Comments on "The constraint on public debt when $r<g$ but $g<m$ " by Ricardo Reis

John H. Cochrane
Hoover Institution, Stanford University and NBER

February 262021

Important!

- The single most important macro question of our time.

$$
\frac{d}{d t}\left(\frac{b_{t}}{y_{t}}\right)=\left(r_{t}-g_{t}\right) \frac{b_{t}}{y_{t}}-\frac{s_{t}}{y_{t}} .
$$

- $r<g$: Raise debt (with $s<0$) then roll over $(s=0), b / y$ gently declines? "Fiscal expansion" with "no fiscal cost?"
- Washington understands logic better than economists!
- Obviously not.
- Theory wall between $r<g$ manna and $r>g$ austerity? 0.01\%?
- Obviously not.
- Conventional response: 1) r will rise. An upper bound on b / y. Crowding out? Liquidity premium?
- 2) 50-100 years of large b / y threatens doom loop. What if there is another crisis, a WWII budget need starting at $b / y=200 \%$?
- Today: $r<g$ is irrelevant to US fiscal policy issues.

Radical objection - perpetual deficits with steady b / y ?

The whole $r-g$ debate is irrelevant to current US fiscal policy issues.

Total Deficits, Primary Deficits, and Net Interest
ㅍ
Percentage of Gross Domestic Product

- $r<g$ by 1% and $b / y=100 \%$ allow $s / y=-1 \%$.
- not $s / y=-5 \%$ in good times, $s / y=-25 \%$ in $1 / 10$ year crisis, and then entitlements, and then "one-time" expansion.

Radical objection - one time expansion and grow out?

The whole $r-g$ debate is irrelevant to current US fiscal policy issues.

- $r<g$ by 1% allows "one-time b / y expansion" and then $s=0$.
- $s=0$ would be big austerity / conservative dream!
- $r<g$ by 1% does not allow exponentially growing b / y !

Discontinuity at $r=g$?

$r=g$ divides bond vigilantes from garden of eden? Look at flows.

- $r-g=+0.01 \%$ with $b / y=100 \%$ means $s / y=0.01 \%=\$ 2$ billion.
- $r-g=-0.01 \%$ means $s / y=-0.01 \%=-\$ 2$ billion.
- This transition is clearly continuous.

Look at growing out of "one time" expansion

- $r-g=-0.01 \%$, means $b / y=150 \%$ resolves with $s=0$ back to $b / y=50 \%$ in 11,000 years.
- $r-g=+0.01 \%$ means $b / y=150 \%$ grows to 450% in 11,000 years, on the way to ∞.
- "Wealth effect" in transversality condition, is likely the same.

Lessons

- Economic meaning of solving integrals forward vs. backward should be continuous.
- Economically sensible reading: Small $r<g$ is not discontinuously different from small $r>g$.

R, g and present values

Summary: $r<g$ in perfect foresight modeling

- $r<g \approx 1 \%$ shifts the average surplus to a slight perpetual deficit $s / y \approx-1 \%$, while it lasts.
- Any substantial variation in deficits about that average must be met by a substantial period of above average surpluses, to bring back debt to GDP in a reasonable time.
- Like seigniorage.
- A quantitative question. $r<g$ of 10% would be different.
- The $r<g$ debate is irrelevant to current US fiscal policy issues.

Liquidity, uncertainty, paper?

- Liquidity, uncertainty: Many r to choose from.
- Do not measure r from a world with liquidity and uncertainty, and use it in perfect foresight modeling!
- Two examples: $r=$ rate of return on government debt $<g$, but present values converge and no fiscal opportunity if done right.

Liquidity value of government debt

- Example: All debt is money. $r=-\pi<g$.
- Steady state can finance small deficit.

$$
(\pi+g) \frac{M}{P y}=-\frac{s}{y}
$$

but big deficits need to be repaid by later surpluses.

- PV? Discount with r^{f}, i.e. with $e^{-\delta t} u^{\prime}\left(c_{t}\right)$:

$$
\frac{M_{t}}{P_{t} y_{t}}=\int_{\tau=t}^{T} e^{-\left(r^{f}-g\right)(\tau-t)}\left(\frac{s_{\tau}}{y_{\tau}}+i_{\tau} \frac{M_{\tau}}{P_{\tau} y_{\tau}}\right) d \tau+e^{-\left(r^{f}-g\right)(T-t)} \frac{M_{T}}{P_{T} y_{T}}
$$

Debt $=$ PV of surpluses, including seignorage. Terminal value converges. Can fund $s<0$. Big $s<0$ need to be repaid by $s>0$.

- Discount with gov't debt return $r=-\pi$:

$$
\frac{M_{t}}{P_{t} y_{t}}=\int_{\tau=t}^{T} e^{(\pi+g)(\tau-t)}\left(\frac{s_{\tau}}{y_{\tau}}\right) d \tau+e^{(\pi+g)(T-t)} \frac{M_{T}}{P_{T} y_{T}}
$$

Explosive "bubble," negative PV.

- Same $M /(P y)<\infty$. Which is useful? "Mine bubble"? See s limit?

The technical problem

- You can discount one-period payoffs with ex-post returns.

$$
1=E_{t}\left(\frac{\beta u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)} R_{t+1}\right)=E_{t}\left(R_{t+1}^{-1} R_{t+1}\right) .
$$

- You cannot always discount infinite payoffs with ex-post returns.

$$
p_{t}=E_{t} \sum_{j=1}^{T} \frac{\beta^{j} u^{\prime}\left(c_{t+j}\right)}{u^{\prime}\left(c_{t}\right)} d_{t+j}+E_{t} \frac{\beta^{j} u^{\prime}\left(c_{t+j}\right)}{u^{\prime}\left(c_{t}\right)} p_{t+T}
$$

each term converges, yet

$$
p_{t}=E_{t} \sum_{j=1}^{T} \prod_{k=1}^{j} \frac{1}{R_{t+k}} d_{t+j}+E_{t} \prod_{k=1}^{T} \frac{1}{R_{t+k}} p_{t+T}
$$

terms can explode in opposite directions.

Bohn's (1995) example - uncertainty

- $\frac{c_{t+1}}{c_{t}} \sim$ iid. $\frac{1}{1+r^{f}}=E\left[\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}\right] . r^{f}<g$ is possible.
- Government keeps a constant debt/GDP. Borrows c_{t}, repays $\left(1+r^{f}\right) c_{t}$ at time $t+1 . \quad b_{t}=c_{t}$. See as present value?
- $s_{t}=\left(1+r^{f}\right) c_{t-1}-c_{t}$. Discounting with marginal utility,

$$
\begin{gathered}
b_{t}=E_{t} \sum_{j=1}^{T} \beta^{j}\left(\frac{c_{t+j}}{c_{t}}\right)^{-\gamma} s_{t+j}+E_{t} \beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma} c_{t+T} \\
=E_{t} \sum_{j=1}^{T} \beta^{j}\left(\frac{c_{t+j}}{c_{t}}\right)^{-\gamma}\left[\left(1+r^{f}\right) c_{t+j-1}-c_{t+j}\right]+E_{t} \beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma} c_{t+T} \\
b_{t}=\left[c_{t}-E_{t} \beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma} c_{t+T}\right]+E_{t} \beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma} c_{t+T}
\end{gathered}
$$

Bohn's (1995) example

- Discounting with gov't bond return $=r^{f}$,

$$
\begin{gathered}
b_{t}=\sum_{j=1}^{T}\left(\prod_{k=1}^{j} \frac{1}{R_{t+k}}\right) s_{t+j}+\left(\prod_{k=1}^{T} \frac{1}{R_{t+k}}\right) c_{t+T}= \\
=\sum_{j=1}^{T} \frac{\left(1+r^{f}\right) c_{t+j-1}-c_{t+j}}{\left(1+r^{f}\right)^{j}}+\frac{1}{\left(1+r^{f}\right)^{T}} c_{t+T} \\
b_{t}=\left(c_{t}-\frac{c_{t+T}}{\left(1+r^{f}\right)^{T}}\right)+\frac{c_{t+T}}{\left(1+r^{f}\right)^{T}} .
\end{gathered}
$$

Taking expected value,

$$
b_{t}=c_{t}\left(1-\frac{(1+g)^{T}}{\left(1+r^{f}\right)^{T}}\right)+c_{t} \frac{(1+g)^{T}}{\left(1+r^{f}\right)^{T}}
$$

Bohn's (1995) example

- Discounting with marginal utility ${c_{t}^{-\gamma} \text {, }}^{-\gamma}$

$$
b_{t}=\left[c_{t}-E_{t} \beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma} c_{t+T}\right]+E_{t} \beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma} c_{t+T} .
$$

- Discounting with government bond return $=r^{f}$,

$$
b_{t}=c_{t}\left(1-\frac{(1+g)^{T}}{\left(1+r^{f}\right)^{T}}\right)+c_{t} \frac{(1+g)^{T}}{\left(1+r^{f}\right)^{T}} .
$$

- Both right. Which is more useful?
- At least be careful about offsetting infinite limits! Can miss $b / y=1$, not ∞, that deficits are repaid in PV terms. No "mineable bubbles"!

Ex post consumption and debt paths

Debt and Consumption

- Borrow 1, roll over at $r^{f}<g$ forever. Certainty: g beats r^{f}. Uncertainty: there are sample paths of low consumption (high u^{\prime}).

Ex post debt to GDP ratio

- Certainty: b/y declines. Uncertainty: Some low growth sample paths lead to huge b / y, fiscal adjustment in low c, high u^{\prime} state.
- If you weight by u^{\prime}, transversality is violated. Like writing puts.

Bottom line

Paper

- Paper has liquidity from frictions, $m p k \neq r^{f} \neq r$ from uncertainty. Important for realistic values. Same basic point (?) in many, simpler, models.
Lessons
- $r<g \approx 1 \%$ is fun but irrelevant for US fiscal problems.
- $r<g \approx 1 \%$ allows steady small deficits like seignorage. Larger deficits need to be repaid with subsequent surpluses.
- Grow out of debt opportunity is like writing out of the money put options and calling it arbitrage.
- With liquidity or uncertainty, discounting with ex post return can lead to terminal condition and PV that explode in opposite directions, while discounting with marginal utility is well behaved.
- If you do it, be careful. Discounting with marginal utility is safer.
- Do not pluck r measures from the world and use risk free models for quantitative questions.

