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Causal Inference and Program Evaluation

Main goal: learn about treatment effect of policy or intervention

If treatment randomization available → easy to estimate effects

If treatment randomization not available → observational studies

I Selection on observables.

I Instrumental variables, etc.

Regression discontinuity (RD) design

I Simple assignment, based on known external factors

I Objective basis to evaluate assumptions

I Easy to falsify and interpret.

I Careful: very local!



Regression Discontinuity Design

Units receive a score (Xi).

A treatment is assigned based on the score and a known cutoff (c).

The treatment is:

I given to units whose score is greater than the cutoff.

I withheld from units whose score is less than the cutoff.

Under assumptions, the abrupt change in the probability of treatment
assignment allows us to learn about the effect of the treatment.
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RD Designs: Taxonomy

Frameworks.

I Identification: Continuity/Extrapolation, Local Randomization.

I Score: Continuous, Many Repeated, Few Repeated.

Settings.

I Sharp, Fuzzy, Kink, Kink Fuzzy.

I Multiple Cutoff, Multiple Scores, Geographic RD.

I Dynamic, Continuous Treatments, Time, etc.

Parameters of Interest.

I Average Effects, Quantile/Distributional Effects, Partial Effects.

I Heterogeneity, Covariate-Adjustment, Differences, Time.

I Extrapolation.



RCTs vs. (Sharp) RD Designs

Notation: (Yi(0), Yi(1), Xi), i = 1, 2, . . . , n.

Treatment: Ti ∈ {0, 1}, Ti independent of (Yi(0), Yi(1), Xi).

Data: (Yi, Ti, Xi), i = 1, 2, . . . , n, with

Yi =

{
Yi(0) if Ti = 0

Yi(1) if Ti = 1

Average Treatment Effect:

τATE = E[Yi(1)− Yi(0)] = E[Yi|T = 1]− E[Yi|T = 0]



RCTs vs. (Sharp) RD Designs

Notation: (Yi(0), Yi(1), Xi), i = 1, 2, . . . , n, Xi score.

Treatment: Ti ∈ {0, 1}, Ti = 1(Xi ≥ c), c cutoff.

Data: (Yi, Ti, Xi), i = 1, 2, . . . , n, with

Yi =

{
Yi(0) if Ti = 0

Yi(1) if Ti = 1

Average Treatment Effect at the cutoff (Continuity-based):

τSRD = E[Yi(1)− Yi(0)|Xi = c] = lim
x↓c

E[Yi|Xi = x]− lim
x↑c

E[Yi|Xi = x]

Average Treatment Effect in a neighborhood (LR-based):

τLR = E[Yi(1)− Yi(0)|Xi ∈ W] =
1

N1

∑
Xi∈W,Ti=1

Yi −
1

N0

∑
Xi∈W,Ti=0

Yi



τSRD = E[Yi(1)− Yi(0)|Xi = c]︸ ︷︷ ︸
Unobservable

= lim
x↓c

E[Yi|Xi = x]︸ ︷︷ ︸
Estimable

− lim
x↑c

E[Yi|Xi = x]︸ ︷︷ ︸
Estimable

E[Y(1)|X]

E[Y(0)|X]
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Ti independent of (Yi(0), Yi(1)) for all Xi ∈ W = [c− w, c+ w]

+ exclusion restriction
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Fuzzy RD Designs
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(a) Sharp RD
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(b) Fuzzy RD (one-sided compliance)



Fuzzy RD Designs

Imperfect compliance.

I probability of receiving treatment changes at c, but not necessarily from 0 to 1.

Canonical Parameter:

τFRD =
E[(Yi(1)− Yi(0)(Di(1)−Di(0)))|Xi = c]

E[Di(1)|Xi = c]− E[Di(0)|Xi = c]

=
limx↓c E[Yi|Xi = x]− limx↑c E[Yi|Xi = x]

limx↓c E[Di|Xi = x]− limx↑c E[Di|Xi = x]

where Yi(t) = Yi(0)(1−Di(t)) + Yi(1)Di(t) and Di(t) = Di(0)(1− Ti) +Di(1)Ti.

Similarly for Local Randomization framework.

Different interpretations under different assumptions.



(Sharp and Fuzzy) Kink RD Designs
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(Sharp and Fuzzy) Kink RD Designs

Treatment assigned via continuous score formula, but slope changes
discontinuously at “kink” point (c).

SKRD Parameter:

τKRD =
limx↓c

d
dx

E[Yi|Xi = x]− limx↑c
d
dx

E[Yi|Xi = x]

limx↓c
d
dx
b(x)− limx↑c

d
dx
b(x)

where b(x) known function inducing “kink”.

FKRD Parameter:

τKRD =
limx↓c

d
dx

E[Yi|Xi = x]− limx↑c
d
dx

E[Yi|Xi = x]

limx↓c
d
dx

E[Di|Xi = x]− limx↑c
d
dx

E[Di|Xi = x]

Different interpretation under different assumptions.



Multi-cutoff, Multi-Score, Geographic RD Designs
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(a) Multi-cutoff:
τSRD(x, c) = E[Yi(1)− Yi(0)|Xi = x,Ci = c]
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(b) Multi-score:
τSRD(x1, x2) = E[Yi(1)− Yi(0)|X1i = x1, X2i = x]



Multi-cutoff, Multi-Score, Geographic RD Designs

Multi-cutoff RD designs.

I Ci ∈ C with C = {c1, c2, · · · , cJ} or C = [c, c].

I Two strategies: normalize-and-pool (X̃i = Xi − Ci), or cutoff-by-cutoff analysis.

I Different interpretation under different assumptions.

Multi-score RD designs.

I Xi = (X1i, X2i, . . . , Xdi)
′ and c = (c1, c2, . . . , cd)′.

I Can always be mapped back to Multi-cutoff RD designs.

I Leading special cases: Test scores, geography (d = 2).

I Different interpretation under different assumptions.

Other RD-like designs.

I RD in density and bunching designs.

I RD in time.

I Dynamic RD designs.

I etc.



Geographic RD Design

New York-Philadelphia Media Market Boundary

New York Media Market
Philadelphia Media Market

Treated Area of Analysis
Control Area of Analysis

Montgomery Township School District

Princeton School District
Hopewell Valley School District

Frankling Township School District

South Brunswick School District

Cranbury Township School District

East Windsor School District

Robbinsville Township School District Milestone Township School District

West Windsor-Plainsboro School District

Upper Freehold School District

Lawrence Township School District



Highlights and Main Takeaways

RD designs exploit “variation” near the cutoff.

Causal effect is different (in general) than RCT.

No “overlap” (sharp) so extrapolation or exclusion is unavoidable.

Graphical analysis is both very useful and very dangerous.

Need to work with data near cutoff =⇒ bandwidth or window selection.

Many design-specific falsification/validation methods.
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RD Packages: Python, R, Stata

https://rdpackages.github.io/

rdrobust: estimation, inference and graphical presentation using local
polynomials, partitioning, and spacings estimators.

I rdrobust, rdbwselect, rdplot.

rddensity: discontinuity in density tests (manipulation testing) using both
local polynomials and binomial tests.

I rddensity, rdbwdensity.

rdlocrand: covariate balance, binomial tests, randomization inference methods
(window selection & inference).

I rdrandinf, rdwinselect, rdsensitivity, rdrbounds.

rdmulti: multiple cutoffs and multiple scores.

rdpower: power, sample selection and minimum detectable effect size.

https://rdpackages.github.io/


Empirical Illustration: Head Start (Ludwig and Miller, 2007, QJE)

Problem: impact of Head Start on Infant Mortality

Data:

Yi = child mortality 5 to 9 years old

Ti = whether county received Head Start assistance

Xi = 1960 poverty index (c = 59.1984)

Zi = see database.

Potential outcomes:

Yi(0) = child mortality if had not received Head Start

Yi(1) = child mortality if had received Head Start

Causal Inference:

Yi(0) 6= Yi|Ti = 0 and Yi(1) 6= Yi|Ti = 1



RD Plots

Main ingredients:

I Global smooth polynomial fit.

I Binned discontinuous local-means fit.

Main goals:

I Graphical (heuristic) representation.

I Detention of discontinuities.

I Representation of variability.

Tuning parameters:

I Global polynomial degree.

I Location (ES or QS) and number of bins.

Great to convey ideas but horrible to draw conclusions.



Estimation and Inference Methods

Local Randomization: finite-sample and large-sample inference.

I Localization: window selection (via local independence implications).

I Point estimation: parametric, finite-sample (Fisher) or large-sample (Neyman/SP).

I Inference: randomization inference (Fisher) or large-sample (Neyman/SP).

Continuity/Extrapolation: Local polynomial approach.

I Localization: bandwidth selection (trade-off bias and variance).

I Point estimation: “flexible” (nonparametric).

I Inference: robust bias-corrected methods.

Many refinements and other methods exist (EL, Bayesian, Uniformity, etc.).

I Do not offer much improvements in applications.

I Can be overly complicated (lack of transparency).

I Can depend on user-chosen tuning parameters (lack of replicability).
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Local Randomization Approach to RD Design

Key assumption: exists window W = [c− w, c+ w] around cutoff where
subjects are as-if randomly assigned to either side of cutoff:

1 Joint probability distribution of scores for units in the W is known:

P[XW ≤ x] = F (x), for some known joint c.d.f. F (x),

where XW denotes the vector of scores for all i such that Xi ∈ W.

2 Potential outcomes not affected by value of the score:

Yi(0, x) = Yi(0),

Yi(1, x) = Yi(1), for all Xi ∈ W.

Note: stronger assumption than continuity-based approach.

I Potential outcomes are a constant function of the score (can be relaxed).

I Regression functions are not only continuous at c, but also completely unaffected
by the running variable in W.



Experiment versus RD Design
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Local Randomization RD
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Local Randomization Framework

Key idea: exists window W = [c− w, c+ w] around cutoff where subjects are
as-if randomly assigned to either side of cutoff.

Two Steps (analogous to local polynomial methods):

1 Select window W.

2 Given window W, perform estimation and inference.

Challenges

I Window (neighborhood) selection.

I As-if random assumption good approximation only very near cutoff

I Small sample.



Step 1: Choose the window W
Find neighborhood where (pre-intervention) covariate-balance holds.

Find neighborhood where outcome and score independent.

Domain-specific or application-specific choice.

E[Z|X]

Cutoff

W6
W5
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W0
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W1

H0 is trueH0 is false H0 is false

−w6 −w5 −w4 −w3 −w0 −w1 c w1 w0 w3 w4 w5 w6

Score X

E
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Step 2: Finite-sample and Large-sample Methods in W

Given W where local randomization holds:

I Randomization inference (Fisher): sharp null, finite-sample exact.

I Design-based (Neyman): large-sample valid, conservative.

I Large-sample standard: random potential outcomes, large-sample valid.

All methods require window (W) selection, and choice of statistic.

First two also require choice/assumptions assignment mechanism.

Covariate-adjustments (score or otherwise) possible.



Empirical Illustration: Head Start (Ludwig and Miller, 2007, QJE)

Problem: impact of Head Start on Infant Mortality

Data:

Yi = child mortality 5 to 9 years old

Ti = whether county received Head Start assistance

Xi = 1960 poverty index (c = 59.1984)

Zi = see database.

Potential outcomes:

Yi(0) = child mortality if had not received Head Start

Yi(1) = child mortality if had received Head Start

Causal Inference:

Yi(0) 6= Yi|Ti = 0 and Yi(1) 6= Yi|Ti = 1



Empirical Illustration: Window Selector
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τSRD = E[Yi(1)− Yi(0)|Xi = c]︸ ︷︷ ︸
Unobservable

= lim
x↓c

E[Yi|Xi = x]︸ ︷︷ ︸
Estimable

− lim
x↑c

E[Yi|Xi = x]︸ ︷︷ ︸
Estimable
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Continuity/Extrapolation: Local Polynomial Methods

Global polynomial regression: not recommended.

I Runge’s Phenomenon, counterintuitive weights, overfitting, lack of robustness.

Local polynomial regression: captures idea of “localization”.

Choose low poly order (p) and weighting scheme (K(·))

Choose bandwidth h: MSE-optimal or CE-optimal

Construct point estimator τ̂
(MSE-optimal h =⇒ optimal estimator)

Conduct robust bias-corrected inference
(CE-optimal h =⇒ optimal distributional approximation)



Local Polynomial Methods

Idea: approximate regression functions for control and treatment units locally.

“Local-linear” (p = 1) estimator (w/ weights K(·)):

−h ≤ Xi < c : c ≤ Xi ≤ h :

Yi = α− + (Xi − c) · β− + ε−,i Yi = α+ + (Xi − c) · β+ + ε+,i

I Treatment effect (at the cutoff): τ̂SRD(h) = α̂+ − α̂−

Can be estimated using linear models (w/ weights K(·)):

Yi = α+ τSRD · Ti + (Xi − c) · β1 + Ti · (Xi − c) · γ1 + εi, |Xi − c| ≤ h

Given p, K, h chosen =⇒ weighted least squares estimation.
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Local Polynomial Methods: Choosing bandwidth (p = 1)

Mean Square Error Optimal (MSE-optimal).

hMSE = C
1/5
MSE · n

−1/5 CMSE = C(K) · Var(τ̂SRD)

Bias(τ̂SRD)2

Coverage Error Optimal (CE-optimal).

hCE = C
1/4
CE · n

−1/4 CCE = C(K) · Var(τ̂SRD)

|Bias(τ̂SRD)|

Key idea:

I Trade-off bias and variance of τ̂SRD(h). Heuristically:

↑ Bias(τ̂SRD) =⇒ ↓ ĥ and ↑ Var(τ̂SRD) =⇒ ↑ ĥ

I Implementations: IK first-generation while CCT second-generation plug-in rule.
They differ in the way Var(τ̂SRD) and Bias(τ̂SRD) are estimated.

I Rule-of-thumb: hCE ∝ n1/20 · hMSE.



Conventional Inference Approach

“Local-linear” (p = 1) estimator (w/ weights K(·)):

−h ≤ Xi < c : c ≤ Xi ≤ h :

Yi = α− + (Xi − c) · β− + ε−,i Yi = α+ + (Xi − c) · β+ + ε+,i

I Treatment effect (at the cutoff): τ̂SRD(h) = α̂+ − α̂−

Construct usual t-test. For H0 : τSRD = 0,

T (h) =
τ̂SRD√
V̂

=
α̂+ − α̂−√
V̂+ + V̂−

≈d N (0, 1)

Näıve 95% Confidence interval:

I(h) =
[
τ̂SRD ± 1.96 ·

√
V̂
]



Robust Bias Correction Approach

Key Problem:

T (hMSE) =
τ̂SRD√
V̂
≈d N (B, 1) 6= N (0, 1)

I B captures bias due to misspecification error.

RBC distributional approximation:

T bc(h) =
τ̂SRD − B̂n√

V̂
=
τ̂SRD − Bn√

V̂︸ ︷︷ ︸
≈d N (0,1)

+
B− B̂√

V̂︸ ︷︷ ︸
≈d N (0,γ)

I B̂ is constructed to estimate leading bias B, that is, misspecification error.

RBC 95% Confidence Interval:

IRBC =

[ (
τ̂SRD − B̂

)
± 1.96 ·

√
V̂ + Ŵ

]
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Empirical Illustration: Head Start (Ludwig and Miller, 2007, QJE)

Problem: impact of Head Start on Infant Mortality

Data:

Yi = child mortality 5 to 9 years old

Ti = whether county received Head Start assistance

Xi = 1960 poverty index (c = 59.1984)

Zi = see database.

Potential outcomes:

Yi(0) = child mortality if had not received Head Start

Yi(1) = child mortality if had received Head Start

Causal Inference:

Yi(0) 6= Yi|Ti = 0 and Yi(1) 6= Yi|Ti = 1



TABLE III
REGRESSION DISCONTINUITY ESTIMATES OF THE EFFECT OF HEAD START ASSISTANCE ON MORTALITY

Variable Control mean Nonparametric estimator

Parametric

Flexible
linear

Flexible
quadratic

Bandwidth or poverty range 9 18 36 8 16
Number of observations 527 961 2,177 484 863

(counties) with nonzero weight
Main results

Ages 5–9, Head Start-related causes, 1973–1983 3.238 �1.895��

(0.980)
[0.036]

�1.198�

(0.796)
[0.081]

�1.114��

(0.544)
[0.027]

�2.201��

(1.004)
[0.022]

�2.558��

(1.261)
[0.021]

Specification checks
Ages 5–9, injuries, 1973–1983 22.303 0.195

(3.472)
[0.924]

2.426
(2.476)
[0.345]

0.679
(1.785)
[0.755]

�0.164
(3.380)
[0.998]

0.775
(3.401)
[0.835]

Ages 5–9, all causes, 1973–1983 40.232 �3.416
(4.311)
[0.415]

0.053
(3.098)
[0.982]

�1.537
(2.253)
[0.558]

�3.896
(4.268)
[0.317]

�2.927
(4.295)
[0.505]

Ages 25�, Head Start-related causes,
1973–1983

131.825 2.204
(5.719)
[0.700]

6.016
(4.349)
[0.147]

5.872
(3.338)
[0.114]

2.091
(5.581)
[0.749]

2.574
(6.415)
[0.689]
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Falsification and Validation

RD plots and related graphical methods:

I Always plot data: main advantage of RD designs. (Check if RD design!)

I Plot histogram of Xi (score) and its density. Careful: boundary bias.

I RD plot E[Yi|Xi = x] (outcome) and E[Zi|Xi = x] (pre-intervention covariates).

I Be careful not to oversmooth data/plots.

Sensitivity and related methods:

I Score density continuity: binomial test and continuity test.

I Pre-intervention covariate no-effect (covariate balance).

I Placebo outcomes no-effect.

I Placebo cutoffs no-effect: informal continuity test away from c.

I Donut hole: testing for outliers/leverage near c.

I Different bandwidths: testing for misspecification error.

I Many other setting-specific (fuzzy, geographic, etc.).
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Empirical Illustration: Head Start (Ludwig and Miller, 2007, QJE)

Problem: impact of Head Start on Infant Mortality

Data:

Yi = child mortality 5 to 9 years old

Ti = whether county received Head Start assistance

Xi = 1960 poverty index (c = 59.1984)

Zi = see database.

Potential outcomes:

Yi(0) = child mortality if had not received Head Start

Yi(1) = child mortality if had received Head Start

Causal Inference:

Yi(0) 6= Yi|Ti = 0 and Yi(1) 6= Yi|Ti = 1



Thank you!

https://rdpackages.github.io/

https://rdpackages.github.io/
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