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Traditional Credit Report Data

What we see:
Loan balances
Delinquency history
Credit limits
Applications/inquiries
Debt in collection
Bankruptcies

Civil judgments



dit Report Data

What we see: What we don’t:

Loan balances Income

Delinquency history Expenditure / consumption
Credit limits Credit card spending
Applications/inquiries Interest rates / prices

Debt in collection Demographics and education
Bankruptcies Lender (vs. servicer)

Civil judgments “Alternative” financial products



“Enhanced” Credit Report Data

e Predicted income and/or linked payroll processor data (Blattner and Nelson,

2021; Mello, 2021; Di Maggio, Kalda, and Yao, 2019)
e Race and ethnicity via BISG (CFPB, 2014; Blattner and Nelson, 2021)
e Education (Di Maggio, Ratnadiwakara, and Carmichael, 2021)

[ ) Mortgage servicing data (Ganong and Noel, 2021; Berger, Milbradt, Tourre, and

Vavra, 2021; Bartlett, Morse, Stanton, and Wallace, 2019)

[ ] Payday Ioan data (Fonseca, 2021; Blattner and Nelson, 2021; Bhutta, Skiba, and

Tobacman, 2015)
e Household structure (Lee and van der Klaauw, 2010; Dokko, Li, and Hayes, 2015)

e Medical shocks and health insurance (Dobkin, Finkelstein, Kluender, and
Notowidigdo, 2018; Gupta, Morrison, Fedorenko, and Ramsey, 2018; Kluender, Mahoney,

Wong, and Yin, 2021; Hu, Kaestner, Mazumder, Miller, and Wong, 2018)
L] “Shadow debt” (Argyle, Iverson, Nadauld, and Palmer, 2021)

e Credit card spending / revolving (Fulford and Schuh, 2020; Nelson, 2020)



Predicted Income

HMDA vs. Bureau-predicted Income differences (Blattner and Nelson, 2021):

e Match Corelogic deeds, credit records, and HMDA mortgages: 38m
matched observations in years '06-'17.
e Bureau's income estimator: trained on 1.2 m sample of IRS form 1040

joint income data from tax years '08-'12.
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BISG minority false-negative rates by state (Blattner and Nelson, 2021):
e See Maine, Montana, North Dakota

Predicted Race and Ethn




-Minority Credit Bureau Data

In Blattner and Nelson (2021), we find minority and low-income consumers’
credit report data have characteristics with low predictive power for all
groups (see also Avery, Brevoort, and Canner, 2012).

e Sparse, non-diverse, and/or “dirty” data

e For example, file thickness by minority status:
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What We Predict with Credit Report Data

Loan default (90 DPD, 2 year horizon) (Fed Board, 2007; Thomas, 2009)

Property/liability insurance claim risk (Kiviat, 2019)
[ ] Apartment rental default (Humphries, Nelson, van Dijk, and Waldinger, 2022)

Employability / worker productivity (pre-employment credit checks

or “PECCs" (Bartik and Nelson, 2021; Dobbie, Goldsmith-Pinkham, Mahoney, and
Song, 2020; Corbae and Glover, 2018)
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Why We (Can) Predict with Credit Report Data

e Persistent human capital (Corbae and Glover, 2018)
o Persistent time preference (Chatterjee, Corbae, Dempsey, and Rios-Rull, 2020)

e Persistence in multidimensional (demand/risk) types (Nelson, 2020;

Blattner, Nelson, and Hartwig, 2022)

) Credit score hysteresis (Brown, Cookson, and Heimer, 2019; Blattner and Nelson,
2021)
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