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This paper: Equilibrium and Optimal Policy

SIRD Model
Disease State Transmission Updated
+ — Disease
S!I!R,D Rate
State

Transmission Rate Model

Natural FOI‘_Ct_BS, Transmission
Human Activity, > Rate
Prophylactic Use

Economic Model

Information and Human Activity,
Personal Risk/Reward, Prophylactic Use

Policies




My discussion

e Can we measure what is happening with transmission?
e Atkeson, Kopecky, Zha, with thanks to Jim Stock

e Future research should compare predicted vs. actual
transmission

* Policy Counterfactuals

 Would a one-week delay in mitigation have raised or
lowered long-run cumulative deaths?

* Answer depends on the state or country you look at



Measuring Transmission

* Panel data on deaths by state, Census region, and country

* |nvert the SIRD model to recover panel data on
e disease state S(¢), I(¢), R(1), D(1),
 effective reproduction number £ (1),

e and transmission rates f(7)
 Empirical Implementation

 Bayesian estimation from noisy reported deaths data



SIRD Model
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Transmission in the ERT model

Equation 1 from the paper

p(t) = m CX(OC' (1) + mN(ON'(1) + m5(1)

Consumption Expenditures C S (1), C 4 (7)
Labor Hours NS(Z‘), NI(I)
Residual Transmission 71'3 (t )

Can we compare this model to data on f(7) to date?



Measuring (7)
Inputs: Deaths Data and Fatality and Recovery Rates

D(t) Cumulative Deaths
D

d (t) Daily Deaths
dt

d’D(1)

Change in Daily Deaths

dt?

Have to be estimated from noisy reported numbers

Pick parameters for fatality and recovery rates v, y



Invert SIRD model
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Empirical Implementation

 Reported Deaths are Noisy
e AKZ empirical approach

e Use mixture of Weibull distributions to model scaled
daily deaths

 Bayesian estimation

e 10 large US states, 9 Census Regions, 16 countries



Results for New York through 6/25
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Figure 1: Data and fitted paths of deaths in New York. The death pattern is fitted with two
Weibull functions.



Results for California through 6/25

California,
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Figure 55: Data and fitted paths of deaths in California. The death pattern is fitted with one
Weibull function.



Specification Check: Weibull Plot for California
Model and Data are straight lines

California: Weibull plot
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Estimated Effective Reproduction Numbers for
10 big states, 9 Census regions, 22 countries
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Estimated Normalized Transmission Rates for
10 big states, 9 Census regions, 22 countries

Normalized transmission rate

Transmission rates
fell everywhere

Are the declines in
economic and
human activity

so tightly correlated
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Policy Experiments in ERT

e ERT: We conclude that it is important for policymakers to
resist the temptation to delay optimal containment
measures for the sake of initially higher short-run levels of
economic activity.

e But...

 ERT: As a practical matter, policymakers could face
Intense pressure to prematurely end containment
measures because of their impact on economic activity.

e Does this political pressure change constrained optimal
policy?



Counterfactual Experiments in AKZ

* Baseline Scenarios:
» Estimate the path of (¢)/y from start of the epidemic until present
* Two scenarios for transmission going forward 200 days
e Optimistic (A): f(t)/y = 0.8
e Pessimistic (B): #(f)/y = 1.6 (premature opening up)

* Counterfactual: delay path of transmission rate by one-week, with
high initial transmission for first seven days

e (1) = p(0)fort <7

e f(f) = f(t — 7) otherwise



Baseline and Counterfactual Long Run Deaths

Table 2: Cumulative deaths at the end of the sample
and at the end of the forecast period in the U.S.

Forecast scenario A Forecast scenario B

Baseline Counterfactual Baseline Counterfactual

Death | S/N | Death | S/N | Death | S/N | Death | S/N

New York 30931 | 0.68 | 70595 0.28 | 40810 | 0.58 | 70595 0.28
New Jersey 14271 | 0.68 | 22486 0.49 | 20385 | 0.54 | 22506 | 0.49
Massachusetts 8007 | 0.77 | 33025 0.04 17226 | 0.50 33025 0.04
Illinois 7843 | 0.88 | 37805 0.40 | 36863 | 0.42 | 37806 | 0.40
Pennsylvania 6710 | 0.90 | 24160 | 0.62 | 37631 | 0.41 | 24395 0.62
Michigan 6127 | 0.88 | 20920 | 0.58 | 28750 | 0.43 | 20937 | 0.58
California 6550 | 0.97 | 63286 0.68 | 124236 | 0.37 | 73862 0.62
Connecticut 4310 | 0.76 | 16960 | 0.05 8589 | 0.52 16960 | 0.05
Florida 3852 | 0.96 | 16760 | 0.84 | 67362 | 0.37 | 59898 | 0.44
Louisiana 3166 | 0.86 | 15239 0.35 13238 | 0.43 | 15239 | 0.35
Total 129326 | 0.89 | 602514 | 0.57 | 983579 | 0.42 | 847764 | 0.43

Scenario A: future f(1)/y = 0.8.

One-week delay in mitigation would lead to many more deaths in the long run



Baseline and Counterfactual Long Run Deaths

Table 2: Cumulative deaths at the end of the sample
and at the end of the forecast period in the U.S.

Forecast scenario A Forecast scenario B

Baseline Counterfactual Baseline Counterfactual

Death | S/N | Death | S/N | Death | S/N | Death | S/N

New York 30931 | 0.68 | 70595 0.28 | 40810 | 0.58 | 70595 0.28
New Jersey 14271 | 0.68 | 22486 0.49 | 20385 | 0.54 | 22506 | 0.49
Massachusetts 8007 | 0.77 | 33025 0.04 17226 | 0.50 33025 0.04
Illinois 7843 | 0.88 | 37805 0.40 | 36863 | 0.42 | 37806 | 0.40
Pennsylvania 6710 | 0.90 | 24160 | 0.62 | 37631 | 0.41 | 24395 0.62
Michigan 6127 | 0.88 | 20920 | 0.58 | 28750 | 0.43 | 20937 | 0.58
California 6550 | 0.97 | 63286 0.68 | 124236 | 0.37 | 73862 0.62
Connecticut 4310 | 0.76 | 16960 | 0.05 8589 | 0.52 16960 | 0.05
Florida 3852 | 0.96 | 16760 | 0.84 | 67362 | 0.37 | 59898 | 0.44
Louisiana 3166 | 0.86 | 15239 0.35 13238 | 0.43 | 15239 | 0.35
Total 129326 | 0.89 | 602514 | 0.57 | 983579 | 0.42 | 847764 | 0.43

Scenario B: future f(1)/y = 1.6.

One-week delay in mitigation would lead to fewer deaths in the long run!
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Wrapping Up

 Going forward, macro research on pandemics should
compare model transmission to data transmission

* This is true for all macro papers on this topic
 There has been a big drop in transmission everywhere
e Why?

* How does it relate to changes in human activity in
different locations?

e Evaluating policy to date is very complicated if we don’t
know what transmission rates are possible going forward



The effective reproduction number Z£(¢)
Is the slope of log daily deaths

New deaths attributed to Covid-19 in European Union, United States, Brazil, United Kingdom, Sweden and Iran

Seven-day rolling average of new deaths (per million), by number of days since 0.1 average daily deaths (per million) first recorded
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Source: Financial Times analysis of data from the European Centre for Disease Prevention and Control, the Covid Tracking Project, the UK Dept of Health & Social Care and the Spanish Ministry of Health.
Data updated July 10 2020 11.26am BST. Interactive version: ft.com/covid19



The effective reproduction number Z£(¢)
Is the slope of log daily deaths

New deaths attributed to Covid-19 in New York, California, Florida, Texas, Massachusetts and Arizona

Seven-day rolling average of new deaths (per million), by number of days since 0.1 average daily deaths (per million) first recorded
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Source: Financial Times analysis of data from the Covid Tracking Project.
Data updated July 10 2020 11.26am BST. Interactive version: ft.com/covid19



