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Differential Privacy in the Wild

Survey Data

Goal: collect surveys and publish statistics about the U.S. population.

Challenge: protect the confidentiality of respondents.
Linking attacks (commercial databases and other external datasets)
Billions of statistics about millions of people
Advanced data science reconstruction algorithms [DN03] +
computation
Title 13 of the US Code:

Penalties for disclosure of private information: ≤ 5 years in prison,
≤ $250, 000 fine.
If it crosses paths with IRS data (Title 26): ≤ 22 years in prison.

2008 OnTheMap (https://onthemap.ces.census.gov/): first large-scale
deployment of differential privacy.
2020 Decennial Census of Populaton and Housing.
“Central” model.
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Differential Privacy in the Wild

How do people use their browsers?

Goal: understand Chrome browser usage through browser settings.
Homepages
Plugins

Challenge: massive invasion of privacy
Needs user consent
Low levels of opt-in data collection

2014 RAPPOR: Chrome browser sends noisy bits to Google.
Noise protects your information from Google
Aggregating across users reveals population statistics (popular plugins,
etc.)
“Local” model.
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Differential Privacy in the Wild

How do people use their devices?

Goal: understand mobile device usage.
Websites people visit (for link recommendation)
Words people type (for predictive keyboards)
Emojis people use (for when you are at a loss for words )

Challenge: keyloggers are malware

2016 Apple announces their plan to deploy differential privacy.
Usage information converted to bits
Bits are randomly perturbed
Noise protects your information from Apple
Aggregating across users reveals population statistics
“Local” model.
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Differential Privacy in the Wild

Et Alia

... Microsoft telemetry, Facebook url shares, Samsung, Uber, etc.
Differential privacy enables study of data that is otherwise inaccessible.
Trust models

Central Model
trusted data collector
data perturbed after collection

Local Model:
untrusted data collector
data perturbed before collection
lower accuracy of published statistics

Transparency: access to source code does not increase privacy risk.
Source code can be released.

Census end-to-end test:
https://github.com/uscensusbureau/census2020-das-e2e
Google RAPPOR: https://github.com/google/rappor
OpenDP: https://github.com/opendifferentialprivacy
Many others ...
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Abiogenesis of Differential Privacy

Meanwhile, in 1965 ...

Differential privacy officially invented in 2006 [DMNS06]
Mechanisms for differential privacy existed in 1965 [War65]
Face-to-face survey: “have you ever engaged in insider trading?”

Respondents are likely to lie
or withhold information

Warner’s Spinner:
Only the respondent sees spinner.
P(True) = p > 1

2
If arrow lands on "True", answer truthfully
If arrow lands on "False", lie

If respondents use this mechanism, their guarantee is:
Their information is protected almost as well as if they lied strategically.
Protection only relies on randomness in mechanism.
Protection does not rely on prior beliefs.

Note: mechanism is public, randomness is not.
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Abiogenesis of Differential Privacy

A Tale of Two Mechanisms

Pre-Warner face-to-face surveys.
Suppose real status is True: engaged in insider trading.
Two Options:

Factual World: submit correct response into survey instrument.

Survey 
Instrument

Response
Yes

Yes

Privacy-preserving counterfactual: always submit denial.

Survey 
Instrument

Response

No

No

Conclusion: strong incentive against being factual.
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Abiogenesis of Differential Privacy

A Tale of Two Mechanisms

Post-Warner face-to-face surveys.
Suppose real status is True: engaged in insider trading.
Two Options:

Factual World: submit correct response into survey instrument.

Survey 
Instrument

Response
Yes

Yes

No

prob: p

prob: 1-p

Privacy-preserving counterfactual: always submit denial.

Survey 
Instrument

Response

Yes

No

No

prob: p

prob: 1-p

Is there still an incentive to lie?
DP Intro 10 / 39



Abiogenesis of Differential Privacy

Privacy of Randomized Response

Spinner M, p > 1
2

Factual World Wf : submit correct response into survey method.
Input: Yes
Output: Yes with prob p, No with prob 1-p.

Privacy-preserving counterfactual world Wp: always deny.
Input: No
Output: Yes with prob 1-p, No with prob p.

What is the difference? Compared to privacy-preserving world:
Probabilities of Yes increase by a factor at most p/(1− p).
Probabilities of No decrease by a factor at most (1− p)/p.

DP Intro 11 / 39



Abiogenesis of Differential Privacy

Privacy of Randomized Response

Spinner M, p > 1
2

Factual World Wf : submit correct response into survey method.
Input: Yes
Output: Yes with prob p, No with prob 1-p.

Privacy-preserving counterfactual world Wp: always deny.
Input: No
Output: Yes with prob 1-p, No with prob p.

What is the difference? Compared to privacy-preserving world:
Probabilities of Yes increase by a factor at most p/(1− p).
Probabilities of No decrease by a factor at most (1− p)/p.

DP Intro 11 / 39



Abiogenesis of Differential Privacy
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Spinner M, p > 1
2

Factual World Wf : submit correct response into survey method.
Input: Yes
Output: Yes with prob p, No with prob 1-p.

Privacy-preserving counterfactual world Wp: always deny.
Input: No
Output: Yes with prob 1-p, No with prob p.

What is the difference? Compared to privacy-preserving world:
Probabilities of Yes increase by a factor at most p/(1− p).
Probabilities of No decrease by a factor at most (1− p)/p.
p close to 1

2 ⇒ more privacy.
p far from 1

2 ⇒ less privacy.
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Abiogenesis of Differential Privacy

Privacy of Randomized Response

Spinner M, p > 1
2

Factual World Wf : submit correct response into survey method.
Input: Yes
Output: Yes with prob p, No with prob 1-p.

Privacy-preserving counterfactual world Wp: always deny.
Input: No
Output: Yes with prob 1-p, No with prob p.

What is the difference? Compared to privacy-preserving world:
Probabilities of Yes increase by a factor at most p/(1− p).
Probabilities of No decrease by a factor at most (1− p)/p.

For any event E (output = True or output = False):

1− p

p
P(M(Wp) = E ) ≤ P(M(Wf ) = E ) ≤ p

1− p
P(M(Wp) = E )

Let’s set ε = natural log p
1−p (i.e., ε is the log odds).
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Abiogenesis of Differential Privacy

Interpretation I (Bayesian)
ε = log p

1−p
Data snooper’s prior belief that Bob participated in insider trading: q.
Data snooper observes output “Yes”

Survey 
Instrument

Response

Yes
?

Spinner guarantees posterior odds are similar to prior odds:

e−ε =
1− p

p

≤ P(response = Yes | output = Yes)

P(response = No | output = Yes)

/P(response = Yes)

P(response = No)

≤ p

1− p
= eε
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Abiogenesis of Differential Privacy

Interpretation I (Bayesian)
ε = log p

1−p
Data snooper’s prior belief that Bob participated in insider trading: q.
Data snooper observes output “No”

Survey 
Instrument

Response

No

?

Spinner guarantees posterior odds are similar to prior odds:

e−ε =
1− p

p

≤ P(response = Yes | output = No)

P(response = No | output = No)

/P(response = Yes)

P(response = No)

≤ p

1− p
= eε

No matter what happens, odds change by factor at most eε.

e1 ≈ 2.72 e0.5 ≈ 1.65 e0.1 ≈ 1.11
DP Intro 12 / 39



Abiogenesis of Differential Privacy

Interpretation II (Frequentist)

p = 0.55
p

1−p ≈ 1.22
ε = log p

1−p ≈ 0.2

Null hypothesis: Bob did not engage in insider trading.
Alternative hypothesis: Bob is guilty
P(observed “Yes” | Null hypothesis) = 0.45
P(observed “No” | Null hypothesis) = 0.55
No matter what snooper observed, not enough evidence to reject null
hypothesis at reasonable levels.

Composition: what happens when multiple information sources are
combined.

Suppose snooper has evidence about Bob.
Later snooper observes result of randomized response.
Randomized response causes power

type I error to change by at most eε
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Abiogenesis of Differential Privacy

Interpretation III (For the Math Phobic)

Suppose Bob is in a survey with 100 other people.
Suppose Bob is the only one to trade stocks based on non-public
information.
Survey uses randomized response with p = 0.55.

Almost even chance that Bob’s true response is changed to “No”
Even if it remains unaltered, ≈ 45 other people’s response changed to
“Yes”
Bob is in a crowd of about 45 other people
Even if interviewer knew 1 person is guilty, can’t pick out which one

Here we used uncertainty about the data to show randomized response
preserves uncertainty.
Randomized response guarantees can be strengthened by considering
data uncertainty.
Randomized response still protects you even without resorting to data
uncertainty.
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Abiogenesis of Differential Privacy Applications

Applications to Politics

Newly introduced S9999: CONTROVERSY Act
How many senators truly think it is a good idea?
Public statements may differ from private beliefs.

Worries about re-election.
Prior deals.

Other exogenous concerns.
With randomized response

Disincentives for factual response: slight information leakage.
Incentives: curiosity about overall senate perception.

πs : (unknown) proportion of senators privately supporting the bill
Suppose we receive Y randomized response reports equal to “yes”

How do we estimate πs? [War65]
π̂s =

p−1
2p−1 + Y

100(2p−1) , unbiased

std(π̂s) =
1
10

√
1

16(p−1/2)2 − (πs − 1/2)2)

For p = 0.6, std(π̂s) ≈ 0.25.

(disappointing, can we do better?)

DP Intro 15 / 39



Abiogenesis of Differential Privacy Applications

Applications to Politics

Newly introduced S9999: CONTROVERSY Act
How many senators truly think it is a good idea?
Public statements may differ from private beliefs.

Worries about re-election.
Prior deals.
Other exogenous concerns.

With randomized response
Disincentives for factual response: slight information leakage.
Incentives: curiosity about overall senate perception.

πs : (unknown) proportion of senators privately supporting the bill
Suppose we receive Y randomized response reports equal to “yes”

How do we estimate πs? [War65]
π̂s =

p−1
2p−1 + Y

100(2p−1) , unbiased

std(π̂s) =
1
10

√
1

16(p−1/2)2 − (πs − 1/2)2)

For p = 0.6, std(π̂s) ≈ 0.25.

(disappointing, can we do better?)

DP Intro 15 / 39



Abiogenesis of Differential Privacy Applications

Applications to Politics

Newly introduced S9999: CONTROVERSY Act
How many senators truly think it is a good idea?
Public statements may differ from private beliefs.

Worries about re-election.
Prior deals.
Other exogenous concerns.

With randomized response
Disincentives for factual response: slight information leakage.
Incentives: curiosity about overall senate perception.

πs : (unknown) proportion of senators privately supporting the bill
Suppose we receive Y randomized response reports equal to “yes”

How do we estimate πs? [War65]
π̂s =

p−1
2p−1 + Y

100(2p−1) , unbiased

std(π̂s) =
1
10

√
1

16(p−1/2)2 − (πs − 1/2)2)

For p = 0.6, std(π̂s) ≈ 0.25.

(disappointing, can we do better?)

DP Intro 15 / 39



Abiogenesis of Differential Privacy Applications

Applications to Politics

Newly introduced S9999: CONTROVERSY Act
How many senators truly think it is a good idea?
Public statements may differ from private beliefs.

Worries about re-election.
Prior deals.
Other exogenous concerns.

With randomized response
Disincentives for factual response: slight information leakage.
Incentives: curiosity about overall senate perception.

πs : (unknown) proportion of senators privately supporting the bill
Suppose we receive Y randomized response reports equal to “yes”

How do we estimate πs? [War65]
π̂s =

p−1
2p−1 + Y

100(2p−1) , unbiased

std(π̂s) =
1
10

√
1

16(p−1/2)2 − (πs − 1/2)2)

For p = 0.6, std(π̂s) ≈ 0.25.

(disappointing, can we do better?)

DP Intro 15 / 39



Abiogenesis of Differential Privacy Applications

Applications to Politics

Newly introduced S9999: CONTROVERSY Act
How many senators truly think it is a good idea?
Public statements may differ from private beliefs.

Worries about re-election.
Prior deals.
Other exogenous concerns.

With randomized response
Disincentives for factual response: slight information leakage.
Incentives: curiosity about overall senate perception.

πs : (unknown) proportion of senators privately supporting the bill
Suppose we receive Y randomized response reports equal to “yes”
Do not treat Y /100 as the estimate of πs

How do we estimate πs? [War65]
π̂s =

p−1
2p−1 + Y

100(2p−1) , unbiased

std(π̂s) =
1
10

√
1

16(p−1/2)2 − (πs − 1/2)2)

For p = 0.6, std(π̂s) ≈ 0.25. (disappointing, can we do better?)

DP Intro 15 / 39



Abiogenesis of Differential Privacy Applications

Applications to Politics

Newly introduced S9999: CONTROVERSY Act
How many senators truly think it is a good idea?
Public statements may differ from private beliefs.

Worries about re-election.
Prior deals.
Other exogenous concerns.

With randomized response
Disincentives for factual response: slight information leakage.
Incentives: curiosity about overall senate perception.

πs : (unknown) proportion of senators privately supporting the bill
Suppose we receive Y randomized response reports equal to “yes”
How do we estimate πs? [War65]

π̂s =
p−1
2p−1 + Y

100(2p−1) , unbiased

std(π̂s) =
1
10

√
1

16(p−1/2)2 − (πs − 1/2)2)

For p = 0.6, std(π̂s) ≈ 0.25. (disappointing, can we do better?)

DP Intro 15 / 39



Abiogenesis of Differential Privacy Applications

The House?

Senate population size: 100
House of Representatives: 435
πr : (unknown) prop. of representatives privately supporting the bill

Suppose we receive Y randomized response reports equal to “yes”
π̂r =

p−1
2p−1 + Y

435(2p−1) , unbiased

std(π̂r ) =
1√
435

√
1

16(p−1/2)2 − (πr − 1/2)2)

For p = 0.6, std(π̂r ) ≈ 0.117.

Standard Deviation decreases like 1√
n

Can we do better?
Same privacy guarantees
More accuracy

Yes, if we have a trusted data collector.
Previously:

We were in the local model.
Respondents did not trust the data collector.
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Abiogenesis of Differential Privacy Applications

A Trusted Data Collector

Suppose we have a trusted data collector.
Senators submit truthful responses to the collector.
Collector counts up “yes” responses, publishes “information” about this.
Note: the data collector cannot release the exact count.

Desired guarantee:
Even if 99 senators collude ...
remaining senator’s data as well protected as with randomized response.
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Suppose we have a trusted data collector.
Senators submit truthful responses to the collector.
Collector counts up “yes” responses, publishes “information” about this.
Note: the data collector cannot release the exact count.

Desired guarantee:
Even if 99 senators collude ...
remaining senator’s data as well protected as with randomized response.

Recall randomized response:

Survey 
Instrument

Response
Yes

Yes

No

prob: p

prob: 1-p Survey 
Instrument

Response

Yes

No

No

prob: p

prob: 1-p

Probability of any output event increases or decreases by factor
between (1− p)/p and p/(1− p) if a person changes their response.
ε = log p

1−p .
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Abiogenesis of Differential Privacy Applications

A Trusted Data Collector

Suppose we have a trusted data collector.
Senators submit truthful responses to the collector.
Collector counts up “yes” responses, publishes “information” about this.
Note: the data collector cannot release the exact count.

Desired guarantee:
Even if 99 senators collude ...
remaining senator’s data as well protected as with randomized response.

So data collector adds Laplace(1/ε) noise to # of yes responses
[DMNS06].

f (x ; 1/ε) = ε
2e
−ε|x|

-4 -2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

Variance= 2/ε2

Does it maintain Privacy?
Is it more accurate?
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Abiogenesis of Differential Privacy Applications

The Mood in the Senate

Case 1:

x-4 x-3 x-2 x-1 x x+1 x+2 x+3 x+4

0.0

0.1

0.2

0.3

0.4

0.5

99 senators: x yes and 99-x no.
Senator 100: “yes”
Trusted data collector publishes
x+1+Laplace(1/ε)

Case 2:

x-4 x-3 x-2 x-1 x x+1 x+2 x+3 x+4

0.0

0.1

0.2

0.3

0.4

0.5

99 senators: x yes and 99-x no.
Senator 100: “no”
Trusted data collector publishes
x+Laplace(1/ε)
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Abiogenesis of Differential Privacy Applications

Comparing Densities
The 2 densities (Senator 100 responding yes vs. no):

x-4 x-3 x-2 x-1 x x+1 x+2 x+3 x+4

0.0

0.1

0.2

0.3

0.4

0.5

x-4 x-3 x-2 x-1 x x+1 x+2 x+3 x+4

6

5

4

3

2

1

lo
g(

de
ns

ity
)

(Natural) Log Scale

The ratio of densities is bounded between e−ε and eε.
Senator 100 changing yes response to no response increases/decreases
density by factor of at most eε.

Thus, for any set E :

P(output ∈ E | Senator 100 = yes) ≤ eεP(output ∈ E | Senator 100 = no)

P(output ∈ E | Senator 100 = no) ≤ eεP(output ∈ E | Senator 100 = yes)

Same guarantees as for randomized response with ε = log p
1−p .

Low power in distinguishing between Senator 100 = yes vs. Senator
100 = no.
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Abiogenesis of Differential Privacy Applications

Accuracy

p = 0.6 and ε = log p/(1− p) ≈ 0.405
Senate:

πs : proportions of senators privately supporting bill
standard deviation of estimate:

Under randomized response: ≈ 0.25
Under the Laplace mechanism: ≈ 0.035

House:
πr : proportion of representatives privately supporting bill
standard deviation of estimate:

Under randomized response: ≈ 0.117
Under the Laplace mechanism: ≈ 0.008

Asymptotically, standard deviation due to privacy decreases like
1/
√
n under randomized response.

1/n under the Laplace mechanism.
Transparency! In both cases:

Full details of how mechanism works can be made public.
Only the randomness must be kept secret.
Allows inferences to be adjusted.
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The Formal Foundations

Differential Privacy

Two databases D1 and D2 are neighbors if:
D1 is the result of changing one record in D2.
Number of respondents n remains the same (we will revisit this).

Definition (Differential Privacy [DMNS06])

Given a privacy loss budget ε > 0, an randomized algorithm M satisfies
ε-differential privacy if for all E ⊂ range(M) and all pairs of databases
D1,D2 that are neighbors of each other,

P(M(D1) ∈ E ) ≤ eεP(M(D2) ∈ E )

All pairs of neighbors, not just neighbors of current database.
M must be a randomized algorithm, e.g.,

Randomized Response X
Laplace Mechanism X
Publish true count 7

Probability is over randomness in M only (not uncertainty in data).
Privacy is a function of the mechanism, not the data.
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The Formal Foundations

Bounded Neighbors

Senator X

D1 D2

{}

D1 and D2 are neighbors:
so P(M(D1) ∈ E ) ≤ eεP(M(D2) ∈ E ) for all E

D2 and D1 are neighbors:
so P(M(D2) ∈ E ) ≤ eεP(M(D1) ∈ E ) for all E

Regardless of what other senators do,
Noise masks senator X’s response (blue vs green).

Neighbors that differ on the response of
Senator 1 protect the privacy of Senator 1

There are 2100 such pairs of neighbors.
Senator 2 protect the privacy of Senator 2

There are 2100 such pairs pairs of neighbors.
And so on. Each senator is protected.

The differential privacy equations must hold for all of these pairs.
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The Formal Foundations

Unbounded Neighbors

But what if I want to hide not just responses, but also hide
participation?

e.g., in statistical uses of IRS data, even fact of filing is protected.
e.g., participation in STD study.

Redefine neighbors!
D1 and D2 are neighbors if either:

D1 is obtained from D2 by removing a record.
D2 is obtained from D1 by removing a record.

Person

D1 D2

{}

Whether you opt-in or not:
Inference about your participation is protected.
Inference about your record is protected.
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The Formal Foundations

Action-level Neighbors

Database 1:

Customer ID Purchase History
1 {shrimp, lobster, crab, mussel, ...}
2 {beer, wine, bourbon, ...}
3 {cookie, cookie, cookie, ...}
... {. . . }

Database 2:

Customer ID Purchase History
1 {shrimp, lobster, mussel, ...}
2 {beer, wine, bourbon, ...}
3 {cookie, cookie, cookie, ...}
... {. . . }

D1 and D2 are neighbors if they differ on one action by one person.
Users with many actions have higher privacy loss.

Protected from inference: customer 1 bought crab on 7/17/2020
(single action).
Not protected from inference: customer 1 likes seafood (result of many
actions).
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The Formal Foundations

Neighbors Summary

Bounded neighbors:
D1 and D2 differ on value of one record.
Number of respondents n can be released without noise.
Only use when n is public.

Unbounded neighbors:
D1 and D2 differ on the presence/absence of one individual’s data.
n cannot be released without noise.
Most recommended choice of neighbors.

Action-level neighbors
D1 and D2 differ on one action of one person.

Protects inference about an item (e.g., specific purchase).
Privacy degrades for users with multiple purchases (allows inference
about customer interests).
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Bounded neighbors:
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Number of respondents n can be released without noise.
Only use when n is public.
Why? Due to fragmentation.

One dataset about 32 year-old Hispanic women with cancer.
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The Formal Foundations

DP Summary

Definition (Differential Privacy [DMNS06])

Let ε > 0. An randomized algorithm M satisfies ε-differential privacy if for
all E ⊂ range(M) and all pairs of databases D1,D2 that are neighbors of
each other,

P(M(D1) ∈ E ) ≤ eεP(M(D2) ∈ E )

Protects individual records, reveals estimates of population properties.
Resists linking attacks and other background knowledge attacks.
Transparency – source code can be released.
Privacy only depends on randomness in the mechanism.
Noise is introduced to mask the effect of any particular individual.
Central and Local models.
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Additional Topics

Outline

1 Differential Privacy in the Wild

2 Abiogenesis of Differential Privacy

3 The Formal Foundations

4 Additional Topics
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Additional Topics Transparency

https://www.nber.org/papers/w15703
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Additional Topics Transparency

Alexander, Davern, Stevenson, 2010
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Additional Topics Transparency

Transparency

Legacy methods hide their source code and parameters.
Errors are hard to detect.
Inferences cannot be adjusted for disclosure avoidance control.

Differential privacy allows source code to be published.
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Additional Topics Implementation

Practical Considerations

Randomness
Differential privacy relies on non-predictable sources of randomness.
Random number generators used for statistics (defaults in R, python,
etc.) are not secure enough.

Floating point math
Much of differential privacy theory assumes real-valued numbers x ∈ R.
Mismatch: computers use floating point representations [Mir12].

These issues are exploitable.
Ok for prototyping, but use secure system for deployment.
OpenDP: https://github.com/opendifferentialprivacy/
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Additional Topics Relaxations

Approximate Differential Privacy

Differential Privacy relies heavily on Laplace noise.
Is there a way to use Gaussian Noise with Differential Privacy?

Yes, but privacy guarantees are random [Mir17, DKM+06].

Definition (Approximate Differential Privacy [DKM+06])

Given a ε > 0 and δ ∈ [0, 1], an randomized algorithm M satisfies
(ε, δ)-approximate differential privacy if for all E ⊂ range(M) and all pairs of
databases D1,D2 that are neighbors of each other,

P(M(D1) ∈ E ) ≤ eεP(M(D2) ∈ E ) + δ

δ is interpreted as probability ε-differential privacy guarantees may fail.
Best examined through the ε, δ curve.
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Additional Topics Relaxations

ε, δ curve for Gaussian Noise

Mechanism: number of yes responses in Senate + Gaussian noise
(µ = 0, σ2 = 1).
This mechanism satisfies ε, δ-approximate differential privacy for every
ε, δ pair on this curve:
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epsilon,delta curve for standard Gaussian

Better composition properties: slower depletion of privacy budget.
Privacy analysis must consider entire curve.
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Additional Topics Relaxations

Use with Care

Random sampling also satisfies ε-differential privacy.
Mechanism: return 1 randomly selected record from database of size n.
Satisfies approximate differential privacy with ε = 0 and δ = 10−6

Yet someone’s privacy is always violated.
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