engineering', 'Database Schemas', 'Database Architecture', 'Data

Documentation', 'Data Operations', 'Oracle Big Data', 'Domo', 'Data Manipulation', 'Data Management

Platform', 'DMP', 'HyperText Markup Language', 'Data Access Object (DAO)', 'Structured Query Reporter',

'SQR', 'Data Dictionary System', 'Data Entry', 'Data Quality', 'Data Collection', 'Information Systems',

'Information Security', 'Change data capture', 'Data Management', 'Data Governance', 'Data Encryption',

'Data Cleaning', 'Semi-Structured Data', 'Data Evaluation', 'Data Privacy', 'Dimensional and Relational

Modeling', 'Data Loss Prevention', 'Data Operations', 'Relational Database Design', 'Database Programming',

'Information Systems Management', 'Database Tuning', 'Object Relational Mapping', 'Columnar Databases',

'Datastage', 'Data Taxonomy', 'Informatica Data Quality', 'Data Munging', 'Data Archiving', 'Warehouse

Operations', 'Solaris', 'Data Modeling', 'data feed management', 'data discovery', 'exporting large datasets',

'exporting datasets', 'database performance', 'disigning relational databases', 'implementing relational

databases', 'designing and implementing relational databases', 'database development', 'data production

process', 'normalize large datasets', 'normalize datasets', 'create database', 'Develop database', 'data

onboarding', 'Data Sourcing', 'data purchase', 'data inventory', 'cloud Security', 'negotiating data', 'data

attorney', 'data and technology attorney', 'reliability engineering', 'reliability engineer', 'data specialist',

32



'enable vast data analysis', 'enable data analysis', 'Data team', 'capturing data', 'processing data', 'Supporting

data', error free data sets', 'error free datasets', 'live streams of data', 'data accumulation', 'Kernel level

development', 'large scale systems', 'Hadoop', 'distributed computing', ' multi database web applications',

'connect software packages to internal and external data', 'explore data possibilities', 'architect complex

systems', 'build scalable infrastructure for data analysis', 'build infrastructure for data analysis', 'solutions for

at scale data exploration', 'solutions for data exploration', 'information technology security', 'security

engineer', 'security architect', 'architect solutions to allow modelers to process query and visualize higher

dimensional data'

Analysis keywords

� General Analysis: 'Regression Algorithms', 'Regression Analysis', 'Quantitative Analysis', 'Clustering',

'Time Series Analysis', 'Economic Analysis', 'Model Building', 'Quantitative Research', 'pandas',

'numpy', 'Hedging Strategy', 'Quantitative Data Analysis', 'Investment Analysis', 'Economic Models',

'Predictive Analytics', 'Market Trend', 'Portfolio Optimization', 'Portfolio Rebalancing', 'Financial

Derivatives Pricing', 'Active Alpha Generation', 'Financial Data Interpretation', 'Alteryx', 'Predictive

Models', 'Exploratory Analysis', 'Sensitivity Analysis', 'News Analysis', 'Asset Allocation', 'Research

Methodology', 'Mathematical Software', 'Portfolio Construction', 'Portfolio Analysis', 'Portfolio

Analyst', 'Market Analysis', 'Data Techniques', 'Capital Allocation', 'Financial Modeling', 'Algorithm

Development', 'Securities Trading', 'Trading Strategy', 'Statistical Programming', 'Data Mining', 'Social

Network Analysis', 'Dimensionality Reduction', 'Principal Components Analysis (PCA)', 'Statistical

Software', 'Portfolio Management', 'Numerical Analysis', 'Time Series Models', "Asset Allocation

Theory", 'Analytical Skills', 'Financial Analysis', 'Financial Modeling', 'Modern Portfolio Theory',

'MPT', 'Portfolio Valuation', 'strategic portfolio decisions'

� Old Technology: 'Linear Regression', 'Logistic Regression', 'Statistic', 'STATA', 'Emacs', 'Technical

Analysis', 'Qualitative Analysis', 'Qualitative Portfolio Management', 'Data Trending', 'Stochastic

Optimization', 'Multivariate Testing', 'Bootstrapping', 'Time Series Models', 'Factor Analysis',

'Durations analysis', 'Markov', 'HMM', 'Econometrics', 'Stochastic Processes', 'Calculus', 'Statsmodels',

'Linear Algebra', 'Mathematics', 'Maths', 'Monte Carlo Simulation', 'Generalized Linear Model', 'GLM',

'Linear Programming', 'Bayesian', 'Analysis Of Variance', 'ANOVA', 'Behavioral Modeling',

'Black-Scholes', 'Behavior Analysis', 'Discounted Cash�ow', 'Numerical Analysis', 'Correlation

Analysis', 'E-Views', 'Di�erential Equations', 'Algebra', 'Value at Risk', 'Asset Pricing Models',

'Statistician', 'Mathematician', 'Econometrician'

� AI: 'Arti�cial Intelligence', 'Machine Learning', 'Natural Language Processing', 'NLP', 'Speech

Recognition', 'Gradient boosting', 'DBSCAN', 'Nearest Neighbor', 'Supervised Learning', 'Unsupervised

Learning', 'Deep Learning', 'Automatic Speech Recognition', 'Torch', 'scikit-learn', 'Conditional

Random Field', 'TensorFlow', 'Tensor Flow', 'Platfora', 'Neural Network', 'CNN', 'RNN', 'Neural nets',

'Decision Trees', 'Random Forest', 'Support Vector Machine', 'SVM', 'Reinforcement Learning', 'Torch',

'Lasso', 'Stochastic Gradient Descent', 'SGD', 'Ridge Regression', 'Elastic-Net', 'Text Mining',

'Classi�cation Algorithms', 'Image Processing', 'Natural Language Toolkit', 'NLTK', 'Pattern

Recognition', 'Computer Vision', 'Long Short-Term Memory', 'LSTM', 'K-Means', 'Geospatial

Intelligence', 'Big Data Analytics', 'Latent Dirichlet Allocation', 'LDA', 'Backpropagation', 'Machine

Translation', 'Ca�e Deep Learning Framework', 'Word2Vec', 'Genetic Algorithm', 'Evolutionary

33



Algorithm', 'Data Science', 'Sentiment Analysis / Opinion Mining', 'Maximum Entropy Classi�er',

'Neuroscience', 'Computational Linguistics', 'Semi-Supervised Learning', 'Data Scientist'

A.2 Identifying jobs for employers of interest:

To match the categorized job postings to the right employers, we use the following procedure:

1. Create a master list of employers of interest: We compile a comprehensive list of investment management

companies using �rms included in two data sources, Preqin and SEC. From Preqin, we select alternative

asset managers. From the SEC database, we compile �lers of Form 13F, a quarterly report of top ten

equity holdings, �led by institutional investment managers with at least $100 million in assets under

management. From the �nal list of �rms we exclude commercial banks, insurance companies and private

equity �rms. To avoid repetitions, we manually cluster entities that refer to the same underlying company

(e.g. �citigroup�, �citigroup north america�). We then standardize these employers names to create a

canonical form for each cluster that uniquely identi�es it.8

2. Extract candidate employers: We use three techniques to identify strings that could potentially be the

correct employer:

(a) Employer from BGT - for a signi�cant number of job postings, BGT identi�es the employer using

both manual and automated techniques. While it is not always available and can be incorrect, this

employer will be added to our set of candidates.

(b) Keyword Search - for each employer in the master list, we can generate keywords that identify this

employer. We remove keywords that are too general and look for exact matches of these keywords

in the job description. These matching words or phrases are added to our set candidates.9

(c) Named Entity Recognition � NER - using part-of-speech tagging and word capitalization, we can

identify words or phrases that are likely to be named entities (e.g. organization names, countries,

people's names, etc.) from the job descriptions. These named entities, which potentially overlap

with candidates from the previous methods, are added to our set of candidates.

3. Standardize candidates and master list The �rst step to matching the candidates to the master list is to

standardize employer names on both sides. Our standardization algorithm goes a step further than the

basic cleaning applied to the job descriptions. The algorithm removes non-identifying su�xes and pre�xes,

such that leading the's and corporate designations such as �inc" and �llc". It also intelligently remove

generic words (for instance �management" or �capital") only when they are not useful. For example,

�The Blackstone Group" will become �blackstone" because �blackstone" is highly identifying. On the

other hand, �Capital Group" will remain as �capital group" because stripping out �group" will reduce the

employer name to an exceedingly common word �capital".

4. Map raw candidates to master list: After collecting a list of raw candidates for each job posting, we �rst

deduplicate the candidate set, then we compute a similarity score for every possible candidate-master

employer pair. The computation of the similarity metric requires as input the frequency of all words

appearing in any of the canonical names in the master list of employers.

8Job descriptions are scraped and therefore dirty. We remove excessive spaces and line breaks, unrecognizable
symbols, HTML codes, and other irrelevant artifacts.

9These are also pre-processed, as previously outlined.
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word frequency (F)

capital 2,799

asset 745

advisors 684

... ...

sachs 2

vanguard 1

The optimal master employer given a candidate is then de�ned as follows:

master∗ = arg max
master

sim(candidate,master)

The computation of the similarity metric will be demonstrated using as an example a single candidate-

master employer pair:

candidate = �Royal Banks of Canada."

master = �royal bank canada"

We begin by standardizing the candidate string, removing the period and uppercase in this case:

�Royal Banks of Canada." → �royal banks of canada"

Next, we obtain an optimal matching of the words such that the total Levenshtein-based similarity

(modi�ed to give a slight bonus to exact matches) is maximized. The word �of" is unmatched.

matches:
sim :

(royal, royal)
1.0

, (banks, bank)
0.7

, (canada, canada)
1.0

, (of, )
0

Lastly, we take the weighted sum of all the matched words, with the inverse frequency in the whole corpus

as weight. We set a minimum weight of 0.1 for all words to avoid shrinking the weights of common words

to near 0.

matches:
sim :

weight :
(royal, royal)

1.0

F (royal)−1
, (banks, bank)

0.7

F (bank)−1
, (canada, canada)

1.0

F (canada)−1
, (of, )

0

F (of)−1

sim(�Royal Canada Bank.", �royal bank of canada") = 0.867

simLevenshtein(�Royal Canada Bank.", �royal bank of canada")=0.55

We only consider matches above a threshold of 0.75. In this example, the �nal similarity score of our

algorithm is 0.867. That is high, given that half the words have non-exact matches. That is because

the frequency in the master list of the words �bank� and �of� relative to �royal� and �canada� is high;

hence they are downweighted in the similarity score computation. This match, instead, would have been

discarted using for instance Levenshtein similarity.

Finally, due the bonus we award to exact word matches, minor typos or spacing issues can cause an

otherwise obvious (to the human eye) match to be left out. To salvage these edge cases as much as

possible, we use the following heuristic:

Example
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candidate = �Royale Bank ofCanada inc."

master = �royal bank of canada"

(a) standardize candidate employer

candidate: �Royale Bank ofCanada inc." → �royale bank ofcanada"

(b) remove spaces from both candidate and master to form a single word

candidate: �royale bank ofcanada" → �royalebankofcanada"

master: �royal bank of canada" → �royalbankofcanada"

(c) compute the Levenshtein distance between these two single words and accept matching if similarity

score is greater than 0.9.

simLevenshtein(�royalebankofcanada", �royalbankofcanada")=0.945

The initial step of word matching is inspired by how a human would approach the problem. If we encounter

�canandian bank" and �bank of canada" for example, it is natural to associate highly similar words and

compare locally. This gives us an edge over direct applications of traditional metrics such as Levenshtein

distance and Jaro-Winkler distance.

5. Select the best candidate At this point, we have a list of candidates for each job posting. All the candidates

correspond exactly to a single employer in our master list. The �nal step is to select the most likely

candidate. To evaluate the quality of each candidate, we took into consideration three types of features:

� Consistency - is the same candidate identi�ed using multiple methods (BGT, text search, NER)?

� Similarity to employer in master - how similar is the raw candidate to the employer in the master

list?

� Frequency - for the methods that use the full job posting (text search and NER), how frequently

was the employer mentioned in the text?

More speci�cally, when the Burning Glass employer is corroborated by at least one of the other two

methods, we assign that job posting to the matched employer. When a Burning Glass employer is not

corroborated by any of the other two methods, we accept the match only if it is exact (excluding all fuzzy

matches). Finally, when the Burning glass employer is not present but both text-based methods agree, we

assign that job to the matched employer only if it is an exact match and the employer name is repeated

at least 3 times in the text. This reduces matching noise. We do not consider matches that only appear

in one of the text-based methods, as too noisy.

If after following this procedure the candidate set is empty, we decide that the true employer is not found

in our master list. If the candidate set contains more than one element, we pick the candidate with the

highest similarity score.

A.3 Constructing the Labor In�ows Data

Job openings, �lling and separation data Our data comes from
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Job Openings Rate: Job openings information is collected for the last business day of the reference month. A

job opening requires that: 1) a speci�c position exists and there is work available for that position, 2) work could

start within 30 days whether or not the employer found a suitable candidate, and 3) the employer is actively

recruiting from outside the establishment to �ll the position. The job openings rate is computed by dividing the

number of job openings by the sum of employment and job openings and multiplying that quotient by 100.

Hiring Rate: The hires level is the total number of additions to the payroll occurring at any time during

the reference month, including both new and rehired employees, full-time and part-time, permanent, short-term

and seasonal employees, employees recalled to the location after a layo� lasting more than 7 days, on-call or

intermittent employees who returned to work after having been formally separated, and transfers from other

locations. The hires rate is computed by dividing the number of hires by employment and multiplying that

quotient by 100.

Separations Rate: The separations level is the total number of employment terminations S occurring at

any time during the reference month, and is reported by type of separation - quits, layo�s and discharges, and

other separations. The separations rate is computed by dividing the number of separations by employment and

multiplying that quotient by 100: s = S/E · 100.
Deriving the probability of �lling an opening. If nO is the total number of posted job openings, nE is total

employment and nH is the number of new hires in this sub-occupation and month, then the BLS hiring rate

is de�ned to be rh = nH/nE , while the job opening rate is ro = nO/(nE + nO). What we need to adjust the

openings data from our model, is the fraction of openings that result in hires, h = nH/nO.

To solve for h, note that rearranging the de�nition of the opening rate yields ro = (1− ro)nO/nE . Dividing
rh by this expression yields rh/ro = (nH/nE)/((1−ro)nO/nE) = (nH/nO) ·1/(1−ro). Therefore, we can express
the nH/nO rate we want as h = rh(1− ro)/ro.

Time to Fill a Job Vacancy In our calculations, we have implicitly equated a job posting with a

one-month job vacancy. We do that because most of our job postings remain up and un�lled for approximately

one month. Below, we report the distribution of the average time that job postings remain open in our data

set. This data is for jobs that have the same occupations and regions as our sample for the years 2015, 2016 and

2017. The average time to �ll is available for 86% of all the occupation (SOC) - region (MSA) combinations in

our sample. Below is the distribution of the average time a Burning Glass job posting stayed online for all the

SOC-MSA combinations in our sample for 2015-2017.

If we weight each of these �ll times by the number of jobs present in our sample for each the SOC-MSA

combinations, we get an average �ll times of 38.12 days.

B Wages

In order to identify and categorize PayScale salary pro�les we proceed as follows.

First, we obtain all of PayScales salary pro�les from 2010 to 2020 in any of the four industries present in our

BurningGlass dataset: 'Professional, Scienti�c, and Technical Services', 'Finance and Insurance', 'Information'

and 'Management of Companies and Enterprises'. The data contains a unique identi�er for each survey, user

and employer, this helps us to clean it and subset it to our sample of interest.

We start by cleaning the data by tracking multiple responses by the same user. When multiple pro�les exist

by the same user in the same day, we check them for consistency and then keep the one with the most complete
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mean 35.6857
std 7.1003
min 14.0000
1% 21.0000
5% 24.0000
10% 27.0000
15% 28.0000
20% 30.0000
25% 31.0000
30% 32.0000
35% 33.0000
40% 34.0000
45% 35.0000
50% 35.0000
55% 36.0000
60% 37.0000
65% 38.0000
70% 39.0000
75% 40.0000
80% 41.0000
85% 43.0000
90% 44.4000
95% 48.0000
99% 54.0000
max 75.0000

Table 3: Time to Fill Posted Vacancies.

information.

Next, we sub-set the data to candidate salary pro�les of interest. We only keep jobs for which the list

of top three skills is present. Then, we keep all jobs in the 'Finance and Insurance' industry. Additionally we

identify all employers who hire predominantly in the 'Finance and Insurance' industry and keep all jobs for those

employers in any of the four industries mentioned above. The idea of this second �lter is to mimic the structure

of our BurningGlass dataset. In fact, in BurningGlass, the majority of jobs postings for our �rms of interest

are categorized as belonging to the Finance industry. Even though, many of the jobs in the three categories we

are interested in are classi�ed as 'Information' or 'Professional, Scienti�c, and Technical Services'. Similarly to

what we had done with BurningGlass, we further exclude all jobs with O*NET codes in the Insurance industry.

Note that, the employer �eld is not mandatory, so it is present for roughly 60% of observations. Hence,

with this �ltering we might be excluding some relevant AI and Old Tech analysts jobs categorized in the

'Information' or 'Professional, Scienti�c, and Technical Services' industries for which the employer had not been

disclosed. At the same time, keeping all jobs in those industries would introduce substantial noise in our selection.

Considering that our objective is to obtain an equilibrium salary for each job type each month, we opted for
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a more conservative approach and only included jobs that had a high likelihood of belonging to employers of

interest.

Then, we map the identi�ed jobs according to a number of additionally provided �elds (employer, O*NET

code, job title, employer type and education level) and remove non-investment management jobs based on those

criteria. The main categories of eliminated jobs include customer service, sales, administrative, human resources

and actuarial jobs. We further exclude jobs that do not require a degree or that only require a high school

diploma a non-degree certi�cate program or a medical degree (common in insurance jobs). We additionally

exclude jobs by non-�rm employers (e.g. government, universities, military). We �nally identify all remaining

insurance companies and eliminate all associated salary pro�les.

Our last step is to identify salary pro�les belonging to our job categories of interest, within this sub-set. We

do so by utilizing the provided list of top three skills required by each job. We utilize a similar method as that

used to categorize job postings. Indeed, we look at the relative frequency of skills mentioned belonging to the

skills dictionaries previously compiled. We use the same dictionaries as utilized in the job postings categorization,

with some minor adjustments to account for the di�erent nature of the text (skills list vs. paragraphs). With

this procedure we are able to identify 5,639 Data Management pro�les, 2,817 Old Tech jobs and 2,585 AI ones.

C Model derivations

Firm i faces the following optimizing problem:

v(Dit) = max
λit,Lit,lit

Dα
itL

1−α
it +Dγ

itl
1−γ
it − wL,tLit − wl,tlit − wλ,tλit +

1

r
v(Di(t+1)) (17)

where Di(t+1) = (1− δ)Dit + λ1−φit . (18)

Here the state variable is structured data Dit, and the control variables are data management labor λit, the

machine learning analyst labor Lit and the old technology analysis labor lit. Plugging (18) into (17), we have

v(Dit) = max
λit,Lit,lit

Dα
itL

1−α
it +Dγ

itl
1−γ
it − wL,tLit − wl,tlit − wλ,tλit +

1

r
v
(
(1− δ)Dit + λ1−φit

)
(19)

Taking partial derivative with respect to Lit, we have

(1− α)Dα
itL
−α
it − wL,t = 0 =⇒ (1− α)KAI

it

Lit
= wL,t. (20)

Taking partial derivative with respect to lit, we have

(1− γ)Dγ
itl
−γ
it − wl,t = 0 =⇒ (1− α)KOT

it

Lit
= wl,t. (21)

Taking partial derivative with respect to λit and rearranging, we have

1

r
v′(Di(t+1))(1− φ)λ−φit = wλ,t. (22)

We then total di�erentiate (19) to get

v′(Dit) =
αKAI

it

Dit
+
γKOT

it

Dit
+

1

r
v′(Di(t+1))(1− δ). (23)
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If we further assume that the marginal value of data today and tomorrow are similar, then

v′(Dit) =
(αKAI

it + γKOT
it )

Dit

r

r − (1− δ)
. (24)

Plugging it back to the �rst order condition (22) and combining it with the structured data dynamics (18), we

arrive at
(αKAI

it + γKOT
it )(1− φ)

r − (1− δ)
Di(t+1) − (1− δ)Dit

Dit
= wλλit. (25)

D Robustness

Figures 8 and 9 (left panel) illustrate the evolution of the aggregate data stock of �rms for 1% and 10% monthly

rates of data depreciation. The total amount of data with 1% depreciation is an order of magnitude higher.

This estimate comes from inferring �rms' initial data stocks from their employment choices, measuring the data

management workers who build up these stocks of data, and adjusting for data depreciation. The dip in the

stock of data in the �rst year for 10% depreciation re�ects a high initial data stock that would not have been

possible to maintain with 10% depreciation, given the level of data management labor in that year. This suggests

that perhaps 10% depreciation is too high.

Figure 8: Estimated Data Stock, Data Value and Analysis Productivity with 1% data
depreciation. Left panel: The aggregate data stock is

∑
iDit in each month t. Middle panel: The cumulative

value of data is
∑
i v(Dit) in each month t, where the value function v(·) is given by (4). Right panel: Productivity

is (AOTt ) and (AITt ) as de�ned in (2) and (1). Data source: PayScale and Burning Glass, 2015-2018.

Once we have estimated production parameters and data stocks, we can put them back into our value

function, and approximate the value of each �rm's stock of data in each month. This value is in nominal dollar

units, since those are the units of the wages we use. This is our estimate of the value function in (4) for the

aggregate stock of data. The middle panels of Figures 8 and 9 show the value the model assigns to these

aggregate stocks of data, for data depreciation of 1% and 10% per month. Although noisy, this value is clearly

increasing. This rise re�ects both more data and the fact that each unit of data earns a higher share of �rm

pro�t.

Finally, �rms are becoming more productive at using data. More productivity also contributes to the rise

in the value of data. The right panels show the evolution of analysis productivity in the old technology (AOTt )

and the new big-data technology (AITt ) . Both types of analysts are becoming more productive each month, for

data depreciation rates of 1% and 10% per month.
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Figure 9: Estimated Data Stock, Data Value and Analysis Productivity with 10% data
depreciation. Left panel: The aggregate data stock is

∑
iDit in each month t. Middle panel: The cumulative

value of data is
∑
i v(Dit) in each month t, where the value function v(·) is given by (4). Right panel: Productivity

is (AOTt ) and (AITt ) as de�ned in (2) and (1). Data source: PayScale and Burning Glass, 2015-2018.
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