Discussion of Immigration, Innovation and Growth

Ethan Lewis

Dartmouth College/NBER

July 16, 2019

Motivation

Motivation: Immigration associated with faster wage growth. Why?

- Immigrants complement natives in production (e.g., Borjas, 1994)
 - Problem: very small effect (Ottaviano and Peri, 2012)
- Endogeneity: Immigrants choose higher wage locations
 - Even traditional "Bartik" IV estimates may suffer from this bias
 - New series of papers criticizing this IV (e.g. Jaeger et al., 2018; Goldsmith-Pinkham et al., 2019)
- Direct effect of immigration on wages (through scale or other mechanism)

Important Contributions!

- Estimate "scale effects" of immigration
 - Centrally important, but mostly ignored by research on immigration!
 - Potentially very large welfare impacts of scale (di Giovanni, Levchenko, and Ortega, 2015)
 - Also: mechanisms for such scale effects innovation, dynamism
- Address endogeneity: Novel identification strategy/approach
 - Addresses recent onslaught of criticism of the standard "Bartik" approach
- So it is a strong general interest contribution
 - My (easily addressed) criticisms are technical in nature

Comments on Interpretation

- Motivated by scale effects, but skills/composition may also matter
 - Education
 - Direct compositional impacts especially w/wages
 - Diversity: a direct effect of adding "diversity" on income^{*}

<u>Country Level</u>: Alesina and Rappaport (2016); Ortega and Peri (2015) <u>US Metro Area</u>: Ottaviano and Peri (2006) <u>Plant-Level</u>: Trax, Brunow, and Suedekum (2015)

• Possible to empirically separate scale and diversity effects? Maybe

*Summarized in Peri and Lewis (2015)

Comments on specification

- Instrument novel, and an improvement, but hard to understand
 - Unlike conventional "Bartik" instrument, scale not clear (to me, yet). 1st stg>1?
- Treatment/IV not scaled at all: raw "counts" of immigrants
 - So may capture pre-existing differences in region size
 - Total immigration is skewed, so few large clusters may make relationship overprecise
 - 1st stg F-stats orders of magnitude larger than is typical

• More off-line in "bonus slides"

First stage F: 1,202 \rightarrow 94

Table 11: Growth Models and Population Change								
	Difference 100,000 P	in Patenting per eople Post-1980	Patenting per 100,000 People Post-1975		IHS of Patents Post-1975			
Immigration,	(1) 0.101***	(2) 0.509***	(3) 0.501**	(4) 2.505***	(5) 0.028***	(6)	(7)	(8)
sq(Immigration ^t)	(0.031)	(0.090) -0.001***	(0.190)	(0.268) -0.004***	(0.011)	J		
Δ Population ^t	-	(0.000)		(0.000)		0.033***		
IHS(Immigration ^{t})						(0.012)	1.723*** (0.111)]
IHS(Δ Population ^{<i>t</i>} _{<i>d</i>})				_				2.471*** (0.510)
Ν	18,846	18,846	21,987	21,987	21,987	21,986	21.987	21,986
First Stage F-Stat	911	95	1,202	102	1,202	102	94	16
First Stage F-Stat		11,231		11,879		-		

Comments on specification

- Instrument novel, and an improvement, but hard to understand
 - Unlike conventional "Bartik" instrument, not clear (to me, yet). 1st stg>1?
- Treatment/IV not scaled at all: raw "counts" of immigrants
 - So may capture pre-existing differences in region size
 - Total immigration is skewed, so few large clusters may make relationship overprecise
 - 1st stg F-stats orders of magnitude larger than is typical (some in the millions!)
 - First stage drops dramatically when implicitly scaling (IHS specification, table 11)
 - Anyway, a more meaningful "treatment" might be immigrants *per capita*
- Both might be improved upon with slight changes I think!
 - Scale by area population, for example; maybe control for region x year effects.
 - More off-line in "bonus slides"

Comments on Specification

- Instrument is a generated regressor, can produce lead to biased standard errors, invalid inference (Pagan, 1984, theorem 6?)
 - Bootstrap
- Intermediate years (ending in "5") are only partly observed
 - Robustness check to drop them
 - Also would allow you to look specifically at native wages, avoiding direct compositional sources of wage change.
 - Also useful in light of Jaeger et al. (2018) criticism that Bartik instrument confounds current and lagged effects of immigration

(may not apply to your instrument??)

Conclusion

- Despite technical criticisms, I see this as very important contribution
 - The question the paper investigates scale effects of immigration, in an novel and effective way
 - Central to evaluating welfare impacts of immigration
- Thanks for the chance to discuss!

Bonus Slides

• Not for presentation

Detailed Comments on Approach:

 <u>Step 1</u>: Predict A^t_{o,d} = "stock" of ancestry of origin "o" in US destination "d" and year "t" using vector of this function of immigration (I) from historical periods (τ):

$$I_{o,-r(d)}^{\tau} \times \frac{I_{Euro,r(d)}^{\tau}}{I_{Euro,-r(d)}^{\tau}} \times \frac{I_{Euro,d}^{\tau}}{I_{Euro}^{\tau}}$$
Proportional to region r(d) in scale

- Seems proportional in scale to r(d) x d, not d
 - Why not just $I_{o,-r(d)}^{\tau} \times \frac{I_{Euro,d}^{\tau}}{I_{Euro,-r(d)}^{\tau}}$? The $\hat{b}_{r(d)}^{\tau}$'s probably convert it to this anyway

Detailed comments on approach

• <u>Step 2</u>: Use $\hat{A}_{o,d}^{\tau}$'s from step 1 to predict $I_{o,d}^{t}$, using specifically

$$\sum_{\tau} \gamma^{\tau} \delta_{\tau} \hat{A}_{o,d}^{\tau-1} I_{o,-r(d)}^{\tau} \times \frac{I_{Euro,r(d)}^{\tau}}{I_{Euro,-r(d)}^{\tau}}$$

- $\gamma^{\tau} \delta_{\tau}$ coefficient pair to be estimated, but one is redundant, no? (typo?)
- This step is particularly hard to interpret the relationship's magnitude
 - Scale d outcome regressed on scale d x r(d) regressors

Detailed Comments on Approach:

- Also: Instrument uses historical region x year level variables, interacted with origin x region x year and destination x year immigration variables to predict destination x year immigration flows
 - Might it be more credible with controls for region x year, making it identified <u>only</u> off of the interaction of those variables, rather than their levels.