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© Designs and Frameworks



Causal Inference and Program Evaluation

Main goal: learn about treatment effect of policy or intervention

If treatment randomization available — easy to estimate effects

If treatment randomization not available — observational studies

> Selection on observables.

» Instrumental variables, etc.

o Regression discontinuity (RD) design
» Simple assignment, based on known external factors
> Objective basis to evaluate assumptions

» Easy to falsify and interpret.

v

Careful: very locall!



Regression Discontinuity Design

@ Units receive a score (X;).

o A treatment is assigned based on the score and a known cutoff (c).

o The treatment is:

> given to units whose score is greater than the cutoff.

» withheld from units whose score is less than the cutoff.

o Under assumptions, the abrupt change in the probability of treatment
assignment allows us to learn about the effect of the treatment.

Conditional Probability of Receiving Treatment
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Score X
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RD Designs: Taxonomy

o Frameworks.

> Identification: Continuity/Extrapolation, Local Randomization.

> Score: Continuous, Many Repeated, Few Repeated.

o Settings.

» Sharp, Fuzzy, Kink, Kink Fuzzy.
> Multiple Cutoff, Multiple Scores, Geographic RD.

> Dynamic, Continuous Treatments, Time, etc.

o Parameters of Interest.
> Average Effects, Quantile/Distributional Effects, Partial Effects.
> Heterogeneity, Covariate-Adjustment, Differences, Time.

» Extrapolation.



RCTs vs. (Sharp) RD Designs

Notation: (Y;(0),Y;(1), X;), 1 =1,2,...,n.
e Treatment: T; € {0,1}, T; independent of (Y;(0),Y;(1), X5).

e Data: (V;,T;,X;),i=1,2,...,n, with

o Average Treatment Effect:
e = E[Y(1) - Yi(0)] = E[Y,|T = 1] — E[Y;[T = 0]



RCTs vs. (Sharp) RD Designs

Notation: (Y;(0),Y;(1), X;),i=1,2,...,n, X, score.
e Treatment: T; € {0,1}, T; = 1(Xs > o), ¢ cutoff.

e Data: (V;,T;,X;),i=1,2,...,n, with

v Yi(0) if T, =0
T v i =1

Average Treatment Effect at the cutoff (Continuity-based):

o = E[Yi(1) = Yi(0)|X; = = imE[Yi|X; = o] ~ im E[Y; X = a]

o Average Treatment Effect in a neighborhood (LR-based):
1 1
e = E[Vi(1) - i(0)|X: € W] = & > Vi N > oo



7o = E[Yi(1) = Yi(0)|X; = ¢ = imE[Yi|X; = o] ~ imE[Yi|X; = a]
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T; independent of (Y;(0),Y;(1)) for all X; € W = [c — w, ¢ + w]

+ exclusion restriction

Outcomes Y(0),Y(1)
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Fuzzy RD Designs
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Fuzzy RD Designs

o Imperfect compliance.

> probability of receiving treatment changes at ¢, but not necessarily from 0 to 1.

o Canonical Parameter:

E[(Y;(1) = Yi(0)(Di(1) = Di(0)))|X: =
E[D1(1)|XZ = C] — E[DZ(O)‘XZ = C]

o limzic E[Y”XZ = .’L‘} — liszC E[Y”XZ = x}

TFRD —

where Y;(t) = Y;(0)(1 — D;i(t)) + Yi(1)D;(t) and D;(t) = D;(0)(1 — T3) + D;(1)T;.
o Similarly for Local Randomization framework.

o Different interpretations under different assumptions.



(Sharp and Fuzzy) Kink RD Designs
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(Sharp and Fuzzy) Kink RD Designs

o Treatment assigned via continuous score formula, but slope changes
discontinuously at “kink” point (c).
o SKRD Parameter:

limg . dzE[Y|X = 1 —hmmC ZR[Y;| X = 1]
limg e -Lb(z) — limgpe = b(x)

TKRD =
where b(z) known function inducing “kink”.

o FKRD Parameter:

hmucd E[Yi| X, = z] —hmﬁcd E[Y;| X; = 7]
lim,, . -2 ~E[Di|X; = 2] — limg 1 -2 L E[D;|X; = x]

TKRD =

o Different interpretation under different assumptions.



Multi-cutoff, Multi-Score, Geographic RD Designs
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Multi-cutoff, Multi-Score, Geographic RD Designs

o Multi-cutoff RD designs.
» C; € Cwith C={ci1,c2, - ,cs} or C =7
» Two strategies: normalize-and-pool (XZ = X; — C}), or cutoff-by-cutoff analysis.

» Different interpretation under different assumptions.

@ Multi-score RD designs.
> X; = (X145, X2iy...,Xg;) and ¢ = (c1,c2,...,cq)".
» Can always be mapped back to Multi-cutoff RD designs.
> Leading special cases: Test scores, geography (d = 2).

» Different interpretation under different assumptions.

e Other RD-like designs.
» RD in density and bunching designs.
» RD in time.
» Dynamic RD designs.

> etc.



Geographic RD Design

=7
N,

Montgomery Township School District

Ney York-Philadelphia Media Market Boundary

South Brunswick School District

N T

Treated Area of Analysis

Hopewell Valley Schoo Distrct Control Area of Analysis

ey

A

Cranbury Township School District

Lawrence Township School District

i A

T
R

o itor s D]

Robbinsville Township School District

/ Upper Freehold SchoolDistict

iy

[ New York Media Market
[ Philadelphia Media Market

R




Highlights and Main Takeaways

RD designs exploit “variation” near the cutoff.

Causal effect is different (in general) than RCT.

No “overlap” (sharp) so extrapolation or exclusion is unavoidable.

Graphical analysis is both very useful and very dangerous.

Need to work with data near cutoff =— bandwidth or window selection.

Many design-specific falsification/validation methods.
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© RD Plots: Visualization Methods



RD Packages: Python, R, Stata

https://rdpackages.github.io/

o rdrobust: estimation, inference and graphical presentation using local
polynomials, partitioning, and spacings estimators.

> rdrobust, rdbwselect, rdplot.

e rddensity: discontinuity in density tests (manipulation testing) using both
local polynomials and binomial tests.

> rddensity, rdbwdensity.

e rdlocrand: covariate balance, binomial tests, randomization inference methods
(window selection & inference).
> rdrandinf, rdwinselect, rdsensitivity, rdrbounds.

o rdmulti: multiple cutoffs and multiple scores.

o rdpower: power, sample selection and minimum detectable effect size.


https://rdpackages.github.io/

Empirical Hlustration: Head Start (Ludwig and Miller, 2007, QJE)

e Problem: impact of Head Start on Infant Mortality

e Data:
Y; = child mortality 5 to 9 years old
T; = whether county received Head Start assistance
X; = 1960 poverty index (c = 59.1984)

Z; = see database.

o Potential outcomes:
Y;(0) = child mortality if had not received Head Start
Y;(1) = child mortality if had received Head Start

o Causal Inference:

Yi(0) # YiT,=0 and Yi(l) # YT, =1



RD Plots

e Main ingredients:

> Global smooth polynomial fit.

» Binned discontinuous local-means fit.

e Main goals:
> Graphical (heuristic) representation.
> Detention of discontinuities.

> Representation of variability.

Tuning parameters:

> Global polynomial degree.

» Location (ES or QS) and number of bins.

Great to convey ideas but horrible to draw conclusions.



Estimation and Inference Methods

o Local Randomization: finite-sample and large-sample inference.
» Localization: window selection (via local independence implications).
> Point estimation: parametric, finite-sample (Fisher) or large-sample (Neyman/SP).

> Inference: randomization inference (Fisher) or large-sample (Neyman/SP).

e Continuity /Extrapolation: Local polynomial approach.
> Localization: bandwidth selection (trade-off bias and variance).
> Point estimation: “flexible” (nonparametric).

> Inference: robust bias-corrected methods.

e Many refinements and other methods exist (EL, Bayesian, Uniformity, etc.).
» Do not offer much improvements in applications.
> Can be overly complicated (lack of transparency).

» Can depend on user-chosen tuning parameters (lack of replicability).
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© Estimation and Inference: Local Randomization Methods



Local Randomization Approach to RD Design

e Key assumption: exists window W = [¢ — w, ¢ + w] around cutoff where
subjects are as-if randomly assigned to either side of cutoff:

@ Joint probability distribution of scores for units in the W is known:
PXyy < x| = F(x), for some known joint c.d.f. F(x),
where Xy denotes the vector of scores for all ¢ such that X; € W.

@ Potential outcomes not affected by value of the score:
Yi(0,z) = Y;(0),
Yi(1l,z) = Y;(1), for all X; € W.

o Note: stronger assumption than continuity-based approach.

> Potential outcomes are a constant function of the score (can be relaxed).

> Regression functions are not only continuous at ¢, but also completely unaffected
by the running variable in W.



Experiment versus RD Design

E[Y(@)Ix] E[Y()IX]
g e ©
= >
@ TsrD @ Average Treatment Effect
> - >
8 JERE 4
= . TRL T E[Y(0)IX] |
s —— S
< £
S =1
© © EYWIX]

&——Cutoff Cutoff
¢
Score X Score X

(a) RD Design (b) Randomized Experiment




Local Randomization RD

X X 5
—~ . — -
) L2 3
b (=
w ‘W

RD Treatment Effect

(T)A'(0)A s9WoaNO

Score X



Local Randomization Framework

o Key idea: exists window W = [¢ — w, ¢ + w] around cutoff where subjects are
as-if randomly assigned to either side of cutoff.
o Two Steps (analogous to local polynomial methods):

@ Select window W.

@ Given window W, perform estimation and inference.

o Challenges
> Window (neighborhood) selection.
> As-if random assumption good approximation only very near cutoff

» Small sample.



Step 1: Choose the window W

o Find neighborhood where (pre-intervention) covariate-balance holds.
o Find neighborhood where outcome and score independent.

e Domain-specific or application-specific choice.
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Step 2: Finite-sample and Large-sample Methods in W

e Given W where local randomization holds:

» Randomization inference (Fisher): sharp null, finite-sample exact.
> Design-based (Neyman): large-sample valid, conservative.

> Large-sample standard: random potential outcomes, large-sample valid.

o All methods require window (W) selection, and choice of statistic.
First two also require choice/assumptions assignment mechanism.

Covariate-adjustments (score or otherwise) possible.



Empirical Hlustration: Head Start (Ludwig and Miller, 2007, QJE)

e Problem: impact of Head Start on Infant Mortality

e Data:
Y; = child mortality 5 to 9 years old
T; = whether county received Head Start assistance
X; = 1960 poverty index (c = 59.1984)

Z; = see database.

o Potential outcomes:
Y;(0) = child mortality if had not received Head Start
Y;(1) = child mortality if had received Head Start

o Causal Inference:

Yi(0) # YiT,=0 and Yi(l) # YT, =1



Empirical [lustration: Window Selector
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@ Estimation and Inference: Local Polynomial Methods



7o = E[Yi(1) = Yi(0)|X; = ¢ = imE[Yi|X; = o] ~ imE[Yi|X; = a]
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Continuity /Extrapolation: Local Polynomial Methods
o Global polynomial regression: not recommended.
» Runge’s Phenomenon, counterintuitive weights, overfitting, lack of robustness.
@ Local polynomial regression: captures idea of “localization”.
Choose low poly order (p) and weighting scheme (K(-))

¢

Choose bandwidth h: MSE-optimal or CE-optimal

¢

Construct point estimator 7
(MSE-optimal h = optimal estimator)

¢

Conduct robust bias-corrected inference
(CE-optimal h = optimal distributional approximation)



Local Polynomial Methods

o Idea: approximate regression functions for control and treatment units locally.
e “Local-linear” (p = 1) estimator (w/ weights K(-)):
—-h<X;<c: c< X; <h:
Yi=a 4+ (Xs—c)-B-+e_y Yi=oy +(Xi—c) By +er;
> Treatment effect (at the cutoff): 7spp(h) = G+ — G—

o Can be estimated using linear models (w/ weights K(-)):

Yi=a+tmw - Li+(Xi—c¢) - /1 +T - (Xi—c¢) 1 +e, | X:—c|<h

e Given p, K, h chosen = weighted least squares estimation.



Kernel Weights
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Outcomes Y(0),Y(1)
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Outcomes Y(0),Y(1)
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Local Polynomial Methods: Choosing bandwidth (p = 1)

e Mean Square Error Optimal (MSE-optimal).

Var(f'sm;)

huse = Cyds -1~ /° Cuse = C(K) - Bias(7sro)2

e Coverage Error Optimal (CE-optimal).

Val’(f's}m)

hee = Col* - n /" Cee = C(K) - [Bias(7sm)|

o Key idea:

> Trade-off bias and variance of 7spp(h). Heuristically:

1 Bias(7sp) = |h and 1 Var(7sap) = 1h

» Implementations: IK first-generation while CCT second-generation plug-in rule.
They differ in the way Var(7spp) and Bias(7srp) are estimated.

» Rule-of-thumb: hcg o< nt/20 . hygg.



Conventional Inference Approach

o “Local-linear” (p = 1) estimator (w/ weights K(-)):
-h<X;<ec: c<X;<h:

Yi=a +(Xi—c) - B-+e_: Yi=ar+(Xi—c¢) By +er
> Treatment effect (at the cutoff): 7sap(h) = G4 — G—

o Construct usual t-test. For Hg : 7spp = 0,

TsRD o —«

T(h) = =% = ————= ~a N(0,1)

W N

o Naive 95% Confidence interval:

I(h) = [%SRD + 1.96-\/\7/]



Robust Bias Correction Approach

o Key Problem:

T(huse) = 22~y N(B,1)  #  N(0,1)

> B captures bias due to misspecification error.

o RBC distributional approximation:

TbC(h) _ TSRD _ABn _ TSRD —ABn + B —AB
VY VY V
——— S——

~qg N(0,1) =g N(0,7)

> B is constructed to estimate leading bias B, that is, misspecification error.

o RBC 95% Confidence Interval:

Trae = [ (%SRD—E) + 1.96.\/\7+v\/}
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Empirical Hlustration: Head Start (Ludwig and Miller, 2007, QJE)

e Problem: impact of Head Start on Infant Mortality

e Data:
Y; = child mortality 5 to 9 years old
T; = whether county received Head Start assistance
X; = 1960 poverty index (c = 59.1984)

Z; = see database.

o Potential outcomes:
Y;(0) = child mortality if had not received Head Start
Y;(1) = child mortality if had received Head Start

o Causal Inference:

Yi(0) # YiT,=0 and Yi(l) # YT, =1



TABLE III
REGRESSION DISCONTINUITY ESTIMATES OF THE EFFECT OF HEAD START ASSISTANCE ON MORTALITY

Parametric
Flexible Flexible
Variable Control mean Nonparametric estimator linear quadratic
Bandwidth or poverty range 9 18 36 8 16
Number of observations 527 961 2,177 484 863
(counties) with nonzero weight
Main results
Ages 5-9, Head Start-related causes, 1973-1983 3.238 —1.895x#x —1.198* —1.114#x* —2.201#* —2.558#x
(0.980) (0.796) (0.544) (1.004) (1.261)
[0.036] [0.081] [0.027] [0.022] [0.021]
Specification checks
Ages 5-9, injuries, 1973-1983 22.303 0.195 2.426 0.679 —0.164 0.775
(3.472) (2.476) (1.785) (3.380) (3.401)
[0.924] [0.345] [0.755] [0.998] [0.835]
Ages 5-9, all causes, 1973-1983 40.232 —3.416 0.053 —1.537 —3.896 —2.927
(4.311) (3.098) (2.253) (4.268) (4.295)
[0.415] [0.982] [0.558] [0.317] [0.505]
Ages 25+, Head Start-related causes, 131.825 2.204 6.016 5.872 2.091 2.574
1973-1983 (5.719) (4.349) (3.338) (5.581) (6.415)
[0.700] [0.147] [0.114] [0.749] [0.689]
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Falsification and Validation

o RD plots and related graphical methods:

> Always plot data: main advantage of RD designs. (Check if RD design!)
> Plot histogram of X; (score) and its density. Careful: boundary bias.
» RD plot E[Y;|X; = z] (outcome) and E[Z;|X; = ] (pre-intervention covariates).

» Be careful not to oversmooth data/plots.

e Sensitivity and related methods:

> Score density continuity: binomial test and continuity test.

> Pre-intervention covariate no-effect (covariate balance).

» Placebo outcomes no-effect.

> Placebo cutoffs no-effect: informal continuity test away from c.
> Donut hole: testing for outliers/leverage near c.

» Different bandwidths: testing for misspecification error.

» Many other setting-specific (fuzzy, geographic, etc.).
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Empirical Hlustration: Head Start (Ludwig and Miller, 2007, QJE)

e Problem: impact of Head Start on Infant Mortality

e Data:
Y; = child mortality 5 to 9 years old
T; = whether county received Head Start assistance
X; = 1960 poverty index (c = 59.1984)

Z; = see database.

o Potential outcomes:
Y;(0) = child mortality if had not received Head Start
Y;(1) = child mortality if had received Head Start

o Causal Inference:

Yi(0) # YiT,=0 and Yi(l) # YT, =1



Thank you!

https://rdpackages.github.io/
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