Aggregate and Distributional Impacts of Transit Infrastructure: Evidence from Bogotá's TransMilenio

Nick Tsivanidis

University of California, Berkeley

October 8 2021

Measuring the Aggregate and Distributional Effects of Transit

Suppose a new transit system is built in a city:

- Direct Effects: Value of travel time saved (VTTS)
- Indirect Effects: Firms and workers respond by changing location choices; wages and house prices react
- Total impact will depend on the sum of these forces

Question: How important are indirect vs direct effects? Do they change who wins or loses?

- E.g. in Bogotá, the poor rely on public transit.
- They should gain the most from new transit due to direct effects, but unclear once we consider equilibrium forces...

This Paper

Evaluate impact of TransMilenio, world's most-used Bus Rapid Transit system built in Bogotá in 2000s

Similar speed to subways, but **Faster** and **Cheaper** to build

Leverage rich tract-level data to:

- 1. Assess whether quantative spatial model fits the change in city structure to the system
- 2. Quantify aggregate and distributional effects across the rich and poor, compare with VTTS

Insight #1: Importance of Data

Impacts of BRT through Accessibility

Model Mechanisms Explain Changes Observed in the Data

• Log-linear relationship between changes in accessibility and residential and commercial floorspace prices, populations and employment borne out in the data

Sensitivity of commute choices to travel times differs by group

 Commute location choices of the low-skilled were 26% more responsive to changes in travel times induced by TransMilenio than the high-skilled

	(1)	(2)	(3)	(4)	(5)	(6)
HighSkill X Commute Time	-0.0319*** (0.0123)	-0.0256** (0.0121)	-0.0283** (0.0124)	-0.0249** (0.0122)	-0.0166*** (0.0025)	-0.0165*** (0.0025)
LowSkill X Commute Time	-0.0387*** (0.0131)	-0.0281** (0.0114)	-0.0357*** (0.0132)	-0.0284** (0.0117)	-0.0298*** (0.0025)	-0.0284*** (0.0024)
N	1,778	1,778	1,778	1,778	1,444	1,444
Method	IV	OLS	IV	OLS	PPML	IV-PPML
Years	1995,2015	1995,2015	1995,2015	1995,2015	2015	2015
Orig-Dest-Skill-Car Own FE	Х	Х	Х	X		
Dest-Skill-Year FE	х	х	х	x	X	х
Orig-Skill-Car Own-Year FE	Х	х	Х	х	X	х
Crime, House Price, Main Road Ctrls			Х	Х		

Table 8: Gravity Regression

Gentrification was uneven across neighborhoods

- Improved accessibility due to TransMilenio led to an increase in the college share only in nbhds surrounded by sufficiently high numbers of college workers in the initial period
- Model intuition: rich care about both accessibility + amenities, and WTP for improved accessibility is higher in high amenity neighborhoods
- Implication: Slum unlikely to gentrify from transit since lacks other amenities rich value; middle-income nbhd more likely

Outcome: Change in College Share	(1) OLS	(2) OLS	(3) IV	(4) IV LCP	(5) IV All
$\Delta \ln RCMA$	-0.012 (0.026)	-0.040 (0.025)	-0.032 (0.025)	-0.054 (0.042)	-0.052 (0.040)
Δ lnRCMA X HighColl		0.043* (0.023)	0.053* (0.028)	0.091** (0.043)	0.095** (0.040)
$rac{N}{R^2}$	1,886 0.27	1,886 0.27	1,886	1,886	1,886
F-Stat Over-ID p-value				89.38	122.14 0.54
Locality FE	x	х	х	х	х
HighColl FE		Х	X	x	x
Log Dist CBD X Region FE	x	X	х	x	х
Tract Controls	х	Х	Х	х	Х
Historical Controls	x	x	x	x	x

Insight #2: Equilibrium Responses Matter

Equilibrium Responses Matter

- Aggregate gains are ~26% higher accounting for reallocation of activity and equilibrium responses of prices
- Distributional consequencies switch signs, largely driven by the differing elasticities of substitution across commutes (important for incidence)

	Average Welfare	Inequality
First Order Approximation (VTTS)	1.308	-0.172
General Equilibrium	1.628	0.085

Insight #3: Interaction of Transport w/Related Policies

Policy Counterfactual: Land Value Capture

- In Bogotá, change in transit w/o complementary change in zoning laws
 - \Rightarrow No significant response in housing supply to TM
- Land Value Capture (LVC): Simulate the impact of one candidate policy in combin. w/TM
 - "Development Air Rights Sale" Gvt sells permits to build higher densities near stations
 - · Successful in Asian cities to (i) finance construction and (ii) increase housing supply

Policy Counterfactual: Land Value Capture

Gvt. Rev Gvt. Rev **Avg Welfare** Inequality **Closed City Open City** Baseline 1.63% 0.09% **LVC-Distance** 1.71% 0.03% 5.72% 17.82% LVC-CMA 1.93% 0.01% 10.21%41.07%

- 1. Average welfare gain 19% larger under LVC
- 2. Welfare + Revenue Gain greater under CMA-based scheme
- 3. Low-skilled benefit the most