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Abstract 
 

A major challenge facing statistical agencies is the problem of adjusting price and 

quantity indexes for changes in the availability of commodities. This problem arises in 

the scanner data context as products in a commodity stratum appear and disappear in 

retail outlets. Hicks suggested a reservation price methodology for dealing with this 

problem in the context of the economic approach to index number theory. Feenstra and 

Hausman suggested specific methods for implementing the Hicksian approach. The 

present paper evaluates these approaches and suggests some alternative approaches to the 

estimation of reservation prices. The various approaches are implemented using some 

scanner data on frozen juice products that are available online.   
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1. Introduction 
 

One of the more pressing problems facing statistical agencies and economic analysts is 

the new goods (and services) problem; i.e., how should the introduction of new products 

and the disappearance of (possibly) obsolete products be treated in the context of forming 

a consumer price index? Hicks (1940) suggested a general approach to this measurement 

problem in the context of the economic approach to index number theory. His approach 

was to apply normal index number theory but estimate hypothetical prices that would 

induce utility maximizing purchasers of a related group of products to demand 0 units of 

unavailable products.
2
 With these virtual (or reservation or imputed) prices

3
 in hand, one 

could just apply normal index number theory using the augmented price data and the 

observed quantity data. The practical problem facing statistical agencies is: how exactly 

are these virtual prices to be estimated? 

 

Economists have been worrying about the new goods problem at least since the early 

contributions of Lehr (1885; 45-46) and Marshall (1887; 373-374), who independently 

introduced the concept of chained index numbers in an attempt to deal with this 

problem.
4
 These authors suggested that the best way to deal with the problem was to use 

the price and quantity data for adjacent periods and use a suitable index number formula 

on the set of products that were present in both periods. Keynes (1930; 105-106) 

endorsed the idea of restricting index number comparisons to the set of products that 

were present in both periods being compared but he preferred to use this maximum 

overlap method 
5
 in the context of fixed base indexes. He rejected the idea of using 

chained indexes because he felt that chained indexes would suffer from a chain drift 

problem.
6
 Indeed, we will find that the problem of chain drift is a serious one when 

calculating price indexes using scanner data on the sales of a retail outlet. 

 

                                                 
2
 “The same kind of device can be used in another difficult case, that in which new sorts of goods are 

introduced in the interval between the two situations we are comparing. If certain goods are available in the 

II situation which were not available in the I situation, the p1’s corresponding to these goods become 

indeterminate. The p2’s and q2’s are given by the data and the q1”s are zero. Nevertheless, although the p1’s 

cannot be determined from the data, since the goods are not sold in the I situation, it is apparent from the 

preceding argument what p1’s ought to be introduced in order to make the index-number tests hold. They 

are those prices which, in the I situation, would just make the demands for these commodities (from the 

whole community) equal to zero.” J.R. Hicks (1940; 114). Hofsten (1952; 95-97) extended Hicks’ 

methodology to cover the case of disappearing goods as well.  
3
 Rothbarth introduced the term “virtual prices” to describe these hypothetical prices in the rationing 

context: “ I shall call the price system which makes the quantities actually consumed under rationing an 

optimum the ‘virtual price system.’ ”. E. Rothbarth (1941; 100).  
4
 See Diewert (1993a; 52-63) for additional material on the early history of the new goods problem. 

5
 Keynes (1930; 94) called this the highest common factor method. 

6
 Keynes noted that chained index numbers failed Walsh’s (1901; 389) multiperiod identity test which is 

the following test: P(p
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measure of the amount of chain drift. 



 3 

Following up on the contribution of Hicks, many authors developed bounds or rough 

approximations to the bias that might result from omitting the contribution of new goods 

in the consumer price index context. Thus Rothbarth (1941) attempted to find some 

bounds for the bias while Hofsten (1952; 47-50) discussed a variety of approximate 

methods to adjust for quality change in products, which is essentially the same problem 

as adjusting an index for the contribution of a new product. Diewert (1980; 498-501) 

developed some bounds for the bias in a maximum overlap Fisher (1922) index relative 

to the bias that would result from using the Fisher formula where 0 prices and quantities 

were used in the Fisher formula for the base period when a new product was not 

available.
7
 Additional bias formulae were developed by Diewert (1987; 779) (1998; 51-

54) and Hausman (2003; 26-28). These approximations relied on information (or guesses) 

about expenditure shares, elasticities or ratios of virtual prices to actual prices. We will 

examine the Hausman approximate formula in more detail in section 13 below.  

 

We turn now to methods that rely on some form of econometric estimation in order to 

form estimates of the welfare cost (or changes in the true cost of living index) of changes 

in product availability. The two main contributors in this area are Feenstra (1994) and 

Hausman (1996).
8
 Econometric methods for adjusting price and quantity indexes will be 

the main focus of this study. We will apply various econometric methods in order to 

adjust a consumer price index for changes in the availability of products. We will also 

obtain econometric estimates for the virtual prices for unavailable products for each 

period in our sample period. We will test out our suggested methods on a scanner data set 

that is available on line.
9
 The data set is listed in an Appendix so that researchers can use 

this data set to test out possible improvements to our suggested methodology. 

 

Feenstra’s (1994) methodology rests on the properties of the CES unit cost function. His 

methodology is explained in section 2. In section 3, we look at possible methods for 

estimating CES utility functions rather than estimating CES unit cost functions. It will 

turn out that estimating CES utility functions leads to systems of derived demand 

functions that fit the data much better than the corresponding methods that fit CES unit 

cost functions. Section 4 introduces our scanner data set which we use to test out 

Feenstra’s methodology. Section 5 develops a new method for estimating the elasticity of 

substitution parameter in a CES direct utility function. This method is applied to our 

frozen juice scanner data set. This new method is based on the use of Feenstra’s (1994) 

double differencing method for estimating CES preferences. Section 6 uses the elasticity 

of substitution parameter  that was estimated in section 5 in an application to our data 

set of Feenstra’s methodology for measuring the changes in the true cost of living index 

that is explained in section 2.  

 

However, there are two problems with Feenstra’s CES methodology for measuring the 

net benefits of changes in the availability of products: 

                                                 
7
 Diewert (1980; 501) concluded that both Fisher price indexes would probably have an upward bias but the 

index which used zeros would definitely have a larger bias than the maximum overlap Fisher index. The 

similar type of argument appears in Diewert (1987; 779).   
8
 See also Hausman (1999) (2003) and Hausman and Leonard (2002)  

9
 The data are described in section 4 below. 
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 The CES functional form is not fully flexible
10

 and 

 The reservation price that induces a potential purchaser to not purchase a product 

is equal to plus infinity, which seems high. Thus the CES methodology may 

overstate the benefits of increases in product availability.  

 

Thus in section 7, we replace the CES utility function with a flexible functional form 

which was initially due to Konüs and Byushgens (1926; 171). This utility function is u = 

f(q)  (q
T
Aq)

1/2
 where A is a symmetric matrix of parameters and q

T
 is the row vector 

transpose of the column vector of quantities purchased, q. Konüs and Byushgens showed 

that if purchasers maximized this utility function in two periods where they faced the 

price vectors p
1
 and p

2
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1
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11
 Thus we will call this functional form for f the KBF functional 

form. The advantage in working with this flexible functional form is that when some 

component of the q vector is equal to 0, the resulting utility function is still well defined 

and the corresponding reservation price can be calculated by partially differentiating the 

estimated utility function with respect to the quantity variable that happens to equal 0 in 

the period under consideration. In fact, Diewert (1980; 501-503) suggested exactly this 

methodological approach to the estimation of reservation prices but in the end, he 

suggested that it would be difficult to estimate all of the N(N+1)/2 unknown parameters 

in the A matrix. In the present paper, we solve this degrees of freedom problem by 

introducing a semiflexible version of the flexible KBF functional form.
12

 This new 

methodology is explained in section 7.  

 

In section 8, we attempt to estimate the KBF functional form using the usual systems 

approach to the estimation of consumer demand functions. However, the nonlinearity in 

our estimating share equations causes our nonlinear estimating procedure to come to a 

premature halt as we increase the rank of the A matrix. Hence in section 9, we drop the 

systems approach to the estimation of the unknown parameters in favour of the one big 

equation approach. The latter approach has the advantage of being able to drop the 

observations where a product was missing.  

 

Although the implied fits in the product share equations were quite good using our one 

big equation approach, when we moved from predicted shares generated by our estimates 

                                                 
10

 See Diewert (1974) (1976) for the definition of a flexible functional form. 
11

 Konüs and Byushgens (1926; 169-172) also introduced the KBF unit cost function, c(p)  (p
T
Bp)

1/2
 

where B is a symmetric matrix of parameters. They showed that this unit cost function functional form is 

exact for the Fisher price index. If A or B is of full rank, then B = A
1

. For a description of the 

contributions of Konüs and Byushgens to index number theory and duality theory, see Diewert (1993a; 47-

51). For a description of the regularity conditions that the matrices A and B must satisfy for the KBF f(q) or 

c(p) to be well behaved, see Diewert and Hill (2010). Diewert (1976) generalized the KB results to more 

general functional forms for f and c.   
12

 Our new semiflexible functional form has properties that are similar to the semiflexible generalization of 

the Normalized Quadratic functional form introduced by Diewert and Wales (1987) (1988). In section 7 

below, we also show how the correct curvature conditions can be imposed on our semiflexible KBF 

functional form.  
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to predicted prices, we found that predicted prices did not match up well with actual 

prices for the observations where products were present. Thus in section 10, we moved 

from shares as the dependent variables to using prices as the dependent variables. We 

continued to estimate higher rank A matrices using the one big equation approach with 

prices as the dependent variables until we estimated a rank 7 A matrix with 111 unknown 

parameters. We then used our estimated A matrix in order to define virtual or reservation 

prices for the unavailable products. We were also able to quantify the effects of the 

changing availability of products and compare the results of the KBF estimation with the 

earlier CES benefit measures. We found that the CES methodology did indeed give much 

higher estimates for the gains from increases in product availability as compared to our 

KBF methodology.  

 

However, due to the fact that our estimated KBF preferences did not fit the data exactly, 

we found that occasionally our estimated gain from having an additional product had the 

wrong sign. Thus in section 11, we developed an alternative methodological approach 

based on our estimated KBF utility function (which is well behaved by construction) that 

was free from anomalous results. This utility function based approach is an alternative to 

Hausman’s (1996) expenditure or cost function approach to measuring the gains from 

increases in product availability. Table 6 in section 11 summarizes the differences in the 

net benefits of an increasing choice set using our new KBF methodology versus the 

Feenstra CES methodology using our empirical example. We found that the net benefits 

from increasing product availability was a 0.728 percentage points increase in utility over 

our 3 year sample period using the CES methodology versus a 0.138 percentage points 

increase in purchaser utility using the new KBF methodology over our sample period. 

This is only one empirical example but it does indicate the strong possibility that the 

traditional CES approach may overstate the benefits of an increased choice set by a 

substantial amount. The methodological approach explained in section 11 is extended in 

Appendix C, where we calculate the hypothetical loss of utility due to the withdrawal 

from the marketplace of any product in any time period. Again, we find that the losses 

due to product withdrawal are much smaller using our estimated KBF utility function 

rather than the estimated CES utility function.  

 

In section 12, we consider the case of two products in this section and develop a second 

order approximation formula for the loss of utility due to the disappearance of a product.  

We compare the approximate losses using our estimated CES and KBF functional forms 

and explain why the CES results are likely to be biased. As a by product of this 

approximate approach, we exhibit a simple formula for the percentage increase in 

observed price that is required to decrease the demand for an existing product down to 0. 

This formula may be useful to statistical agencies that use carry forward prices for 

temporarily missing prices.  

 

In section 13, we consider another approach to measuring the benefits of new products 

that is also due to Hausman (1981) in the two product context. This approach measures 

the extra amount of income it would take to compensate consumers for the disappearance 

of a product. In the two product case, it turns out that the Hausman income measure is 
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equal to our utility measure developed in section 12 to the accuracy of a second order 

approximation.   

  

Section 14 concludes. 

 

Appendix A lists our frozen juice data while Appendix B provides formal proofs of some 

of our results. As mentioned above, Appendix C extends the methodological approach to 

measuring the costs of product disappearance (which is equivalent to measuring the gains 

from the availability of new products) that was explained in section 11 to the hypothetical 

disappearance of any product in any period.    

 

2. Feenstra’s CES Unit Cost Function Methodology 
 

In this section, we will explain Feenstra’s (1994) CES cost function methodology that he 

proposed to measure the benefits and costs to consumers due to the appearance of new 

products and the disappearance of existing products.  

 

The methodology assumes that purchasers of a group of N products all have the same 

linearly homogeneous, concave and nondecreasing utility function f(q), where the 

nonnegative vector of purchased products is q  (q1,...,qN)  0N and u = f(q)  0 is the 

utility that the vector of purchases q generates. Given that purchasers face the positive 

vector of prices p  (p1,...,pN) at an outlet, the unit cost function c(p) that is dual to the 

utility function f is defined as the minimum cost of attaining the utility level that is equal 

to one: 

 

(1) c(p)  min q{pq: f(q)  1; q  0N} 

 

where pq  n=1
N
 pnqn. If the unit cost function c(p) is known, then using duality theory, 

it is possible to recover the underlying utility function f(q).
13

 Feenstra assumed that the 

unit cost function has the following CES functional form: 

 

(2) c(p)  0 [n=1
N
 npn

1
]
1/(1)

          if   1; 

               0 n=1
N
 n

np


                         if  = 1 

 

where the i and  are nonnegative parameters with i=1
N
 i = 1.  The unit cost function 

defined by (2) is a Constant Elasticity of Substitution (CES) utility function which was 

introduced into the economics literature by Arrow, Chenery, Minhas and Solow (1961)
14

.  

The parameter  is the elasticity of substitution;
15

 when  = 0, the unit cost function 

                                                 
13

 It can be shown that for q >> 0N, f(q) = 1/max p {c(p): n=1
N
 pnqn  1 ; p  0N}; see Diewert (1974; 110-

112) (1993b; 129)  on the duality between linearly homogeneous aggregator functions f(q) and unit cost 

functions c(p). 
14

 In the mathematics literature, this aggregator function or utility function is known as a mean of order r  

1  ; see Hardy, Littlewood and Polyá  (1934; 12-13). 
15

 Let c(p) be an arbitrary unit cost function that is twice continuously differentiable. The Allen (1938; 504) 

Uzawa (1962) elasticity of substitution nk(p) between products n and k is defined as c(p)cnk(p)/cn(p)ck(p) 

for n  k where the first and second order partial derivatives of c(p) are defined as cn(p)  c(p)/pn and 
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defined by (2) becomes linear in prices and hence corresponds to a fixed coefficients 

aggregator function which exhibits 0 substitutability between all commodities. When  = 

1, the corresponding aggregator or utility function is a Cobb-Douglas function. When  

approaches +, the corresponding aggregator function f approaches a linear aggregator 

function which exhibits infinite substitutability between each pair of inputs. The CES unit 

cost function defined by (2) is of course not a fully flexible functional form (unless the 

number of commodities N being aggregated is 2) but it is considerably more flexible than 

the zero substitutability aggregator function (this is the special case of (2) where  is set 

equal to zero) that is exact for the Laspeyres and Paasche price indexes. 

 

In order to simplify the notation, we set r  1  . Under the assumption of cost 

minimizing behavior on the part of purchasers of the N products for periods t = 1,...,T, 

Shephard’s (1953; 11) Lemma tells us that the observed period t consumption of 

commodity i, qi
t
, will be equal to u

t
c(p

t
)/pi where c(p

t
)/pi is the first order partial 

derivative of the unit cost function with respect to the ith commodity price evaluated at 

the period t prices and u
t 
= f(q

t
) is the aggregate (unobservable) level of period t utility. 

Denote the share of product i in total sales of the N products during period t as si
t
  

pi
t
qi

t
/p

t
q

t
 for i = 1,...,N and t = 1,...,T where p

t
q

t
  n=1

N
 pn

t
qn

t
. Note that the assumption 

of cost minimizing behavior during each period implies that the following equations will 

hold: 

 

(3) p
t
q

t
 = u

t
c(p

t
) ;                                                                                                    t = 1,...,T 

 

where c is the CES unit cost function defined by (2).   

 

Using the CES functional form defined by (2) and assuming that   1 (or r  0),
16

 the 

following equations are obtained using Shephard’s Lemma: 

 

(4) qi
t
 = u

t
0 [n=1

N
 n (pn

t
) 

r
]

(1/r)1
i (pi

t
)
r1

;                                           i = 1,…,N; t =1,...,T 

            = u
t
c(p

t
) i (pi

t
)
r1

/n=1
N
 n (pn

t
) 

r
 .                     

 

Premultiply equation i for period t in (4) by pi
t
/p

t
q

t
. Using (2) and (3), the resulting 

equations can be rewritten as follows: 

 

(5)  si
t
 = i (pi

t
)
r
/n=1

N
 n (pn

t
) 

r
 ;                                                          i = 1,…,N; t = 1,...,T.  

 

The NT share equations defined by (5) can be used as estimating equations using a 

nonlinear regression approach. We will implement this approach later in the paper. Note 

that the positive scale parameter 0 cannot be identified using equations (5), which of 

course is normal: utility can only be estimated up to an arbitrary scaling factor. 

Henceforth, we will assume 0 = 1. The share equations (5) are homogeneous of degree 

                                                                                                                                                 
cnk(p)  

2
c(p)/pnpk. For the CES unit cost function defined by (2), nk(p) =  for all pairs of products; 

i.e., the elasticity of substitution between all pairs of products is a constant for the CES unit cost function.        
16

 When  = 1, we have the case of Cobb-Douglas preferences. In the remainder of this paper, we will 

assume that  > 1 (or equivalently, that r < 0). 
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one in the parameters 1,...,N and thus the identifying restriction on these parameters, 

i=1
N
 i = 1, can be replaced with an equivalent restriction such as N = 1. 

 

Suppose that all N products are available in all T periods in our sample and we have 

estimated the unknown parameters which appear in equations (5). Then the period t CES 

price index (relative to the level of prices for period 1), PCES
t
, can be defined as the 

following ratio of unit costs in period t relative to period 1: 

 

(6) PCES
t
  [n=1

N
 n (pn

t
) 

r
]

(1/r) 
/ [n=1

N
 n (pn

1
) 

r
]

(1/r)
 ;                                            t = 1,...,T. 

 

Suppose further that the observed price and quantity data vectors , p
t
 and q

t
 for t = 1,...,T, 

satisfy equations (3) where c(p) is defined by (2) and the quantity data vectors q
t
 satisfy 

the Shephard’s Lemma equations (4). Thus the observed price and quantity data are 

assumed to be consistent with cost minimizing behavior on the part of purchasers where 

all purchasers have CES preferences that are dual to the CES unit cost function defined 

by (2). Then Sato (1976) and Vartia (1976) showed that the sequence of CES price 

indexes defined by (6) could be numerically calculated just using the observed price and 

quantity data; i.e., it would not be necessary to estimate the unknown n and  (or r) 

parameters in equations (6). The logarithm of the period t fixed base Sato-Vartia Index 

PSV
t
 is defined by the following  equation: 

 

(7) lnPSV
t
  n=1

N
 wn

t
 ln(pn

t
/pn

1
) ;                                                                           t = 1,...,T. 

 

The weights wn
t
 that appear in equations (7) are calculated in two stages. The first stage 

set of weights is defined as wn
t*

  (sn
t
  sn

1
)/(lnsn

t
  lnsn

1
) for n = 1,...,N and t = 1,...,T 

provided that sn
t
  sn

1
. If sn

t
 = sn

1
, then define wn

t*
  sn

t
 = sn

1
. The second stage weights 

are defined as wn
t
  wn

t*
/i=1

N
 wi

t*
  for n = 1,...,N and t = 1,...,T. Note that in order for 

lnPCES
t
 to be well defined, we require that sn

t
 > 0, sn

1
 > 0, pn

t
 > 0 and pn

1
 > 0 for all n = 

1,...,N and t = 1,...,T; i.e., all prices and quantities must be positive for all products and 

for all periods.       

 

Now we can explain Feenstra’s (1994) model where “new” commodities can appear and 

“old” commodities can disappear from period to period.   

 

Feenstra (1994) assumed CES preferences with  > 1 (or equivalently, r < 0). He applied 

the reservation price methodology first introduced by Hicks (1940); i.e., Hicks assumed 

that the consumer had preferences over all goods, but for the goods which had not yet 

appeared, there was a reservation price that would be just high enough that consumers 

would not want to purchase the good in the period under consideration.
17

 This assumption 

works rather well with CES preferences, because we do not have to estimate these 

reservation prices; they will all be equal to + when  > 1.  

 

                                                 
17

 The same logic is applied to disappearing products. 
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Feenstra allowed for new products to appear and for existing products to disappear from 

period to period.
18

 Feenstra assumed that the set of commodities that are available in 

period t is I(t) for t = 1,...,T. The (imputed) prices for the unavailable commodities in 

each period are set equal to + and thus if r < 0, an infinite price pn
t
 raised to a negative 

power generates a 0; i.e., if product n is unavailable in period t, then (pn
t
)
r
 = ()

r
 = 0 if r is 

negative. 

 

The CES period t true price level under these conditions when r < 0 turns out to be the 

following CES unit cost function that is defined over only products that are available 

during period t: 

 

(8) c(p
t
)  [n=1

N
 n (pn

t
) 

r
]

(1/r) 
 = [iI(t) i (pi

1
)
r
]

1/r
 . 

 

Using equations (4) for this new model and multiplying the period t demand qi
t
 by the 

corresponding price pi
t
 for the items that are actually available leads to the following 

equations which describe the purchasers’ nonzero expenditures on product i in period t:   

 

(9) pi
t
qi

t
 = u

t
 [nI(t) n (pn

t
) 

r
]

(1/r)1
i (pi

t
)
r
 ;                                                  t = 1,...,T; iI(t)                                         

              = u
t
c(p

t
) i (pi

t
)
r
/nI(t) n (pn

t
)
r
 .  

 

In each period t, the sum of observed expenditures, nI(t) pn
t
qn

t
, equals the period t utility 

level, u
t
, times the CES unit cost c(p

t
) defined by (8): 

 

(10) nI(t) pn
t
qn

t
 = u

t
c(p

t
) = u

t
[iI(t) i (pi

1
)
r
]

1/r
 ;                                                    t = 1,...,T. 

 

Recall that the ith sales share of product i in period t was defined as si
t
  pi

t
qi

t
/nI(t) pn

t
qn

t
 

for t = 1,...,T and iI(t). Using these share definitions and equations (10), we can rewrite 

equations (9) in the following form: 

 

(11) si
t
 = i (pi

t
)
r
/nI(t) n (pn

t
) 

r
 ;                                                                 t = 1,...,T; iI(t) 

            = i (pi
t
)
r
/c(p

t
)
r
 

 

where the second set of equations follows using definitions (8).                                                                                                                               

 

Now we can work out Feenstra’s (1994) model for measuring the benefits and costs of 

new and disappearing commodities. Start out with the period t CES exact price level 

defined by (8) and define the CES fixed base price index for period t, PCES
t
, as the ratio of 

the period t CES price level to the corresponding period 1 price level:
19

 

 

                                                 
18

 In many cases, a “new” product is not a genuinely new product; it is just a product that was not in stock 

in the previous period. Similarly, in many cases, a disappearing product is not necessarily a truly 

disappearing product; it is simple a product that was not in stock for the period under consideration. Many 

retail chains rotate products, temporarily discontinuing some products in favour of competing products in 

order to take advantage of manufacturer discounted prices for selected products.    
19

 In the algebra which follows, the prices and quantities of period 1 can be replaced with the prices and 

quantities of any period. Feenstra (1994) developed his algebra for c(p
t
)/c(p

t1
). 
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(12) PCES
t
  c(p

t
)/c(p

1
) ;                                                                                           t = 1,...,T  

                 = [iI(t) i (pi
t
)
r
]

1/r
 / [iI(1) i (pi

1
) 

r
]

1/r
  

                 = [ Index 1][Index 2][Index 3] 

 

where the three indexes in equations (12) are defined as follows: 

 

(13) Index 1  [iI(t)I(1) i (pi
t
)
r
]

1/r
 / [iI(1)I(t) i (pi

1
) 

r
]
1/r

 ; 

(14) Index 2  [iI(t) i (pi
t
)
r
]
1/r

 / [iI(1)I(t) i (pi
t
) 

r
]

1/r
 ; 

(15) Index 3  [iI(1)I(t) i (pi
1
)
r
]

1/r
 / [iI(1) i (pi

1
) 

r
]
1/r

 . 

 

Note that Index 1 defines a CES price index over the set of commodities that are 

available in both periods t and 1. Denote the CES cost function c
t*

 that has the same n 

parameters as before but is now defined over only products that are available in periods 1 

and t: 

 

(16) c
t*

(p)  [iI(t)I(1) i (pi)
r
]
1/r

 ;                                                                       t = 1,2,...,T. 

 

The period t expenditure share equations that correspond to equations (11) using the unit 

cost function defined by (16) are the following ones: 

 

(17) si
t*

  pi
t
qi

t
/nI(t) )I(1) pn

t
qn

t
                                                          t = 1,...,T; iI(1)I(t) 

             = i (pi
t
)
r
/nI(t) )I(1) n (pn

t
) 

r
 

             = i (pi
t
)
r
/c

t*
(p

t
)
r
  

 

where the third equality follows using definitions (16). 

 

Note that Index 1 is equal to c
t*

(p
t
)/c

t*
(p

1
) and the Sato-Vartia formula (7) ( restricted to 

commodities n that are present in periods 1 and t) can be used to calculate this index 

using the observed price and quantity data for the products that are available in both 

periods 1 and t. 

 

We turn now to the evaluation of Indexes 2 and 3. It turns out that we will need an 

estimate for the elasticity of substitution  (or equivalently of r) in order to find empirical 

expressions for these indexes. It is convenient to define the following observable 

expenditure or sales ratios: 

 

(18) 
t
  nI(t) pn

t
qn

t
/nI(1)I(t) pn

t
qn

t
 ;                                                                  t = 1,,...,T.  

(19) 
t
  nI(1)I(t) pn

1
qn

1
/nI(1) pn

1
qn

1
 ;                                                                t =1,,...,T. 

 

We assume that there is at least one product that is present in periods 1 and t for each t. 

Let product i be any one of these common products for a given t. Then the share 

equations (11) and (17) hold for this product. These share equations can be rearranged to 

give us the following two equations: 

 

(20) i(pi
t
)
r
 = [nI(t) n (pn

t
) 

r
] pi

t
qi

t
/[nI(t) pn

t
qn

t
] ; 
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(21) i(pi
t
)
r
 = [nI(1)I(t) n (pn

t
) 

r
] pi

t
qi

t
/[nI(1)I(t) pn

t
qn

t
]. 

 

Equating (20) to (21) leads to the following equations: 

 

(22) nI(t) n (pn
t
) 

r
/nI(1)I(t) n (pn

t
) 

r
 = nI(t) pn

t
qn

t
/nI(1)I(t) pn

t
qn

t
  

                                                               = 
t
 

 

where the last equality follows using definition (18). Now take the 1/r root of both sides 

of (22) and use definition (14) in order to obtain the following equality:   

 

(23) Index 2 = [
t
]
1/r

 = [iI(t) pi
t
qi

t
/iI(1)I(t) pi

t
qi

t
]

1/r
.
20

 

 

Again assume that product i is available in periods 1 and t. Rearrange the share equations 

(11) and (17) for t = 1 and product i and we obtain the following two equations: 

 

(23) i(pi
1
)
r
 = [nI(1) n (pn

1
)
r
] pi

1
qi

1
/[nI(1) pn

1
qn

1
] ; 

(24) i(pi
1
)
r
 = [nI(1)I(t) n (pn

1
)
r
] pi

1
qi

1
/[nI(1)I(t) pn

1
qn

1
]. 

 

Equating (23) to (24) leads to the following equations: 

 

(25) nI(1)I(t) n (pn
1
)
r
/nI(1) n (pn

1
)
r
 = nI(1)I(t) pn

1
qn

1
/nI(1) pn

1
qn

1
 

                                                                = 
t
 

 

where the last equality follows using definition (19). Now take the 1/r root of both sides 

of (25) and use definition (15) in order to obtain the following equality:
21

   

 

(26) Index 3 = [
t
]

1/r
 = [nI(1)I(t) pn

1
qn

1
/nI(1) pn

1
qn

1
]
1/r

. 

 

Thus if r is known or has been estimated, then Index 2 and Index 3 can readily be 

calculated as simple ratios of sums of observable expenditures raised to the power1/r. 

Note that [iI(t) pi
t
qi

t
/iI(1)I(t) pi

t
qi

t
]  1. If period t has products that were not available 

in period 1, then the strict inequality will hold and since 1/r < 0, it can be seen that Index 

                                                 
20

 If new products become available in period t that were not available in period 1, then  
t
 > 1. Recall that r 

= 1   and r < 0. Index 2 evaluated at period t prices equals (
t
)

1/r
 = (

t
)

1/(1)
 and thus is an increasing 

function of  for 1 <  < +. With 
t
 > 1, the limit of  (

t
)

1/(1)
 as  approaches 1 is 0 and the limit of 

(
t
)

1/(1)
 as  approaches + is 1. Thus the gains in utility from increased product variety are huge if  is 

slightly greater than 1 and diminish to no gains at all as  becomes very large. Suppose that 
t
 =1.05 and  

= 1.01, 1.1, 1.5, 2, 3, 5, 10 and 100. Then Index 2 will equal 0.0076, 0.614, 0.907, 0.952, 0.976, 0.988, 

0.995 and 0.9995 respectively. Thus the gains from increased product variety are very sensitive to the 

estimate for the elasticity of substitution. The gains are gigantic if  is close to 1.  
21

 If some products that were available in period 1 become unavailable in period t, then  
t
 < 1. Index 3 

evaluated at period 1 prices equals (
t
)

1/r
 = (

t
)

1/(1)
 and is an decreasing function of  for 1 <  < +. 

With 
t
 < 1, the limit of  (

t
)

1/(1)
 as  approaches 1 is + and the limit of (

t
)

1/(1)
 as  approaches + is 

1. Thus the losses in utility from decreased product variety are huge if  is slightly greater than 1 and 

diminish to no gains at all as  becomes very large. Suppose that 
t
 =0.95 and  takes on the same values 

as in the previous footnote. Then Index 3 will equal 168.9, 1.670, 1.108, 1.053, 1.026, 1.013, 1.0057 and 

1.00052 respectively. Thus the losses are gigantic if  is close to 1 and negligible if  is very large. 
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2 will be less than unity. Thus Index 2 is a measure of how much the true cost of living 

index is reduced in period t due to the introduction of products that were not available in 

period 1. Similarly, [iI(1)I(t) pi
1
qi

1
/iI(1) pi

1
qi

1
]  1. If period 1 has products that are not 

available in period t, then the strict inequality will hold and since1/r < 0, it can be seen 

that Index 3 will be greater than unity, Thus Index 3 is a measure of how much the true 

cost of living index is increased in period t due to the disappearance of products that were 

available in period 1 but are not available in period t.      

 

Turning briefly to the problems associated with estimating r (and the n) when not all 

products are available in all periods, it can be seen that the initial estimating share 

equations (5) are now replaced by the following equations: 

 

(27) sn
t
 = n (pn

t
)
r 
/k=1

N
 k (pk

t
)
r
  ;                                                            t = 1,...,T; nI(t).  

 

In the next section, we obtain an alternative set of share equations that could be used in 

order to estimate the elasticity of substitution. 

 

3. The Primal Approach to the Estimation of CES Preferences 

 

It turns out that estimating the purchaser’s utility function directly (rather than estimating 

the dual unit cost function) is advantageous when estimates of reservation prices for 

products that are not available are required. In the case of CES preferences, this 

advantage is not apparent since the CES reservation prices are automatically set equal to 

infinity. But it turns out that there are advantages in estimating the CES utility function 

directly because of econometric considerations as we shall see. Thus in this section, we 

will show how estimates for the elasticity of substitution can be obtained by estimating 

the CES system of inverse demand functions.  

 

Using the same notation for prices and quantities that was used in the beginning of the 

previous section, we assume that the purchaser utility function f(q) is defined as the 

following CES utility function: 

 

(28) f(q1,...,qN)  [n=1
N 
nqn

s
]
1/s

  

 

where the parameters n are positive and sum to 1 and s is a parameter which satisfies the 

inequalities 0 < s  1. Thus f(q) is a mean of order s.  

 

Assume that all products are available in a period and purchasers face the positive prices 

p  (p1,...,pN) >> 0N. The first order necessary (and sufficient) conditions (provided that s 

 1) that can be used to solve the unit cost minimization problem defined by (1) are the 

following conditions: 

 

(29) pn = nqn
s1

 ;                                                                                                n = 1,...,N; 

(30) 1  = [n=1
N 
nqn

s
]

1/s
. 
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Multiply both sides of equation n in (29) by qn and sum the resulting N equations. This 

leads to the equation n=1
N
 pnqn = n=1

N
 nqn

s
. Solve this equation for  and use this 

solution to eliminate the  in equations (29). The resulting equations (where equation n is 

multiplied by qn) are the following ones: 

 

(31) pnqn/i=1
N
 piqi = nqn

s
/i=1

N
 iqi

s
;                                                                   n = 1,...,N. 

 

Equations (29) and (30) can be used to obtain an explicit solution for q1,...,qN and  as 

functions of the price vector p.
22

 Use these solution functions to form the unit cost 

function, c(p) equal to n=1
N
 pnqn(p). This function turns out to be the following one:

23
 

 

(32) c(p) = [n=1
N
 n

1/(1s)
 pn

s/(s1)
]

(s1)/s
 . 

 

Compare the c(p) defined by (32) to the c(p) that was defined directly by (2). It can be 

seen that the c(p) defined by (32) is proportional to a mean of order r where r = s/(s1). 

Thus if f(q) is the CES utility function defined by (28), then the corresponding elasticity 

of substitution is  = 1  r = 1  [s/(s1)] =  1/( s1) = 1/(1s). Note that our 

assumption that s satisfies 0 < s  1 implies that  satisfies 1 <   .  

 

If purchasers maximize the CES utility function defined by (28) when they face the 

positive price vector p, the utility maximizing q will satisfy the share equations (31). If 

we evaluate equations (31) using the period t price and quantity data, we obtain the 

following system of estimating equations, assuming that all products are available in all 

periods: 

 

(33) sn
t
  pn

t
qn

t
/i=1

N
 pi

t
qi

t
 = n(qn

t
)
s
/i=1

N
 i(qi

t
)
s
;                                t = 1,...,T; n = 1,...,N. 

 

It can be seen that the right hand sides of equations (33) are homogeneous of degree 0 in 

the parameters 1,...,N so a normalization of these parameters is required for the 

identification of the parameters. The normalization n=1
N
 n = 1 can be replaced by an 

equivalent normalization such as N = 1. 

 

We now consider the case where not all products are available in all periods. The 

parameter s is assumed to be greater than 0 (and less than or equal to 1 so that the 

resulting CES utility function is concave). If product n is not available in period t, we can 

set qn
t
 = 0 and (qn

t
)
s
 = (0)

s
 = 0 and thus product n will drop out of the utility function. 

Thus if we simply set quantities equal to 0 when the corresponding products are not 

available in a period, the overall CES utility function evaluated at the period t quantity 

data (with the appropriate 0 values inserted), f(q
t
), will be equal to [nI(t)

 
n (qn

t
)
s
]
1/s

, the 

utility function f
t
 which is defined over just the products that are actually available during 

                                                 
22

 If s  1,, the first order necessary conditions (29) and (30) for solving the unit cost minimization problem 

are also sufficient conditions. 
23

 Explicit solutions for the qn(p) can be obtained by using Shephard’s Lemma; i.e., qn(p) = c(p)/pn for n 

= 1,...,N where c(p) is defined by (32).  
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period t; i.e., the following equations will be satisfied where we define uCES
t
 as the period 

t aggregate CES utility or quantity (or volume) level: 

 

(34) uCES
t
 = f(q

t
)  [n=1

N 
n (qn

t
)
s
]

1/s
 = [nI(t)

 
n (qn

t
)
s
]

1/s
 ;                                     t  = 1,...,T 

 

where the last equality follows under the assumption that s > 0. Thus the period t 

estimating share equations for the CES inverse demand functions for the case where not 

all products are available during period t are the following modifications of equations 

(33): 

 

(35) sn
t
 = n(qn

t
)
s
/iI(t) i(qi

t
)
s
;                                                                    t = 1,...,T; nI(t) 

 

where sn
t
 is the product n share of period t sales or expenditure e

t
. Note that since nI(t), 

sn
t
 > 0. Recall that in section 2 above, we obtained equations (27) as estimating share 

equations for the CES demand functions (quantities or shares as functions of prices) as 

opposed to estimating equations for the CES inverse demand functions (prices or shares 

as functions of equilibrium quantities) as in equations (35). We repeat equations (27) 

below for convenience: 

 

(36) sn
t
 = n(pn

t
)
r 
/k=1

N
 k(pk

t
)
r
  ;                                                             t = 1,...,T; nI(t). 

 

Multiply both sides of equation (35) for nI(t) for period t by e
t
/qn

t
 and we obtain the 

following system of estimating equations: 

 

(37) pn
t
 = e

t 
n(qn

t
)
s
/qn

t
 iI(t) i(qi

t
)
s
;                                                           t = 1,...,T; nI(t). 

 

Multiply both sides of of equation (36) for nI(t) for period t by e
t
/pn

t
 and we obtain the 

following system of estimating equations: 

 

(38) qn
t
 = e

t
n(pn

t
)
r
/pn

t
 k=1

N
 k(pk

t
)
r
  ;                                                        t = 1,...,T; nI(t). 

 

Of course, we need a normalization on the n and n in order to identify the remaining 

parameters. The estimated r for equations (36) and (38) is converted into an estimate for 

the elasticity of substitution using  = 1  r and the estimated s for equations (35) and 

(37) is converted into an estimate for the elasticity of substitution using  = 1/(1  s). 

 

In Diewert and Feenstra (2017), we experimented with the alternative estimating 

equations defined by (35)-(38) in order to obtain estimates for the elasticity of 

substitution. These estimates for  were then used in order to implement Feenstra’s index 

number methodology for measuring the gains and losses of utility to purchasers of 

competing products as commodities appeared and disappeared from the marketplace. 

However, we found that the most satisfactory empirical approach to estimating the 

elasticity of substitution in a CES model was to use Feenstra’s (1994) double differencing 

method for estimating CES preferences. We will explain this methodology in section 5 

below but we will conclude this section with a useful observation on estimating CES 

preferences in two stages. This observation will be used in section 5.  
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Suppose we break up the N commodities into two groups: A and B. Denote the set of 

indices that belong to the group A and B commodities by I(A) and I(B) respectively. 

Suppose that in period t, the vector q
t
  [q1

t
,...,qN

t
] > 0N solves the following CES utility 

maximization problem:    

 

(39) max q {[n=1
N 
n(qn)

s
]

1/s
 : n=1

N
 pn

t
qn = e

t
}= {[n=1

N 
n(qn

t
)
s
]

1/s
 

 

where e
t
  n=1

N
 pn

t
qn

t
 is observed period t expenditure. Assume that s satisfies the 

following bounds: 

 

(40) 0 < s < 1.  

 

Since s satisfies the above bounds, it can be seen that q
t
 also is a solution to the following 

constrained maximization problem:
24

 

 

(41) max q {n=1
N 
nqn

s
 : n=1

N
 pn

t
qn = e

t
}  

       = max q {iI(A}
 
iqi

s
 + k(B}

 
kqk

s
  : iI(A}

 
pi

t
qi + kI(A}

 
pk

t
qk = e

t
} 

       = max q, e(A), e(B) {iI(A}
 
iqi

s
 + k(B}

 
kqk

s
  : iI(A}

 
pi

t
qi = e(A); kI(A}

 
pk

t
qk = e(B);  

                                                                              e(A)+e(B) = e
t
}  

       = max e(A), e(B) {max qiI(A){iI(A}
 
iqi

s
 : iI(A}

 
pi

t
qi = e(A)}  

                                   + max qkI(B) {kI(B}
 
kqk

s
 : kI(B}

 
pk

t
qk = e(B)}; e(A)+e(B) = e

t
} 

       = max qiI(A) {iI(A}
 
iqi

s
 : iI(A}

 
pi

t
qi = eA

t
}  

                                   + max qkI(B) {kI(B}
 
kqk

s
 : kI(B}

 
pk

t
qk = eB

t
} 

       = iI(A}
 
i(qi

t
)
s
 + kI(B}

 
k(qk

t
)
s
  

 

where eA
t
  iI(A}

 
pi

t
qi

t
 and eB

t
  kI(B}

 
pk

t
qk

t
 are the observed period t expenditures on 

group A and B products respectively. Thus the group A components of the period t 

solution vector q
t
 solve the problem of maximizing iI(A}

 
iqi

s
 subject to the budget 

constraint iI(A}
 
pi

t
qi = eA

t
. Hence using assumption (40), the group A components of the 

period t solution vector q
t
 also solve the problem of maximizing [iI(A}

 
iqi

s
)]

1/s
 with 

respect to the group A quantities subject to the group A budget constraint iI(A}
 
pi

t
qi = 

eA
t
.
25

 A similar property holds for the group B components.     

 

Define the group A expenditure shares for period t as si
t*

  pi
t
qi

t
/eA

t
 for iI(A). Then in 

addition to the share equations (35) holding, the following share equations will also hold:  

 

(42) sn
t*

 = n(qi
t
)
s
/iI(A) i(qi

t
)
s
;                                                                t = 1,...,T; nI(A). 

 

Because of the separability properties of the CES utility function, the assumption of CES 

utility maximizing behavior on the part of purchasers will imply that the share equations 

(35) and (42) will hold simultaneously.
26

 

                                                 
24

 The new objective function is a monotonic transformation of the original objective function. 
25

 The above argument is similar to the two stage CES optimization analysis in Diewert (1999; 57-60).  
26

 This fact was utilized by Feenstra (1994). 
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4. Scanner Data for Sales of Frozen Juice 

 

Feenstra and Diewert (2017) used the data from Store Number 5
27

 in the Dominick’s 

Finer Foods Chain of 100 stores in the Greater Chicago area on 19 varieties of frozen 

orange juice for 3 years in the period 1989-1994 in order to test out the CES models 

explained in the previous two sections; see the University of Chicago (2013) for the 

micro data. In the present paper, we will use the CES methodology that will be explained 

in section 5 below.  

 

The micro data are weekly quantities sold of each product and the corresponding unit 

value price. However, our focus is on calculating a monthly index and so the weekly 

price and quantity data need to be aggregated into monthly data. Since months contain 

varying amounts of days, we are immediately confronted with the problem of converting 

the weekly data into monthly data. We decided to side step the problems associated with 

this conversion by aggregating the weekly data into pseudo-months that consist of 4 

consecutive weeks.     

 

In the Appendix, the “monthly” data for quantities sold and the corresponding unit value 

prices for the 19 products are listed in Tables A1 and A2. There were no sales of Products 

2 and 4 for “months” 1-8 and there were no sales of Product 12 in “month” 10 and in 

“months” 20-22. Thus there is a new and disappearing product problem for 20 

observations in this data set. Later in this paper, we will impute Hicksian reservation 

prices for these missing products and these estimated prices are listed in Table A2 in 

italics. The corresponding imputed quantity for a missing observation is set equal to 0.  

 

Expenditure or sales shares, si
t
  pi

t
qi

t
/n=1

19
 pn

t
qn

t
, were computed for products i = 1,...,19 

and “months” t = 1,...,39.
28

 We computed the sample average expenditure shares for each 

product. The best selling products were products 1, 5, 11, 13, 14, 15, 16, 18 and 19. 

These products had a sample average share which exceeded 4% or a sample maximum 

share that exceeded 10%. There is tremendous volatility in product prices, quantities and 

sales shares for both the best selling and least popular products.  

 

In the following sections, we will use this data set in order to implement Feenstra’s CES 

unit cost function methodology for the treatment of new and disappearing products that 

was explained in section 2. 

 

5. The Feenstra Double Differencing Approach to the Estimation of a CES Utility 

Function 

 

In order to implement Feenstra’s index number approach to the estimation of the benefits 

and costs of new and disappearing products, we need an estimate for the elasticity of 

substitution. As was mentioned in the previous section, we found that the best method for 

estimating  utilized the double differencing approach that was introduced by Feenstra 

                                                 
27

 This store is located in a North-East suburb of Chicago. 
28

 In what follows, we will describe our 4 week “months” as months. 
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(1994). His method requires that product shares be positive in all periods. In order to 

implement his method, we drop the products that are not present in all periods. Thus we 

drop products 2, 4 and 12 from our list of 19 frozen juice products since products 2 and 4 

were not present in months 1-8 and product 12 was not present in months 20-22. Thus in 

our particular application, the number of always present products in our sample will equal 

16. In this section, we set N = 16. We also renumber our products so that the original 

Product 13 becomes the Nth product in this Appendix. This product had the largest 

average sales share. Using the results noted at the end of section 3, if we assume that 

purchasers are choosing all 19 products by maximizing CES preferences over the 19 

products, then this assumption implies that they are also maximizing CES preferences 

restricted to the always present products.   

 

There are 3 sets of variables in the model (i = 1,...,N; t = 1,...,T): 

 

 qi
t
 is the observed amount of product i sold in period t; 

 pi
t
 is the observed unit value price of product i sold in period t and 

 si
t
 is the observed share of sales of product i in period t that is constructed using 

the quantities qi
t
 and the corresponding observed unit value prices pi

t
. 

 

In our particular application, N = 16 and T = 39. We aggregated over weekly unit values 

to construct “monthly” t unit value prices. Since there was price change within the 

monthly time period, the observed monthly unit value prices will have some time 

aggregation errors in them. Any time aggregation error will carry over into the observed 

sales shares. Interestingly, as we aggregate over time, the aggregated monthly quantities 

sold during the period do not suffer from this time aggregation bias.  

 

Our goal is to estimate the elasticity of substitution for a CES direct utility function f(q)  

that was discussed in sections 3 above. This function is defined as f(q1,...,qN)  [n=1
N 

nqn
s
]
1/s

, where N is now equal to 16. The parameters n are positive and sum to 1 and s is 

a parameter which satisfies the inequalities 0 < s < 1. The corresponding elasticity of 

substitution is defined as   1/(1s). The system of share equations which corresponds 

to this purchaser utility function was derived as equations (33) in the main text which we 

repeat here: 

 

(43) sn
t
  pn

t
qn

t
/i=1

N
 pi

t
qi

t
 = n(qn

t
)
s
/i=1

N
 i(qi

t
)
s
;                                t = 1,...,T; n = 1,...,N 

 

where T = 39 and N = 16. This system of share equations corresponds to the purchasers’ 

system of inverse demand equations for always present products, which give monthly 

unit value prices as functions of quantities purchased. We take natural logarithms of both 

sides of the equations in (43) and add error terms en
t
 in order to obtain the following 

fundamental set of estimating equations:  

 

(44) lnsi
t
 = lni + slnqi

t
 + ln[n=1

N
 nln(qn

t
)
s
] + esi

t
 ;                             i = 1,...,N; t = 1,...,T 

  

where the qi
t
 are measured without error and the error terms have 0 means and a classical 

(singular) covariance matrix for the shares within each time period and the error terms are 
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uncorrelated across time periods. The unknown parameters in (44) are the positive 

parameters n and the positive parameter s where 0 < s < 1. 

 

The error terms in equations (44) reflect not only time aggregation errors in forming the 

monthly unit value prices but they also reflect the fact that our assumed CES functional 

form for the purchasers’ utility function may not be correct and the maximization of this 

utility function may take place with errors. Note that we are also assuming that the error 

terms are multiplicative error terms on the observed shares (before taking logs).  

 

The Feenstra double differenced variables are defined in two stages. First we difference 

the logarithms of the sn
t
 with respect to time; i.e., define sn

t
 as follows: 

 

(45) sn
t
  ln(sn

t
)  ln(sn

t1
) ;                                                              n = 1,...,N; t = 2,3,...,T. 

 

Now pick product N as the numeraire product and difference the sn
t
 with respect to 

product N, giving rise to the following double differenced log variable, dsn
t
: 

 

(46) dsn
t
  sn

t
  sN

t
 ;                                                                   n = 1,...,N1; t = 2,3,...,T 

               = ln(sn
t
)  ln(sn

t1
)  ln(sN

t
)  ln(sN

t1
). 

 

Define the double differenced log quantity variables in a similar manner: 

 

(47) dqn
t
  qn

t
  qN

t
 ;                                                                 n = 1,...,N1; t = 2,3,...,T 

               = ln(qn
t
)  ln(qn

t1
)  ln(qN

t
)  ln(qN

t1
). 

 

Finally, define the double differenced error variables n
t
 as follows: 

 

(48) n
t
  en

t
  en

t1
  eN

t
 + eN

t1
 ;                                                  n = 1,...,N1; t = 2,3,...,T. 

  

Using definitions (45)-(48) and equations (44), it can be verified that the double 

differenced log shares dsn
t
 satisfy the following system of (N1)(T1) estimating 

equations under our assumptions: 

 

(49) dsn
t
 = s dqn

t
 + n

t
 ;                                                                 n = 1,...,N1; t = 2,3,...,T 

 

where the new residuals, si
t
, have means 0 and a constant covariance matrix with 0 

covariances for observations which are separated by two or more time periods. Thus we 

have a system of linear estimating equations with only one unknown parameter across all 

equations, namely the parameter s. This is almost
29

 the simplest possible system of 

estimating equations that one could imagine. 

 

                                                 
29

 The variance covariance structure is not quite classical due to the correlation of residuals between 

adjacent time periods. We did not take this correlation into account in our empirical estimation of this 

system of estimating equations; i.e., we just used a standard systems nonlinear regression package that 

assumed intertemporal independence of the error terms.  
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Using the data listed in the Appendix, we have 15 product estimating equations of the 

form (49) which we estimated using the NL system command in Shazam.
30

 thus our N = 

16 and our T = 39. The resulting estimate for s was 0.86491 (with a standard error of 

0.0067) and thus the corresponding estimated  is equal to 1/(1s) = 7.4025. The 

standard error on s was tiny using the present regression results so  was very accurately 

determined using this method. The equation by equation R
2
 were as follows: 0.9936, 

0.9895, 0.9905, 0.9913, 0.9869, 0.9818, 0.9624, 0.9561, 0.9858, 0.9911, 0.9934, 0.994, 

0.9906, 0.9921 and 0.9893. The average R
2
 is 0.9859 which is very high for share 

equations or for transformations of share equations. The results are all the more 

remarkable considering that we have only one unknown parameter in the entire system of 

(N1)(T1) = 570 equations.
31

 This double differencing method for estimating the 

elasticity of substitution worked much better than any other method that we tried.  

 

Now that we have an estimate for , we can implement Feenstra’s (1994) methodology 

for measuring the changes in the true price index for frozen juice due to the appearance 

and disappearance of products. 

 

6. The Estimation of the Changes in the CES CPI Due to Changing Product 

Availability 

 

Recall that in section 2 above, we explained Feenstra’s methodology for adjusting the 

Sato-Vartia price index over jointly available products for two periods, periods 1 and t. In 

practice, this methodology is usually applied to chained indexes (rather than fixed base 

indexes) because the overlap of products is usually larger for consecutive periods. Thus 

the methodology explained in section 2 needs some adjustments to be applicable in the 

context of chained index numbers. 

 

Recall that the Feenstra methodology required methods for the empirical evaluation of his 

Indexes 1-3, which were defined by (13)-(15) in section 2. If we adapt these definitions to 

the evaluation of the true CES cost of living between periods t1 and t (instead of periods 

1 and t), these definitions are replaced by the following definitions:  

 

(50) Index1
t
  [iI(t)I(t1) i (pi

t
)
r
]

1/r
 / [iI(t1)I(t) i (pi

1
) 

r
]
1/r

 ; 

(51) Index2
t
  [iI(t) i (pi

t
)
r
]
1/r

 / [iI(t1)I(t) i (pi
t
) 

r
]
1/r

 ; 

(52) Index3
t
  [iI(t1)I(t) i (pi

1
)
r
]

1/r
 / [iI(t1) i (pi

1
) 

r
]

1/r
 . 

  

 

Index 1 for period t defined by (50) can be estimated by the Sato-Vartia chain link index 

between periods t1 and t. Denote the Sato-Vartia index level for period t by PSV
t
 for t = 

1,...,T. The Sato-Vartia chain link going from period t1 to t, PLSV
t
, is defined over the set 

of products that are available in both periods t and t1. The logarithm of the chain link 

going from period t1 to period t,  is defined as follows: 

                                                 
30

 See White (2004). 
31

 The results are dependent on the choice of the numeraire product. Ideally, we want to choose the product 

that has the largest sales share and the lowest share variance. 
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(53) lnPLSV
t
  nI(t1)I(t) wn

t
 ln(pn

t
/pn

t1
)  ln(Index1

t
)                                      t = 2,3,...,T. 

 

The weights wn
t
 that appear in equations (53) are calculated in two stages. The first stage 

weight for product n in period t is defined as wn
t*

  (sn
t 
 sn

t1
)/(lnsn

t 
 lnsn

t
) for 

nI(t1)I(t) and t = 2,...,T provided that sn
t
  sn

t1
. If sn

t
 = sn

t1
, then define wn

t*
  sn

t
 = 

sn
t1

. The second stage weights are defined as wn
t
  wn

t*
/iI(t1)I(t) wi

t*
 for nI(t1)I(t) 

and t = 2,...,T. These chain links PLSV
t
 are cumulated into the chained Sato-Vartia price 

index PSVCh
t
  PSV

t1
PLSV

t
  for t = 2,3,...,39 that is listed below in Table 2 using our 

frozen juice data. This index ends up at the level 1.04607 in “month” 39.  

 

The chained Sato-Vartia indexes, PSVCh
t
, are set equal to Feenstra’s Index 1 in his 

decomposition of the CES price index using index numbers. We can also compute his 

Index 2 and Index 3 terms in the chained context once we use our estimate for the 

elasticity of substitution that we obtained using the above systems regression with the 

single parameter which was 
*
  7.4025. This translates into a unit cost function 

parameter for r equal to r
*
  1  

*
 = 6.4025. Using this estimated r

*
, Feenstra’s Indexes 

2 and Index 3 for month t in the present context when we are computing chained indexes 

are defined as follows: 

 

(54) Index2
t
  [iI(t) pi

t
qi

t
/iI(t1)I(t) pi

t
qi

t
]

1/r*
 ; 

(55) Index3
t
  [nI(t1)I(t) pn

t1
qn

t1
/nI(t1) pn

t1
qn

t1
]
1/r*

. 

 

The above indexes will be equal to 1 if the available products remain the same going 

from period t1 to period t. There are 5 periods where the number of available products 

changes from the previous period: months 9, 10, 11, 20 and 23. Index2
t
 will be less than 

unity for months 9 (products 2 and 4 become available), 11 (product 12 becomes 

available), and 23 (product 12 again becomes available). Index3
t
 will be greater than unity 

for months 10 (product 12 becomes unavailable) and 20 (product 12 again becomes 

unavailable). Using r
*
 = 6.4025 and the data tabled in the Appendix, we can calculate 

Index2
t
 and Index3

t
 for these 5 months. The results are listed in Table 1.   

 

Table 1: Indexes Measuring the Effects of Changes in the Price Level due to the 

Availability of Products when  = 7.4025 

 

Month t Index2
t
 Index3

t
 

9 0.99277 1.00000 

10 1.00000 1.00358 

11 0.99569 1.00000 

20 1.00000 1.00386 

23 0.99690 1.00000 

 

In month 9, products 2 and 4 make their appearance and Table 1 tells us that the effect on 

the CES price level of this increase in variety is to lower the price level for month 9 by 

about 0.07 percentage points. In month 10 when product 12 disappears from the store, 

this disappearance has the effect of increasing the price level for frozen juice by 0.36 
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percentage points. The overall effect on the price level of the changes in the availability 

of products is equal to 0.992771.003580.995691.003860.99690 = 0.99277, a 

decrease in the price level over the sample period of about 0.73 percentage points. This is 

a noticeable reduction in the price level. 

 

The indexes listed in Table 1 are chain links. For the 5 months when one of the two 

indexes is not equal to 1, these links can be multiplied with the corresponding Sato-Vartia 

chain link in order to obtain the overall Feenstra chain link index. The Feenstra chain 

links can be cumulated and the resulting indexes are the PFEEN
t
 that are listed in Table 2 

above. Note that PFEEN
39

 ends up at 1.03851 which is lower than the corresponding 

chained Sato-Vartia chained index, PSVCh
39

 = 1.04607. Recall that the cumulative effects 

of changes in the availability of products was 0.99277. This factor times PSVCh
39

 is equal 

to PFEEN
39

.   

 

It is of some interest to compare PSVCh
t
 and PFEEN

t
 to traditional fixed base and chained 

Laspeyres, Paasche and Fisher price indexes. It should be noted that these indexes cannot 

take into account the effects of changes in the availability of products. The chain links for 

these indexes are calculated for each period t using the usual formulae but restricting the 

scope of the index to products that are available in periods t1 and t. These maximum 

overlap chain links are then cumulated into the Chained Laspeyres, Paasche and Fisher 

indexes PLCh
t
, PPCh

t
 and PFCh

t
 that are listed in Table 2 below.  

 

Calculating traditional fixed base indexes is a tricky business when the base period does 

not include all products, which is the case with our data. Thus for months 1 to 9, we 

calculated fixed base Laspeyres, Paasche and Fisher indexes, excluding products 2 and 4, 

which were not available in months 1 to 8. In month 9, all products were available. In the 

subsequent months, all products were available except for months 10 and 20-22. 

Excluding these 4 months (and months 1 to 9), we calculated fixed base Laspeyres, 

Paasche and Fisher indexes relative to month 9 and then linked the resulting indexes (at 

month 9) to their fixed base counterparts that were constructed for months 1 to 9. We are 

missing indexes for months 9 and 20-22. For month 10, we used the Laspeyres, Paasche 

and Fisher indexes going from month 9 to 10, excluding product 12 (which is missing for 

month 10) and used these links to our earlier index levels established for month 9. For 

months 20-22, we calculated fixed base Laspeyres, Paasche and Fisher indexes over the 4 

months 19-22 excluding product 12 and then linked these indexes for months 20-22 to 

their earlier counterpart index levels for month 19. The resulting sequence of indexes, PL
t
, 

PP
t
 and PF

t
 are listed in Table 2 below. 

 

Table 2: Feenstra Price Indexes and Sato-Vartia, Fisher, Laspeyres, Paasche Fixed 

Base and Chained Maximum Overlap Price Indexes 

 

t PFEEN
t 

PSVCh
t  PF

t
 PFCh

t 
Pl

t
 PLCh

t 
PP

t
 PPCh

t
 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

2 0.99711 0.99711 1.00218 1.00218 1.08991 1.08991 0.92151 0.92151 

3 1.00504 1.00504 1.02342 1.01124 1.06187 1.12136 0.98637 0.91193 

4 0.93679 0.93679 0.93388 0.94265 1.00174 1.06797 0.87061 0.83202 

5 0.93730 0.93730 0.93964 0.93715 0.98198 1.11998 0.89913 0.78417 
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6 1.04223 1.04223 1.03989 1.04075 1.13639 1.27665 0.95159 0.84844 

7 1.08505 1.08505 1.05662 1.10208 1.22555 1.42086 0.91097 0.85481 

8 1.25882 1.25882 1.15739 1.26987 1.17446 1.75897 1.14057 0.91676 

9 1.22850 1.23745 1.15209 1.24778 1.17750 1.73986 1.12722 0.89487 

10 1.22659 1.23111 1.14617 1.24137 1.21100 1.78937 1.08481 0.86120 

11 1.19924 1.20887 1.14088 1.22950 1.19184 1.85291 1.09210 0.81584 

12 1.18650 1.19602 1.12760 1.22009 1.21172 2.00384 1.04932 0.74288 

13 1.18072 1.19020 1.10698 1.20731 1.15736 2.16323 1.05880 0.67380 

14 1.20991 1.21962 1.13419 1.23863 1.19572 2.29212 1.07582 0.66934 

15 1.13385 1.14295 1.05579 1.15978 1.12363 2.30484 0.99205 0.58359 

16 1.12971 1.13877 1.05099 1.15371 1.09373 2.32686 1.00993 0.57204 

17 1.06045 1.06896 0.98640 1.08568 1.07191 2.27306 0.90771 0.51855 

18 0.96139 0.96911 0.89490 0.98385 0.96788 2.12683 0.82742 0.45512 

19 0.96909 0.97687 0.89032 0.99122 0.97566 2.19851 0.81244 0.44690 

20 0.96404 0.96805 0.89016 0.99104 1.04652 2.35818 0.75716 0.41649 

21 0.97495 0.97900 0.89453 1.00061 1.01001 2.46345 0.79225 0.40643 

22 0.93559 0.93948 0.85466 0.95983 0.96827 2.42222 0.75438 0.38034 

23 0.94937 0.95627 0.88842 0.97730 0.94697 2.52523 0.83349 0.37823 

24 0.93953 0.94636 0.88930 0.96178 0.95666 2.59808 0.82668 0.35604 

25 0.86112 0.86738 0.80421 0.88017 0.83788 2.52526 0.77189 0.30678 

26 0.89913 0.90567 0.84644 0.91938 0.92401 2.82064 0.77539 0.29967 

27 0.95695 0.96391 0.88641 0.98171 0.92853 3.20399 0.84620 0.30080 

28 0.88005 0.88645 0.81528 0.90580 0.90110 3.25314 0.73763 0.25221 

29 0.92875 0.93550 0.85705 0.95671 0.91523 3.55936 0.80258 0.25715 

30 0.91641 0.92307 0.84508 0.94446 0.92571 3.60564 0.77147 0.24739 

31 0.94184 0.94869 0.87333 0.97386 0.94494 3.80130 0.80715 0.24949 

32 0.99480 1.00204 0.89973 1.00016 1.04403 4.32811 0.77538 0.23112 

33 1.00949 1.01683 0.92673 1.02452 1.01783 5.40982 0.84377 0.19402 

34 1.03583 1.04336 0.95385 1.05227 0.99801 5.91196 0.91165 0.18729 

35 1.08709 1.09500 0.98690 1.10820 1.05351 6.39424 0.92451 0.19206 

36 1.06685 1.07461 0.96237 1.08529 1.00318 6.63992 0.92322 0.17739 

37 1.17502 1.18356 1.04948 1.18995 1.09380 7.44751 1.00696 0.19013 

38 1.19830 1.20701 1.09545 1.21560 1.16242 7.84172 1.03234 0.18844 

39 1.03851 1.04607 0.94999 1.05918 1.02873 7.11030 0.87729 0.15778 

 

Looking at Table 2, it can be seen that the chained Laspeyres and chained Paasche 

indexes are complete disasters. PLCh
t
 ended up at 7.11030 for month 39 (too high) and 

PPCh
t
 ended up at 0.15778 (too low). Their fixed base counterparts, PL

t
 and PP

t
, ended up 

at 1.02873 and 0.87729. This is a fairly substantial gap and indicates that these indexes 

are subject to substitution bias. The chained Fisher index PFCh
t
 ended up at 1.05918 and 

its fixed base counterpart PF
t
 ended up at 0.94999. The chained Fisher index is 

comparable to the chained Sato-Vartia index PSVCh
t
 which ended up at 1.04607.

32
 Since 

the fixed base Fisher index ended up about 11 percentage points below its fixed base 

counterpart, the chained Fisher and Sato-Vartia appear to have a substantial upward chain 

drift. The chain drift problem is generally severe when working with detailed price and 

quantity data in an elementary index category where dynamic pricing is common.
33

  

                                                 
32

 Diewert (1978) showed that the Fisher and Sato-Vartia indexes approximated each other to the second 

order around an equal price and quantity point so we should expect PFCh
t
 to be reasonably close to PSVCh

t
. 

33
 For discussions on how to address the chain drift problem with scanner data using multilateral index 

number theory, see Ivancic, Diewert and Fox (2011), the Australian Bureau of Statistics (2016) and 

Diewert and Fox (2017).  



 23 

 

The fact that the chained Fisher index ended up higher than its fixed base counterpart is a 

priori surprising; this fact indicates upward chain drift when we would expect downward 

chain drift. However, Feenstra and Shapiro (2003; 125) also found upward chain drift 

using chained Törnqvist price indexes on weekly ACNielson scanner data.
34

 It is 

somewhat surprising that this upward chain drift that was found using weekly unit value 

data persists when monthly unit value data are used.
35

 

 

As was mentioned in the introduction, potential problems with the Feenstra methodology 

for measuring the gains from increased product availability are the following: 

 

 The reservation prices which induce purchasers to demand 0 units of products that 

are not available in a period are infinite, which a priori seems implausible and 

 The CES functional form is not fully flexible.   

 

Thus in the following section, we will introduce a flexible functional form that will 

generate finite reservation prices for new and unavailable products and hence will 

provide an alternative methodology for measuring the benefits of new products (and the 

losses for disappearing products). 

 

7. The Konüs-Byushgens-Fisher Utility Function 

 

The functional form for a purchaser’s utility function f(q) that we will introduce in this 

section is the following one:
36

 

 

(56) f(q) = (q
T
Aq)

1/2
 

 

where the N by N matrix A  [ank] is symmetric (so that A
T
 = A) and thus has N(N+1)/2 

unknown ank elements. We also assume that A has one positive eigenvalue with a 

corresponding strictly positive eigenvector and the remaining N1 eigenvalues are 

negative or zero.
37

 These conditions will ensure that the utility function has indifference 

curves with the correct curvature. 

 

Konüs and Byushgens (1926) showed that the Fisher (1922) quantity index 

QF(p
0
,p

1
,q

0
,q

1
)  [p

0
q

1
p

1
q

1
/p

0
q

0
p

1
q

0
]
1/2

 is exactly equal to the aggregate utility ratio 

f(q
1
)/f(q

0
) provided that all purchasers maximized the utility function defined by (56) in 

                                                 
34

 For our data set, the maximum overlap chained Törnqvist indexes were fairly close to our chained Fisher 

indexes. The maximum overlap chained Törnqvist index ended up 1.5% higher than PFCh
39

. 
35

 Feenstra and Shapiro (2003; 125) suggested the following cure for the chain drift problem: “The only 

theoretically correct index to use in this type of situation is a fixed base index, as demonstrated in section 

5.3.” However, this proposed solution does not treat all periods in a symmetric manner and it does not deal 

with the problem of entering and exiting products.  
36

 We assume that vectors are column vectors when matrix algebra is used. Thus q
T
 denotes the row vector 

which is the transpose of q. 
37

 Diewert and Hill (2010) show that these conditions are sufficient to imply that the utility function defined 

by (56) is positive, increasing, linearly homogeneous and concave over the regularity region S  {q: q >> 

0N and Aq >> 0N}. 
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periods 0 and 1 where p
0
 and p

1
 are the price vectors prevailing during periods 0 and 1 

and aggregate purchases in periods 0 and 1 are equal to q
0
 and q

1
. Diewert (1976) 

elaborated on this result by proving that the utility function defined by (56) was a flexible 

functional form; i.e., it can approximate an arbitrary twice continuously differentiable 

linearly homogeneous function to the accuracy of a second order Taylor series 

approximation around an arbitrary positive quantity vector q
*
. Since the Fisher quantity 

index gives exactly the correct utility ratio for the functional form defined by (56), he 

labelled the Fisher quantity index as a superlative index.  

 

Assume that all products are available in a period and purchasers face the positive prices 

p  (p1,...,pN) >> 0N. The first order necessary (and sufficient) conditions (provided that s 

 1) that can be used to solve the unit cost minimization problem defined by (2) when the 

utility function f is defined by (56) are the following conditions: 

 

(57) p = Aq/(q
T
Aq)

1/2
 ;                                                                                               

(58) 1  = (q
T
Aq)

1/2
. 

 

Multiply both sides of equation n in (57) by qn and sum the resulting N equations. This 

leads to the equation pq = (q
T
Aq)

1/2
. Solve this equation for  and use this solution to 

eliminate the  in equations (58). The resulting equations (where equation n is multiplied 

by qn) are the following system of inverse demand share equations: 

 

(59) sn   pnqn/pq = qn k=1
N
 ankqj/q

T
Aq ;                                                              n = 1,...,N 

 

where ank is the element of A that is in row n and column j for n, k = 1,...,N. These 

equations will form the basis for our system of estimating equations in subsequent 

sections. Note that they are nonlinear equations in the unknown parameters ank. 

 

It turns out to be useful to reparameterize the A matrix in definition (56). Thus we set A 

equal to the following expression: 

 

(60) A = bb
T
 + B; b >> 0N ; B = B

T
 ; B is negative semidefinite; Bq

*
 = 0N. 

 

The vector b
T
  [b1,...,bN] is a row vector of positive constants and so bb

T
 is a rank one 

positive semidefinite N by N matrix. The symmetric matrix B has N(N+1)/2 independent 

elements bnk but the N constraints Bq
*
 reduce this number of independent parameters by 

N. Thus there are N independent parameters in the b vector and N(N1)/2 independent 

parameters in the B matrix so that bb
T
 + B has the same number of independent 

parameters as the A matrix. Diewert and Hill (2010) showed that replacing A by bb
T
 + B 

still leads to a flexible functional form. 

 

The reparameterization of A by bb
T
 + B is useful in our present context because we can 

use this reparameterization to estimate the unknown parameters in stages. Thus we will 

initially set B = ONN, a matrix of 0’s. The resulting utility function becomes f(q) = 

(q
T
bb

T
q)

1/2
 = (b

T
qb

T
q)

1/2
 = b

T
q, a linear utility function. Thus this special case of (56) 

boils down to the linear utility function model.  
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The matrix B is required to be negative semidefinite. We can follow the procedure used 

by Wiley, Schmidt and Bramble (1973) and Diewert and Wales (1987) and impose 

negative semidefiniteness on B by setting B equal to CC
T
 where C is a lower triangular 

matrix.
38

 Write C as [c
1
,c

2
,...,c

N
] where c

k
 is a column vector for k = 1,...,K. If C is lower 

triangular, then the first k1 elements of c
k
 are equal to 0 for k = 2,3,...,N. Thus we have 

the following representation for B: 

 

(61) B = CC
T
 

           =  n=1
N
 c

n
c

nT
 

 

where we impose the following restrictions on the vectors c
n
 in order to impose the 

restrictions Bq
*
 = 0N on B:

39
 

 

(62) c
nT

q
*
 = c

nT
q

*
 = 0 ;                                                                                          n = 1,....,N. 

 

If the number of products N in the commodity group under consideration is not small, 

then typically, it will not be possible to estimate all of the parameters in the C matrix. 

Furthermore, typically nonlinear estimation is not successful if one attempts to estimate 

all of the parameters at once. Thus we estimated the parameters in the utility function f(q) 

= (q
T
Aq)

1/2
 in stages. In the first stage, we estimated the linear utility function f(q) = b

T
q. 

In the second stage, we estimate f(q) = (q
T
[bb

T
  c

1
c

1T
]q)

1/2
 where c

1T
  [c1

1
,c2

1
,...,cN

1
] 

and c
1T

q
*
 = 0. For starting coefficient values in the second nonlinear regression, we use 

the final estimates for b from the first nonlinear regression and set the starting c
1
  0N.

40
 

In the third stage, we estimate f(q) = (q
T
[bb

T
  c

1
c

1T
  c

2
c

2T
]q)

1/2
 where c

1T
  

[c1
1
,c2

1
,...,cN

1
], c

1T
q

*
 = 0, c

2T
  [0,c2

1
,...,cN

1
] and c

2T
q

*
 = 0. The starting coefficient values 

are the final values from the second stage with c
2
  0N. In the fourth stage, we estimate 

f(q) = (q
T
[bb

T
  c

1
c

1T
  c

2
c

2T
  c

3
c

3T
]q)

1/2
 where c

1T
  [c1

1
,c2

1
,...,cN

1
], c

1T
q

*
 = 0, c

2T
  

[0,c2
1
,...,cN

1
], c

2T
q

*
 = 0, c

3T
  [0,0,c3

1
,...,cN

1
] and c

3T
q

*
 = 0. At each stage, the log 

likelihood will generally increase.
41

 We stop adding columns to the C matrix when the 

increase in the log likelihood becomes small (or the number of degrees of freedom 

becomes small). At stage k of this procedure, it turns out that we are estimating  the 

substitution matrices of rank k1 that is the most negative semidefinite that the data will 

support. This is the same type of procedure that Diewert and Wales (1988) used in order 

to estimate normalized quadratic preferences and they termed the final functional form a 

                                                 
38

 C = [cnk] is a lower triangular matrix if cnk = 0 for k > n; i.e., there are 0’s in the upper triangle. Wiley, 

Schmidt and Bramble showed that setting B = CC
T
  where C was lower triangular was sufficient to 

impose negative semidefiniteness while Diewert and Wales showed that any negative semidefinite matrix 

could be represented in this fashion.    
39

 The restriction that C be upper triangular means that c
N
 will have at most one nonzero element, namely 

cN
N
. However, the positivity of q

*
 and the restriction c

NT
q

*
 = 0 will imply that c

N
 = 0N. Thus the maximal 

rank of B is N1. For additional materials on the properties of the KBF functional form, see Diewert 

(2018). 
40

 We also use the constraint c
1T

q
*
 to eliminate one of the cn

1
 from the nonlinear regression. 

41
 If it does not increase, then the data do not support the estimation of a higher rank substitution matrix and 

we stop adding columns to the C matrix. The log likelihood cannot decrease since the successive models 

are nested.  
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semiflexible functional form. The above treatment of the KBF functional form also 

generates a semiflexible functional form. 

 

Instead of developing the above theory for the KBF utility function, we could develop the 

analogous theory for the dual KBF unit cost function, c(p)  (p
T
A

*
p)

1/2
 where A

*
 = b

*
b

*T
 

 C
*
C

*T
 where C

*
 is a lower triangular N by N matrix that satisfies C

*T
p

*
 = 0N for the 

reference price vector p
*
. The special case of this unit cost function where C

*
 = ONN 

leads to the Leontief (no substitution) unit cost function, c(p) = b
*T

p which we estimated 

in Diewert and Feenstra (2017). However, this model did not fit the data very well at all, 

which is not surprising since it is unlikely that there would be zero substitutability 

between closely related products. The linear utility function, f(q) = b
T
q, , which assumes 

that the products were perfectly substitutable fit the data much better than the Leontief 

unit cost function. Hence we will not estimate the KBF unit cost function model in this 

study since it is unlikely to fit the data very well.
42

 Furthermore, a major goal of our 

econometric efforts is to estimate reservation prices that will induce purchasers of the 

group of products under consideration that result when a product is not available. This 

can be done rather easily if we estimate the purchasers’ utility function rather than their 

dual unit cost function.  

 

8. The Systems Approach to the Estimation of KBF Preferences 

 
 

A possible system of estimating equations for the KBF utility function is the following 

stochastic version of the share equations (59) above where A = bb
T
  c

1
c

1T
:  

 

(63) si
t
 = qi

t
 k=1

19
 aikqk

t
/[n=1

19
m=1

19
 anmqn

t
qm

t
] + i

t
                          t = 1,...,39; i = 1,...,19  

 

where b
T
 = [b1,...,b19], c

1T
 = [c1

1
,...,c19

1
] and the error term vectors, 

tT
 = [1

t
,...,19

t
] are 

assumed to be distributed as a multivariate normal random variable with mean vector 019 

and variance-covariance matrix  for t = 1,...,39.
43

 In order to identify the parameters, the 

normalization  b19 = 1 could be imposed. 

 

We also require another normalization on the elements of c
1
; i.e., we need to satisfy the 

constraint c
1
q

*
 = 0 for some positive vector q

*
. We initially chose q

*
 to equal the sample 

mean of the observed q
t
 vectors; i.e., we set q

*
  (1/19)t=1

19
 q

t
. We used the constraint 

c
1
q

*
 = 0 to solve for c19

1
 =  n=1

18
 cn

1
qn

*
/q19

*
 and we substituted this c19

1
 into equations 

(63). Since the shares si
t
 sum to one for each period t, all 19 error terms i

t
 for i = 1,...,19 

cannot be distributed independently so we dropped the equation for product 19 from our 

list of estimating equations. 

 

We used the nonlinear regression software package in Shazam to estimate the 36 

unknown bn and cn
1
 in equations (82). In order to determine the effects of changing the 

                                                 
42

 If the A matrix in (56) has full rank N, then it can be shown that the dual unit cost function is equal to 

c(p) = (p
T
A
1

p)
1/2

. 
43

 Again this is a slightly incorrect econometric specification since n
t
 will automatically equal 0 if product 

n is not present during month t. 
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reference quantity vector q
*
, we reestimated the above model but chose q

*
 to equal 119, a 

vector of ones of dimension 19. Thus in this case, we set the last component of the vector 

c
1
 equal to c19

1
 =  n=1

18
 cn

1
. The estimated b and c

1
 vectors changed when we 

reestimated our rank one substitution matrix model with the new normalization but the 

predicted values for each observation turned out to be identical to the predicted values 

generated by our initial model and thus the R
2
 for each equation did not change and the 

final log likelihood also did not change. Thus it appears that the choice of q
*
 does not 

matter, as long as the chosen reference vector q
*
 is strictly positive. Thus in subsequent 

models where we added additional columns to the C matrix, we chose q
*
 to equal 119. 

This choice of q
*
 led to simpler programming codes for our subsequent nonlinear 

regressions.  

 

Our system of nonlinear estimating equations for the rank 2 substitution matrix model are 

equations (63) where A = bb
T
  c

1
c

1T
  c

2
c

2T
 with c

2T
 = [0,c2

2
,...,c19

2
] and the 

normalizations b19 = 1, c19
1
 =  n=1

18
 cn

1
 and c19

2
 =  n=2

18
 cn

2
. Thus there are 18 + 18 + 

17 unknown parameters to estimate in the A matrix. However, the nonlinear maximum 

likelihood estimation package in Shazam did not converge for this model. The problem is 

that the error specification that is used in the system command for the Nonlinear 

estimation option in Shazam also estimates the elements of the variance covariance 

matrix . Thus for our rank 2 substitution matrix model, it was necessary to estimate the 

53 unknown parameters in the A matrix plus 1918/2 = 171 unknown variances and 

covariances. This proved to be a too difficult task for Shazam. 

 

Thus in the following section, we will develop an alternative estimation strategy: we will 

stack up our 18 product estimating equations into a single estimating equation. In this 

setup, we will only have to estimate a single variance parameter instead of estimating 171 

such parameters. The cost of using this strategy will be a somewhat incorrect variance 

specification; i.e., it is not likely that all product equations will have exactly the same 

variance but it will turn out that the predicted values for the product shares are quite close 

to the actual product shares so a somewhat incorrect variance specification will not be too 

troublesome. 

 

9. The Single Equation Approach to the Estimation of KBF Preferences Using Share 

Equations 

 

For our next model, we stacked the first 18 estimating share equations listed in equations 

(63) into a single equation and estimated the 18 unknown parameters in A = bb
T
 with b

T
 

 [b1,b2,...,b19] and b19 = 1 using the single equation Nonlinear command in Shazam. The 

final log likelihood was 2379.380 and the R
2
 was 0.9818. The estimated bn were similar 

to the corresponding estimates that we got using the systems approach to estimate the 

linear utility function model.  

 

An advantage of the single equation approach is that we can now easily drop the 20 

observations where the product was missing.
44

 Thus for our next model, we dropped the 

                                                 
44

 The error terms will automatically be 0 for these 20 observations.  
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20 observations for products 2, 4 and 12 for the months when these products were 

missing. Thus the number of observations for this new model is equal to (3918)  20 = 

682. We found that the parameter estimates for this new model were exactly the same as 

the corresponding parameter estimates that we obtained for the previous linear utility 

function model using the one big regression equation approach. However, the new log 

likelihood decreased to 2301.735 and the new R
2
 decreased to 0.9814 (from the previous 

0.9818).  

 

In the models which follow, we continued to drop the 20 observations that correspond to 

the months when the products were missing. Thus when we refer to the estimating 

equations (63), we assumed that the 20 missing product observations were dropped from 

equations (63). Moreover, we also dropped the 39 observations that correspond to the 19
th

 

product.
45

  

 

In our next model, we set A = bb
T
  c

1
c

1T
 with the normalizations b19 = 1 and c19

1
 =  

n=1
18

 cn
1
. We used the final estimates for the components of the b vector from the 

previous model as starting coefficient values for this model and we used cn
1
 = 0.001

 
for n 

= 1,...,18 as starting values for the components of the c vector. The final log likelihood 

for this model was 2445.888, an increase of 144.153 for adding 18 new parameters to the 

Model 7 parameters. The R
2
 increased to 0.9884. 

 

We continued on adding new columns c
i
 one at a time to the substitution matrix, using 

the finishing coefficient values from the previous nonlinear regression as starting values 

for the next nonlinear regression. 

 

Our final model added the column vector c
4
 to the previous A matrix. Thus we had A = 

bb
T
  c

1
c

1T
  c

2
c

2T
   c

3
c

3T
  c

4
c

4T
 with c

4T
 = [0,0,0,c4

4
,...,c19

4
] and the additional 

normalization c19
4
 =  n=4

18
 cn

4
. As usual, we used the final estimates for the components 

of the b, c
1
, c

2
 and c

3
 vectors from the previous model as starting coefficient values for 

this model and we used cn
4
 = 0.001

 
for n = 4,...,18 as starting values for the nonzero 

components of the c
4
 vector. The final log likelihood for this model was 2629.182, an 

increase of 14.656 for adding 15 new parameters to the previous model’s parameters. 

Thus the increase in log likelihood is now less than one per additional parameter. The 

single equation R
2
 increased to 0.9922. However, this single equation R

2
 is not 

comparable to the equation by equation R
2
 that we obtained using the systems approach 

in the previous section. The comparable R
2
 for each separate product share equation were 

as follows:
46

 0.9859, 0.9930, 0.9773, 0.9853, 0.9814, 0.9543, 0.9755, 0.8581, 0.9760, 

                                                 
45

 Since the shares within one period must sum to 1, the corresponding error terms cannot all be 

independently distributed and thus we drop one set of shares from the estimating equations.  
46

 These equation by equation R
2
 are the squares of the correlation coefficients between the actual share 

equations for product n and the corresponding predicted values from the nonlinear regression. We included 

the 20 zero share and quantity product observations since our model correctly predicts these 0 shares. These 

0 share observations were also included in the Model 4 systems regression in the previous section.  
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0.9694, 0.8923, 0.9278, 0.9908, 0.9202, 0.9874, 0.9566, 0.9111 and 0.9653. The average 

R
2
 was 0.9560 which is a relatively high average when estimating share equations.

47
  

 

Since the present model estimated 84 unknown parameters and we had only 682 degrees 

of freedom, we had only about 8 degrees of freedom per parameter at this stage. 

Moreover, the increase in log likelihood over the previous model was relatively small. 

Thus we decided to stop adding columns to the C matrix at this point. 

 

With the estimated b and c vectors in hand (denote them as b
*
 and c

k*
 for k = 1,2,3,4), 

form the estimated A matrix as follows: 

 

(64) A
*
  b

*
b

*T
  c

1*
c

1*T
  c

2*
c

2*T
   c

3*
c

3*T
  c

4*
c

4*T
 

 

and denote the ij element of A
*
 as aij

*
 for i,j = 1,...,19. The predicted expenditure share 

for product i in month t is si
t*

 defined as follows: 

 

(65) si
t*

  qi
t
 k=1

19
 aik

*
qk

t
/[n=1

19
m=1

19
 anm

*
qn

t
qm

t
] ;                          t = 1,...,39; i = 1,...,19.  

 

The predicted price for product i in month t is defined as follows: 

 

(66) pi
t*

  e
t
 k=1

19
 aik

*
qk

t
/[n=1

19
m=1

19
 anm

*
qn

t
qm

t
] ;                            t = 1,...,39; i = 1,...,19 

 

where e
t
  p

t
q

t
 is period t sales or expenditures on the 19 products during month t.

48
 We 

calculated the predicted prices defined by (66) for all products and all months. 

 

Of particular interest are the predicted prices for products 2 and 4 for months 1-8 and for 

product 12 for months 10 and 20-22 when these products were not available. The 

predicted prices for products 2 and 4 for the first 8 months in our sample period were 

1.62, 1.56, 1.60, 1.52, 1.61, 1.52, 1.70. 1.97 and 1.85, 1.46, 1.80, 1.37, 1.77, 1.83, 1.88, 

2.27 respectively. The predicted prices for product 12 for months 10 and 20-22 were 1.37, 

1.20, 1.22 and 1.28. These prices are rather far removed from the infinite reservation 

prices implied by the CES model. 

 

However, there is a problem with our model: even though the predicted expenditure 

shares are quite close to the actual expenditure shares, the predicted prices are not 

particularly close to the actual prices. Thus the equation by equation R
2
 for the 19 

product prices were as follows:
49

 0.7571, 0.8209, 0.8657, 0.8969, 0.9025, 0.7578, 0.8660, 

                                                 
47

 Note that the KBF Model 11 average R
2
, 0.9560, is above the Model 4 direct CES utility function  

average R
2
, which was 0.9439. The present model is much more flexible and hence is likely to generate 

more reliable estimates of elasticities of demand More importantly for our purposes is the fact that the 

present model will generate finite reservation prices for the missing products (rather than the rather high 

infinite reservation prices that the CES model generates).   
48

 The predicted price pi
t*

 is also equal to [e
t
f(q

t
)/qi]/f(q

t
) where f(q)  (q

T
A

*
q)

1/2
. This follows from the 

first order necessary conditions for the month t utility maximization problem (with no errors) which are 

p
t*

/e
t
 = f(q

t
)/f(q

t
) where p

t*
 is the month t vector of predicted prices.  

49
 For the 20 observations where the product was not available, we used the predicted prices as actual prices 

in computing these R
2
. Thus for products 2, 4 and 12, the R

2
 listed above are overstated.  
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0.0019, 0.2517, 0.1222, 0.0000, 0.0013, 0.9125, 0.6724, 0.4609, 0.7235, 0.5427, 0.8148 

and 0.4226. The average R
2
 is only 0.5681 which is not very satisfactory. How can the R

2
 

for the share equations be so high while the corresponding R
2
 for the fitted prices are so 

low? The answer appears to be the following one: when a price is unusually low, the 

corresponding quantity is unusually high and vice versa. Thus the errors in the fitted price 

equations and the corresponding fitted quantity equations tend to offset each other and so 

the fitted share equations are fairly close to the actual shares whereas the errors in the 

fitted price and quantity equations can be rather large but  in opposite directions.  

 

The above poor fits for the predicted prices caused us to re-examine our estimating 

strategy. The primary purpose of our estimation of preferences is to obtain “reasonable” 

predicted prices for products which are not available. Our primary purpose is not the 

prediction of expenditure shares; it is the prediction of reservation prices! Thus in the 

following section, we will switch from estimating share equations to the estimation of 

price equations.     

  

10. The Single Equation Approach to the Estimation of KBF Preferences Using 

Price Equations 

 

Our next system of estimating equations used prices as the dependent variables: 

 

(67) pi
t
  e

t
 k=1

19
 aikqk

t
/[n=1

19
m=1

19
 anmqn

t
qm

t
] + i

t
 ;                        t = 1,...,39; i = 1,...,18 

 

where the A matrix was defined as A = bb
T
  c

1
c

1T
  c

2
c

2T
   c

3
c

3T
  c

4
c

4T
 and the vectors 

b and c
1
 to c

4
 satisfy the same restrictions as the last model in the previous section. We 

stack up the estimating equations defined by (67) into a single nonlinear regression and 

we drop the observations that correspond to products i that were not available in period t.  

 

We used the final estimates for the components of the b, c
1
, c

2
, c

3
 and c

4
 vectors from the 

previous model as starting coefficient values for the present model. The initial log 

likelihood of our new model using these starting values for the coefficients was 415.576. 

The final log likelihood for this model was 518.881, an increase of 103.305. Thus 

switching from having shares to having prices as the dependent variables did significantly 

change our estimates. The single equation R
2
 was 0.9453. We used our estimated 

coefficients to form predicted prices pi
t*

 using equations (67) evaluated at our new 

parameter estimates. The equation by equation R
2
 comparing the predicted prices for the 

19 products with the actual prices were as follows:
50

 0.8295, 0.8621, 0.9001, 0.9163, 

0.8988, 0.8319, 0.9134, 0.0350, 0.2439, 0.2754, 0.0236, 0.0068, 0.8704, 0.6951, 0.4211, 

0.8082, 0.6180, 0.8517 and 0.2868. The average R
2
 was 0.5941. 

  

Since the predicted prices are still not very close to the actual prices, we decided to press 

on and estimate a new model which added another rank 1 substitution matrix to the 

                                                 
50

 Again, for the 20 observations where the product was not available, we used the predicted prices as 

actual prices in computing these R
2
. As usual, these R

2
 are just the squares of the correlation coefficients 

between the 39 predicted prices and the actual prices for product i for i = 1,...,19. 
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substitution matrix; i.e., we set A = bb
T
  c

1
c

1T
  c

2
c

2T
   c

3
c

3T
  c

4
c

4T
  c

5
c

5T
 where c

5T
 = 

[0,0,0,0,c5
5
,...,c19

5
] and the additional normalization c19

5
 =  n=5

18
 cn

5
.   

 

We used the final estimates for the components of the b, c
1
, c

2
, c

3
 and c

4
 vectors from the 

previous model as starting coefficient values for the present model along with cn
5
 = 0.001 

for n = 5,6,...,18. The initial log likelihood of our new model using these starting values 

for the coefficients was 518.881. The final log likelihood for this model was 550.346, an 

increase of 31.465. The single equation R
2
 was 0.9501. We used our estimated 

coefficients to form predicted prices pi
t*

 using equations (67) evaluated at our new 

parameter estimates. The equation by equation R
2
 comparing the predicted prices for the 

19 products with the actual prices were as follows: 0.8295, 0.8621, 0.9001, 0.9163, 

0.8988, 0.8319, 0.9134, 0.0350, 0.2439, 0.2754, 0.0236, 0.0068, 0.8704, 0.6951, 0.4211, 

0.8082, 0.6180, 0.8517 and 0.2868. 

 

Since the increase in log likelihood for the rank 5 substitution matrix over the previous 

rank 4 substitution matrix was fairly large, we decided to add another rank 1 matrix to the 

A matrix. Thus for our next model, we set A = bb
T
  c

1
c

1T
  c

2
c

2T
   c

3
c

3T
  c

4
c

4T
  c

5
c

5T
 

 c
6
c

6T
 where c

6T
 = [0,0,0, 0,0,c6

6
,...,c19

6
] and the additional normalization c19

6
 =  n=6

18
 

cn
6
.   

 

We used the final estimates for the components of the b, c
1
, c

2
, c

3
, , c

4
 and c

5
 vectors from 

the previous model as starting coefficient values for the new model along with cn
6
 = 

0.001 for n = 6,7,...,18. The final log likelihood for this model was 568.877, an increase 

of 18.531. The single equation R
2
 was 0.9527.  

 

The present model had 111 unknown parameters that were estimated (plus a variance 

parameter). We had only 680 observations and so we decided to call a halt to our 

estimation procedure. Also convergence of the nonlinear estimation was slowing down 

and so it was becoming increasingly difficult for Shazam to converge to the maximum 

likelihood estimates. Thus we stopped our sequential estimation process at this point. 

 

The parameter estimates for the rank 5 substitution matrix are listed below in Table 3.
51

 

 

Table 3: Estimated Parameters for KBF Preferences 
 

Coef Estimate t  Stat Coef Estimate t Stat Coef Estimate t Stat 

b1
* 

1.3450 11.388 c3
2* 

-0.0780 -0.113 c9
4*

 0.1525 0.256 

b2
* 

1.3138 10.769 c4
2*

 -0.7121 -0.724 c10
4* 

-0.0321 -0.053 

b3
* 

1.4318 11.311 c5
2* 

-0.0973 -0.242 c11
4*

 -0.6147 -0.812 

b4
* 

1.5697 11.541 c6
2*

 -0.6352 -1.275 c12
4* 

-1.5855 -1.128 

b5
* 

1.3709 11.226 c7
2* 

-0.6146 -1.378 c13
4*

 -0.2332 -0.311 

b6
* 

2.0885 11.886 c8
2* 

1.1453 1.811 c14
4* 

-0.1605 -0.242 

b7
* 

1.4180 11.403 c9
2*

 -0.3882 -1.351 c15
4*

 -0.6687 -1.690 

b8
* 

0.8216 9.021 c10
2* 

-0.5408 -1.728 c16
4* 

-0.2246 -0.302 

                                                 
51

 The standard errors for the estimated coefficients are equal to the coefficient estimate listed in Table 3 

divided by the corresponding t statistic.  
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b9
* 

0.5692 9.670 c11
2*

 0.9956 2.140 c17
4* 

3.2700 3.547 

b10
* 

0.5880 9.476 c12
2* 

1.9022 1.674 c18
4*

 -0.3506 -0.436 

b11
* 

0.8010 10.010 c13
2*

 -0.4551 -1.480 c5
5* 

-0.0555 -0.105 

b12
* 

1.0962 9.162 c14
2* 

-0.7303 -1.455 c6
5*

 -0.0444 -0.118 

b13
* 

1.2411 11.136 c15
2*

 -0.3204 -0.795 c7
5* 

-0.0952 -0.056 

b14
* 

1.6071 11.124 c16
2* 

0.2584 0.842 c8
5* 

-0.2548 -0.038 

b15
* 

0.7145 10.115 c17
2* 

0.0199 0.007 c9
5*

 -0.6205 -0.887 

b16
* 

1.3384 11.465 c18
2*

 -0.5013 -1.128 c10
5* 

-0.5634 -0.792 

b17
* 

1.5759 7.968 c3
3* 

1.3620 5.405 c11
5*

 -0.1094 -0.028 

b18
* 

1.3699 11.400 c4
3*

 1.7166 4.405 c12
5* 

-0.3085 -0.036 

c1
1* 

1.9832 10.031 c5
3* 

1.0262 5.104 c13
5*

 0.6261 0.120 

c2
1*

 1.6598 6.653 c6
3*

 -0.4277 -1.090 c14
5* 

0.0516 0.013 

c3
1* 

-0.2507 -1.186 c7
3* 

0.8958 2.431 c15
5*

 -0.0774 -0.024 

c4
1*

 0.1313 0.552 c8
3* 

-0.4633 -0.809 c16
5* 

0.7559 0.134 

c5
1* 

0.0126 0.088 c9
3*

 -0.0097 -0.041 c17
5* 

0.6127 0.225 

c6
1*

 -0.0106 -0.050 c10
3* 

-0.0785 -0.277 c18
5*

 0.4772 0.054 

c7
1* 

-0.3807 -1.914 c11
3*

 -0.5885 -1.064 c6
6*

 -0.0093 -0.028 

c8
1* 

-0.4251 -1.856 c12
3* 

-0.1383 -0.137 c7
6* 

0.1776 0.380 

c9
1*

 -0.0179 -0.114 c13
3*

 -0.0220 -0.093 c8
6* 

-0.7621 -0.300 

c10
1* 

-0.2753 -1.576 c14
3* 

-0.4538 -1.183 c9
6*

 -0.0805 -0.015 

c11
1*

 -0.9620 -4.477 c15
3*

 -0.4603 -2.033 c10
6* 

0.0788 0.016 

c12
1* 

-0.8816 -2.693 c16
3* 

-0.0116 -0.064 c11
6*

 -0.4361 -0.270 

c13
1*

 0.1146 1.524 c17
3* 

-2.1645 -2.382 c12
6* 

-0.9471 -0.231 

c14
1* 

-0.2175 -1.016 c18
3*

 0.0091 0.033 c13
6*

 -0.6016 -0.114 

c15
1*

 -0.1262 -0.854 c4
4*

 -0.5049 -0.708 c14
6* 

0.4660 0.979 

c16
1* 

0.1367 1.247 c5
4* 

0.4895 1.341 c15
6(

 0.3859 0.335 

c17
1* 

-0.6792 -1.544 c6
4*

 0.2658 0.466 c16
6( 

0.6562 0.103 

c18
1*

 0.0849 0.450 c7
4* 

0.3802 0.625 c17
6* 

0.1162 0.002 

c2
2*

 0.7173 1.584 c8
4* 

-0.1078 -0.118 c18
6*

 1.0227 0.258 

 

 

The estimated bn
*
 in Table 3 for n = 1,...,18 plus b19 = 1 are proportional to the vector of 

first order partial derivatives of the KBF utility function f(q) evaluated at the vector of 

ones, qf(119). Thus the bn
*
 can be interpreted as estimates of the relative quality of the 

19 products. Viewing Table 3, it can be seen that the highest quality products were 

products 6, 17 and 4 (b6
*
 = 2.09, b17

*
 = 1.58, b4

*
 = 1.57) and the lowest quality products 

were products 9, 10 and 15 (b9
*
 = 0.57, b10

*
 = 0.59, b15

*
 = 0.71).   

 

With the estimated b
*
 and c

*
 vectors in hand (denote them as b

*
 and c

k*
 for k = 1,...,6), 

form the estimated A matrix as follows: 

 

(68) A
*
  b

*
b

*T
  c

1*
c

1*T
  c

2*
c

2*T
   c

3*
c

3*T
  c

4*
c

4*T
  c

5*
c

5*T
  c

6*
c

6*T
 

 

and denote the ij element of A
*
 as aij

*
 for i,j = 1,...,19. The predicted price for product i in 

month t is defined as follows: 

 

(69) pi
t*

  e
t
 k=1

19
 aik

*
qk

t
/[n=1

19
m=1

19
 anm

*
qn

t
qm

t
] ;                            t = 1,...,39; i = 1,...,19 
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where e
t
  p

t
q

t
 is period t sales or expenditures on the 19 products during month t. We 

calculated the predicted prices defined by (69) for all products and all months. 

 

Of particular interest are the predicted prices for products 2 and 4 for months 1-8 and for 

product 12 for months 10 and 20-22 when these products were not available. The 

predicted prices for products 2 and 4 for the first 8 months in our sample period were 

1.62, 1.56, 1.60, 1.52, 1.61, 1.52, 1.70. 1.97 and 1.85, 1.46, 1.80, 1.37, 1.77, 1.83, 1.88, 

2.27 respectively. The predicted prices for product 12 for months 10 and 20-22 were 1.37, 

1.20, 1.22 and 1.28. These predicted prices will be used as our “best” reservation prices 

for the missing products in the remainder of the paper.  

 

The equation by equation R
2
 that compares the predicted prices for the 19 products with 

the actual prices were as follows:
52

 0.8274, 0.8678, 0.9001, 0.9174, 0.8955, 0.8536, 

0.9047, 0.0344, 0.3281, 0.4242, 0.0516, 0.2842, 0.8650, 0.7280, 0.4872, 0.8135, 0.8542, 

0.8479 and 0.3210. The average R
2
 for Model 14 was 0.6424. Twelve of the 19 equations 

had an R
2
 greater than 0.70 while 5 of the equations had an R

2
 less than 0.40.

53
 

 

The month t utility level or aggregate quantity level implied by the KBF model, QKBF
t
, is 

defined as follows: 

 

(70) QKBF
t
  (q

tT
A

*
q

t
)
1/2

 ;                                                                                      t = 1,...,39. 

 

The corresponding KBF (unnormalized) implicit price level, PKBF
t*

, is defined as period t 

sales of the 19 products, e
t
, divided by the period t aggregate KBF quantity level, QKBF

t
: 

 

(71) PKBF
t*

  e
t
/QKBF

t
 ;                                                                                          t = 1,...,39. 

 

The month t KBF price index, PKBF
t
, is defined as the month t KBF price level divided by 

the month 1 KBF price level; i.e., PKBF
t
  PKBF

t*
/PKBF

1*
 for t = 1,...,39. The KBF price 

index is listed below in Table 4.  

 

Now that we have imputed prices for the unavailable products, we can compute fixed 

base and chained Fisher indexes using these prices for the unavailable products along 

with the corresponding 0 quantities. Denote these Fisher indexes for month t that use our 

imputed prices as PFI
t
 and PFICh

t
 for t = 1,...,39. These indexes are also listed in Table 4. 

 

It turns out that we can define estimates of the change in the true cost of living index due 

to changes in the availability of products in our KBF framework in a manner that is 

similar to that used by Feenstra. In order to accomplish this task, we need to define 

                                                 
52

 As usual, the R
2
 for the 39 product n equations was defined as the square of the correlation coefficient 

between the actual product n prices and their predicted counterparts using equations (90). For the prices of 

the 20 observations where a product was not available, we used the predicted prices in place of the actual 

prices. Thus the R
2
 is overstated for products 2, 4 and 12.   

53
 The sample average expenditure shares of these low R

2
 products was 0.026, 0.026, 0.043, 0.025 and 

0.050 respectively. Thus these low R
2
 products are relatively unimportant compared to the high expenditure 

share products. 
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various Fisher price indexes that make use of the predicted prices that result from the 

estimation of our last KBF model. The first of these additional Fisher indexes is PFI
t
 

which uses the predicted or imputed prices for the missing products (along with the 

associated 0 quantities) along with the actual prices and quantities for the remaining 

products to produce a fixed base Fisher price index. Using the same data, we can produce 

a chained Fisher price index, PFICh
t
. These indexes are listed in Table 4 below. The next 

two Fisher price indexes are the fixed base and chained maximum overlap Fisher indexes 

PF
t
 and PFCh

t
 that were defined earlier in Section 5 above. These indexes were listed in 

Table 2 and are listed again in Table 4 below. The final two Fisher indexes are the fixed 

base and chained Fisher price indexes, PFP
t
 and PFPCh

t
, that use the predicted prices for all 

products and all time periods defined by equations (69), which in turn are generated by 

our final estimated KBF utility function. It turns out that these indexes are identical and 

are also equal to the corresponding KBF price indexes, PKBF
t
, that are directly defined by 

the estimated utility function; see equations (71), which define the PKBF
t*

  e
t
/QKBF

t
 which 

in turn are normalized to define the PKBF
t
.  Thus we have PKBF

t
 = PFP

t
 = PFPCh

t
 for all t. All 

of these indexes are listed in Table 4. 

 

Table 4: The KBF Implicit Price Index, Fixed Base and Maximum Overlap Fisher 

Price Indexes and Various Fisher Price Indexes using KBF Imputed Prices for 

Unavailable Products 
 

Month PKBF
t 

PF
t
 PFCh

t
 PFI

t 
PFICh

t 
PFP

t 
PFPCh

t 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

2 0.98816 1.00218 1.00218 1.00218 1.00218 0.98816 0.98816 

3 0.99734 1.02342 1.01124 1.02342 1.01124 0.99734 0.99734 

4 0.93078 0.93388 0.94265 0.93388 0.94265 0.93078 0.93078 

5 0.92749 0.93964 0.93715 0.93964 0.93715 0.92749 0.92749 

6 1.02000 1.03989 1.04075 1.03989 1.04075 1.02000 1.02000 

7 1.04222 1.05662 1.10208 1.05662 1.10208 1.04222 1.04222 

8 1.19800 1.15739 1.26987 1.15739 1.26987 1.19800 1.19800 

9 1.14801 1.15209 1.24778 1.15165 1.24727 1.14801 1.14801 

10 1.14946 1.14617 1.24137 1.16081 1.24528 1.14946 1.14946 

11 1.13863 1.14088 1.22950 1.13876 1.23033 1.13863 1.13863 

12 1.10858 1.12760 1.22009 1.10951 1.22091 1.10858 1.10858 

13 1.08290 1.10698 1.20731 1.11511 1.20813 1.08290 1.08290 

14 1.11953 1.13419 1.23863 1.14803 1.23948 1.11953 1.11953 

15 1.04018 1.05579 1.15978 1.04086 1.16056 1.04018 1.04018 

16 1.04081 1.05099 1.15371 1.04836 1.15449 1.04081 1.04081 

17 0.94930 0.98640 1.08568 0.99410 1.08642 0.94930 0.94930 

18 0.86479 0.89490 0.98385 0.89105 0.98452 0.86479 0.86479 

19 0.87354 0.89032 0.99122 0.87308 0.99189 0.87355 0.87355 

20 0.88231 0.89016 0.99104 0.88051 0.99193 0.88231 0.88231 

21 0.88333 0.89453 1.00061 0.88920 1.00150 0.88333 0.88333 

22 0.85408 0.85466 0.95983 0.86217 0.96068 0.85408 0.85408 

23 0.87493 0.88842 0.97730 0.87981 0.97902 0.87493 0.87493 

24 0.88535 0.88930 0.96178 0.89357 0.96347 0.88535 0.88535 

25 0.79866 0.80421 0.88017 0.80050 0.88172 0.79866 0.79866 

26 0.83066 0.84644 0.91938 0.83026 0.92100 0.83066 0.83066 

27 0.87815 0.88641 0.98171 0.88749 0.98344 0.87815 0.87815 
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28 0.79681 0.81528 0.90580 0.82665 0.90739 0.79681 0.79681 

29 0.85006 0.85705 0.95671 0.85086 0.95839 0.85006 0.85006 

30 0.83602 0.84508 0.94446 0.85383 0.94612 0.83602 0.83602 

31 0.86528 0.87333 0.97386 0.87411 0.97557 0.86528 0.86528 

32 0.89165 0.89973 1.00016 0.92038 1.00192 0.89165 0.89165 

33 0.91245 0.92673 1.02452 0.92404 1.02632 0.91245 0.91245 

34 0.94661 0.95385 1.05227 0.95012 1.05412 0.94660 0.94660 

35 1.04573 0.98690 1.10820 0.99422 1.11014 1.04573 1.04573 

36 0.95051 0.96237 1.08529 0.95568 1.08719 0.95051 0.95051 

37 1.04791 1.04948 1.18995 1.04808 1.19204 1.04791 1.04791 

38 1.08860 1.09545 1.21560 1.10279 1.21773 1.08860 1.08860 

39 0.92639 0.94999 1.05918 0.95071 1.06104 0.92639 0.92639 

 

The two chained indexes based on actual price data, the maximum overlap chained Fisher 

index, PFCh
t
, and the chained Fisher index that uses the estimated reservation prices from 

our last model, PFICh
t
, suffer from a considerable amount of upward chain drift (most of 

which occurs between months 8 and 9). The Fisher fixed base and chained indexes that 

use predicted prices from our last KBF model everywhere, PFP
t
 and PFPCh

t
, are both 

exactly equal to PKBF
t
 as theory requires. 

 

Thus the two chained Fisher indexes are well above the other indexes. It can also be seen 

that the remaining indexes are not all that different for our particular data set. Thus in 

particular, the easy to calculate fixed base maximum overlap Fisher price index PF
t
 

provided a satisfactory approximation to the theoretically more desirable fixed base 

Fisher index PFI
t
 that used imputed reservation prices for the missing products.  

 

Feenstra’s methodology for measuring the benefits and costs of changing product 

availability basically assumes that with the help of some econometric estimation (i.e., the 

estimation of the elasticity of substitution), it is possible to calculate the purchaser’s true 

cost of living index. It is also possible to calculate an exact index for the cost of living 

index for the maximum overlap universe. Thus dividing the true cost of living by the 

maximum overlap cost of living, Feenstra obtains an index that can be interpreted as the 

net benefits of the changing availability of products between the two periods being 

compared. We can apply a variant of this methodology in the present situation. Having 

estimated reservation prices for the missing products, we can calculate a comprehensive 

Fisher chain link index going from period t1 to period t, which is PFICh
t
/PFICh

t1
. Holding 

product availability constant, we can calculate the corresponding chain link for the 

maximum overlap Fisher index for the products that are present in both periods, which is 

PFCh
t
/ PFCh

t1
. These indexes are listed in Table 8 above. The ratio of these two indexes is 

defined as follows: 

 

(72) IKBF
t
  [PFICh

t
/PFICh

t1
]/[PFCh

t
/PFCh

t1
] ;                                                        t = 2,3,...,T.  

 

This index can be interpreted as a “correction” index which when multiplied by the 

readily calculated maximum overlap index PFCh
t
/PFCh

t1 
 gives us the ”true” chain link 

index PFICh
t
/PFICh

t1
, or it can be interpreted as the amount of bias in the maximum 

overlap chain link index due to changes in the availability of products. This index can be 
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calculated for our data set using the information on PFICh
t
 and PFCh

t
 listed above in Table 5. 

When the availability of products increases (decreases) going from period t1 to t, we 

expect IKBF
t
 to be less (greater) than one and 1  IKBF

t
 is an estimate of the percentage 

decrease (increase) in the cost of living due to the increased (decreased) availability of 

products. If the availability of products is constant over periods t 1 and t, then IKBF
t
 will 

be equal to 1. Thus the periods where IKBF
t
 differs from 1 in our data set are periods 9, 10, 

11, 20 and 23. The values for IKBF
t
 for these periods are listed in Table 5 below.     

 

Table 5: Alternative Bias Indexes for Fisher Maximum Overlap Chain Link Indexes 

Using KBF Imputed Prices for Unavailable Products and Using KBF Imputed 

Prices for All Products 
 

t IKBF
t
 IKBF

t*
 

9 0.99960 0.99836 

10 1.00355 1.00124 

11 0.99754 0.99847 

20 1.00021 1.00294 

23 1.00086 0.99988 

Product 1.00176 1.00088 

  

We expected IKBF
t
 to be less than 1 for periods 9, 11 and 23 when product availability 

increased and to be greater than 1 for periods 10 and 20 when product availability 

decreased. However, the month 23 value was IKBF
23

 = 1.00086 which is greater than unity 

so the increased availability of product 12 in month 23 led to an increase in the cost of 

living rather than a decrease as expected. The product of the 5 nonunitary values for IKBF
t
 

t was 1.00176 (see the last row of Table 5) and so the overall increase in the availability 

of products led to a small increase in the cost of living over the sample period equal to 

0.176 percentage points, rather than a decrease as was expected. Since our estimated 

KBF utility function is not exactly consistent with the observed data, these kinds of 

counterintuitive results can occur. 

 

One method for eliminating anomalous results is to replace all observed prices by their 

predicted prices (and of course use predicted prices for the missing product prices). The 

comprehensive predicted Fisher chain link index going from period t1 to period t using  

actual quantities qi
t
 and predicted prices pi

t*
 defined by definitions (69) above is 

PFPCh
t
/PFPCh

t1
 = PFP

t
/PFP

t1
 = PKBF

t
/PKBF

t1
. Define PFPMCh

t
 as the maximum overlap 

chained Fisher price index that uses actual quantities qi
t
 and the predicted prices pi

t*
 

defined by (69) above. Holding product availability constant, we can calculate the 

corresponding chain link for this maximum overlap Fisher index using predicted prices 

for the products that are present in both periods, which is PFPMCh
t
/PFPMCh

t1
. The ratio of  

these two link indexes is defined as IKBF
t*

: 

 

 (73) IKBF
t*

  [PFPCh
t
/PFPCh

t1
]/[PFPMCh

t
/PFPMCh

t1
] ;                                              t = 2,3,...,T.  

 

This index can also be interpreted as a “correction” index which when multiplied by the 

maximum overlap index using predicted prices, PFPMCh
t
/PFPMCh

t1
, gives us the ”true” 
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chain link index PFPCh
t
/PFPCh

t1
 which is exactly consistent with our final estimated KBF 

utility function. Alternatively, it can be interpreted as an estimator for the amount of bias 

in the maximum overlap chain link Fisher index using predicted prices due to changes in 

the availability of products. When the availability of products increases (decreases) going 

from period t1 to t, we expect IKBF
t*

 to be less (greater) than one and 1  IKBF
t
 is an 

estimate of the percentage decrease (increase) in the cost of living due to the increased 

(decreased) availability of products. As was the case with IKBF
t
, if the availability of 

products is constant over periods t 1 and t, then IKBF
t*

 will be equal to 1. Thus the 

periods where IKBF
t*

 differs from 1 in our data set are again periods 9, 10, 11, 20 and 23. 

The values for IKBF
t*

 for these periods are listed in Table 5 above. 

 

Again, we expected IKBF
t*

 to be less than 1 for periods 9, 11 and 23 when product 

availability increased and to be greater than 1 for periods 10 and 20 when product 

availability decreased. Our expectations were realized; there were no anomalous results 

for the 5 periods. However, the product of the 5 nonunitary values for IKBF
t*

 was 1.00088 

(see the last row and column of Table 5) and so the overall increase in the availability of 

products led to a tiny increase in the cost of living over the sample period equal to 0.088 

percentage points, rather than a decrease as was expected. The explanation for the 

anomalous results lies in the fact that the maximum overlap Fisher price index does not 

correctly reflect the gains and losses from changing product availability. We will address 

this problem in the following section.    

 

In the following section, we will develop an alternative methodology for estimating the 

gains and losses from changes in product availability that is based on the economic 

approach to index number theory. This approach utilizes the estimated well behaved 

utility function so it has the drawback of being very much dependent on the econometric 

estimation of the utility function. It has the advantage of being a much more transparent 

approach that is anomaly free.  

 

11. The Gains and Losses Due to Changes in Product Availability Revisited   
 

In this section, we consider an alternative framework for measuring the gains or losses in 

utility due to changes in the availability of products. We suppose that we have data on 

prices and quantities on the sales of N products for T periods. The vectors of observed 

period t prices and quantities sold are p
t
  [p1

t
,...,pN

t
] > 0N and q

t
  [q1

t
,...,qN

t
] > 0N  

respectively for t = 1,...,T. Sales or expenditures on the N products during period t are e
t
  

p
t
q

t
 = n=1

N
 pn

t
qn

t
 > 0 for t = 1,...,T.

54
 We assume that a linearly homogeneous utility 

function, f(q1,...,qN) = f(q), has been estimated where q  0N.
55

 If product n is not 

available (or not sold) during period t, we assume that the corresponding observed price 

and quantity, pn
t
 and qn

t
, are set equal to zeros. 

 

                                                 
54

 We also assume that n=2
N
 pn

t
qn

t
 > 0 for t = 1,...,T. 

55
 We assume that f(q) is a differentiable, positive, linearly homogeneous, nondecreasing and concave 

function of q over a cone contained in the positive orthant. The domain of definition of the function f is 

extended to the closure of this cone by continuity and we assume that observed quantity vectors q
t
 are 

contained in the closure of this cone. 
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We calculate reservation prices for the unavailable products. We also need to form 

predicted prices for the available commodities, where the predicted prices are consistent 

with our econometrically estimated utility function and the observed quantity data, q
t
. 

The period t reservation or predicted price for product n, pn
t*

, is defined as follows, using 

the observed period t expenditure, e
t
, the observed period t quantity vector q

t
 and the 

partial derivatives of the estimated utility function f(q) as follows: 

 

(74) pn
t*

  e
t
[f(q

t
)/qn]/f(q

t
) ;                                                              n = 1,...,N; t = 1,...,T. 

 

The prices defined by (74) are also Rothbarth’s (1941) virtual prices; they are the prices 

which rationalize the observed period t quantity vector as a solution to the period t utility 

maximization problem. Since f(q) is nondecreasing in its arguments and e
t
 > 0, we see 

that pn
t*

  0 for all n and t.
56

 If the estimated utility function fits the observed data exactly 

(so that all errors in the estimating equations are equal to 0),
57

 then the predicted prices, 

pn
t*

, for the available products will be equal to the corresponding actual prices, pn
t
.  

 

Imputed expenditures on product n during period t are defined as pn
t*

qn
t
 for n = 1,...,N. 

Note that if product n is not sold during period t, qn
t
 = 0 and hence pn

t*
qn

t
 = 0 as well. 

Total imputed expenditures for all products sold during period t, e
t*

, are defined as the 

sum of the individual product imputed expenditures: 

 

(75) e
t*

  n=1
N
 pn

t*
qn

t
 ;                                                                                          t = 1,...,T  

             = n=1
N
 qn

t
 e

t
[f(q

t
)/qn]/f(q

t
)                                                 using definitions (74) 

             = e
t
 

 

where the last equality follows using the linear homogeneity of f(q) since by Euler’s 

Theorem on homogeneous functions, we have f(q) = n=1
N
 qn f(q)/qn. Thus period t 

imputed expenditures, e
t*

, are equal to period t actual expenditures, e
t
. 

 

The above material sets the stage for the main acts: namely how to measure the welfare 

gain if product availability increases and how to measure the welfare loss if product 

availability decreases. 

 

Suppose that in period t1, product 1 was not available (so that q1
t1

 = 0) , but in period t, 

it becomes available and a positive amount is purchased (so that q1
t
 > 0). Our task is to 

define a measure of the increase in purchaser welfare that can be attributed to the increase 

in commodity availability.  

 

Define the vector of purchases of products during period t excluding purchases of product 

1 as q1
t
  [q2

t
,q3

t
,...,qN

t
]. Thus q

t
 = [q1

t
,q1

t
]. Since by assumption, an estimated utility 

function f(q) is available, we can use this utility function in order to define the aggregate 

level of purchaser utility during period t, u
t
, as follows: 

 

                                                 
56

 We also assume that f(q
t
) > 0. 

57
 This assumes that observed prices are the dependent variables in the estimating equations. 
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(76) u
t
  f(q

t
) = f(q1

t
,q1

t
). 

 

Now exclude the purchases of product 1 and define the (diminished) utility, u1
t
, the 

utility generated by the remaining vector of purchases, q1
t
, as follows: 

 

(77) u1
t
  f(0,q1

t
) 

                 f(q1
t
,q1

t
)                            since f (q) is nondecreasing in the components of q 

                = u
t
                                        using definition (76). 

 

Define the period t imputed expenditures on products excluding product 1, e1
t*

, as 

follows: 

 

(78) e1
t*

  n=2
N
 pn

t*
qn

t
 

                 = e
t
  p1

t*
q1

t
                                                  using (75) 

                  e
t
                                                                since p1

t*
  0 and q1

t
 > 0. 

 

Define the ratio of e
t
 to e1

t*
 as follows: 

 

(79) 1  e
t
/e1

t*
 

               1                                                                    using (78) and e1
t
 > 0. 

 

Multiply the vector of period t purchases excluding product 1, q1
t
, by the scalar 1 and 

calculate the resulting imputed expenditures on the vector 1q1
t
: 

 

(80) n=2
N
 pn

t*
(1qn

t
) = 1n=2

N
 pn

t*
qn

t
 

 

(81) n=2
N
 pn

t*
(1qn

t
) = 1n=2

N
 pn

t*
qn

t
  

                                    = 1 e1
t
                                         using definition (78) 

                                    = [e
t
/e1

t*
]e1

t
                                 using definition (79) 

                                    = e
t
. 

 

Using the linear homogeneity of f(q) in the components of q, we are able to calculate the 

utility level, uA1
t
, that is generated by the vector 1q1

t
 as follows: 

 

(82) uA1
t
  f(0,1q1

t
) 

                 = 1f(0,q1
t
)                                                      using the linear homogeneity of f 

                 = 1u1
t
                                                             using definition (77). 

 

Note that 1 can be calculated using definition (79) and u1
t
 can be calculated using 

definition (71). Thus uA1
t
 can also be readily calculated. 

 

Consider the following (hypothetical) purchaser’s period t aggregate utility maximization 

problem where product 1 is not available and purchasers face the imputed prices pn
t*

 for 

products 2,...,N and the maximum expenditure on the N1 products is restricted to be 

equal to or less than actual expenditures on all N products during period t, which is e
t
: 
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(83) max q’s {f(0,q2,q3,...,qN) : n=2
N
 pn

t*
qn = e

t
}  u1

t
 

                                                                               uA1
t
 

 

where uA1
t
 is defined by (79). The inequality in (83) follows because (80) shows that 

1q1
t 
is a feasible solution for the utility maximization problem defined by (83).  

 

Now consider the following period t unconstrained utility maximization problem using 

imputed prices and actual expenditure e
t
: 

 

(84) max q’s {f(q1,q2,q3,...,qN) : n=1
N
 pn

t*
qn = e

t
}. 

 

The first order necessary conditions
58

 for  the observed period t quantity vector q
t
 to solve 

(84) are as follows: 

 

(85) f(q
t
) = 

*
p

t*
 ; 

(86) p
t*
q

t
   = e

t
 

 

where f(q
t
) is the vector of first order partial derivatives of f evaluated at q

t
 and 

*
 is the 

optimal Lagrange multiplier. Take the inner product of both sides of (85) with q
t
 and 

solve the resulting equation for 
*
 = q

t
f(q

t
)/p

t*
q

t
 = q

t
f(q

t
)/e

t
 where we have used (75), 

which also shows that q
t
 satisfies the constraint (86). Euler’s Theorem on homogeneous 

functions implies that q
t
f(q

t
) = f(q

t
) and so 

*
 = f(q

t
)/e

t
.  Replace 

*
 in equations (85) by 

f(q
t
)/e

t
 and we find that the resulting equations are equivalent to equations (74). Thus q

t
 

solves (84) and we have the following results: 

 

(87) f(q
t
) = max q’s {f(q1,q2,q3,...,qN) : n=1

N
 pn

t*
qn = e

t
} 

                  = u
t
  

                   u1
t
 

 

where u1
t
 is the optimal level of utility that is generated by a solution to the constrained 

period t utility maximization problem defined by (83). The inequality in (87) follows 

since any optimal solution for (83) is only a feasible solution for the unconstrained utility 

maximization problem defined by (84). The inequalities (83) and (87) imply the 

following inequalities: 

 

(88) u
t
  u1

t
  uA1

t
. 

 

We regard uA1
t
 as an approximation to u1

t
 (and it is also a lower bound for u1

t
). Given that 

an estimated utility function f(q) is on hand, it is easy to compute the approximate utility 

level uA1
t
 when product one is not available. The actual constrained utility level, u1

t
, will 

in general involve solving numerically the nonlinear programming problem defined by 

(83). For the KBF functional form, instead of maximizing (q
T
Aq)

1/2
, we could maximize 

its square, q
T
Aq, and thus solving (83) would be equivalent to solving a quadratic 

                                                 
58

 Since f(q) is a concave function of q over the feasible region, these conditions are also sufficient. 
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programming problem with a single linear constraint. For the CES functional form, it 

turns out that there is no need to solve (83) since the strong separability of the CES 

functional form will imply that u1
t
 = uA1

t
 and the latter utility level can be readily 

calculated.
59

 

 

A reasonable measure of the gain in utility due to the new availability of product 1 in 

period t, G1
t
, is the ratio of the completely unconstrained level of utility u

t
 to the product 

1 constrained level u1
t
; i.e., define the product 1 utility gain for period t as 

 

(89) G1
t
  u

t
/u1

t
  1 

 

where the inequality follows from (87). The corresponding product 1 approximate utility 

gain is defined as: 

 

(90) GA1
t
  u

t
/uA1

t
  G1

t
  1 

 

where the inequalities in (90) follow from the inequalities in (88). Thus in general, the 

approximate gain is an upper bound to the true gain G1
t
 in utility that is due to the new 

availability of product 1 in period t. 

 

Now consider the case where product 1 is available in period t but it becomes unavailable 

in period t+1. In this case, we want to calculate an approximation to the loss of utility in 

period t+1 due to the unavailability of product 1 in period t+1. However, it turns out that 

our methodology will not provide an answer to this measurement problem using the price 

and quantity data for period t+1: we have to approximate the loss of utility that will occur 

in period t due to the unavailability of product 1 in period t+1 by looking at the loss of 

utility which would occur in period t if product 1 became unavailable. Once we redefine 

our measurement problem in this way, we can simply adapt the inequalities that we have 

already established for period t utility to the loss of utility from the unavailability of 

product 1 from the previous analysis for the gain in utility.    

 

A reasonable measure of the hypothetical loss of utility due to the unavailability of 

product 1 in period t, L1
t
, is the ratio of the product 1 constrained level of utility u1

t
 to the 

completely unconstrained level of utility u
t
 to the product 1. We apply this hypothetical 

loss measure to period t+1 when product 1 becomes unavailable; i.e., define the product 1 

utility loss that can be attributed to the disappearance of product 1 in period t+1 as 

 

(91) L1
t+1

  u1
t
/u

t
  1 

 

where the inequality follows from (87). The corresponding product 1 approximate utility 

loss is defined as: 

 

(92) LA1
t+1

  uA1
t
/u

t
  L1

t+1
  1 

 

                                                 
59

 If N = 2, then uA1
t
 = u1

t
 for any linearly homogenous, concave utility function, including the KBF utility 

function. 



 42 

where the inequalities in (92) follow from the inequalities in (88). Thus in general, the 

approximate loss is an lower bound to the “true” loss L1
t+1

 in utility that can be attributed 

to the disappearance of product 1 in period t+1. As was the case with our approximate 

gain measure, if f(q) is a CES utility function or if N = 2, then LA1
t
 = L1

t
. 

 

If f(q) is a linear utility function, then it can be shown that all of the above gain and loss 

measures are equal to unity; i.e., there are no utility gains and losses from changes in 

product availability because each product is a perfect substitute for every other product. 

Thus the closer f(q) is to a linear function, the smaller will be the gains and losses due to 

changes in product availability.  

 

In Appendix C, we work out counterparts to uA1
t
/u

t
 for all periods t and for all products i, 

where product 1 is replaced by product i in formula (92); i.e., we calculate the 

approximate loss of utility for the withdrawal of any product i from the marketplace for 

each period t for our estimated CES and KBF utility functions.
60

   

 

It is straightforward to adapt the above analysis from product 1 to product 12 and to 

compute the approximate gains and losses in utility that occur due to the disappearance of 

product 12 in period 10, its reappearance in period 11, its disappearance in period 20 and 

its final reappearance in period 23. These approximate losses and gains are denoted by 

LA12
10

, GA12
11

, LA12
20

 and GA12
23

 and are listed in Table 6. It is also straightforward to 

adapt the above analysis to situations where two new products appear in a period, which 

is the case for our products 2 and 4 which were missing in periods 1-8 and make their 

appearance in period 9. The approximate utility gain due to the new availability of these 

products is denoted by GA2,4
9
 and this measure is also listed in Table 6 using the 

estimated utility functions for our final KBF model. Table 1 above listed the reduction in 

the CES consumer price index for period 9 due to the introduction of products 2 and 4 in 

this period using the Feenstra methodology. From Table 1, this reduction was 0.99277. 

We convert this into a utility gain equal to 1/0.99277 = 1.00728. We do similar 

conversions of the CES results listed in Table 1 into gains and losses in utility and we list 

these gains and losses in the last column of Table 6 below. Thus Table 6 compares the 

gains and losses in utility for the KBF and CES models for the 5 months where there was 

a change in product availability.  We also list the product of these five approximate gain 

and loss estimates for both models in the last row of Table 6. 

 

Table 6: The Gains and Losses of Utility Due to Changes in Product Availability 

 

 KBF CES 

GA2,4
9 

1.00127 1.00728 

LA12
10

 0.99748 0.99643 

GA12
11

 1.00304 1.00433 

LA12
20

 0.99881 0.99615 

GA12
23

 1.00078 1.00311 

Product 1.00138 1.00728 
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 The approximate loss is equal to the actual loss for the CES utility function. 
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The CES model implies that the net effect of changes in product availability is to increase 

purchasers’ utility by approximately 0.728 percentage points while the KBF model 

implies a much smaller increase of 0.138 percentage points. This is only one set of 

experimental calculations but the above results indicate that the net gains in utility 

predicted for increases in the availability of products by the CES model can substantially 

overstate the benefits of increased product variety. The results in the present section 

reinforce the results that we obtained in the previous section; i.e., the Feenstra 

methodology tends to overstate the benefits from increased product variety. 

 

We conclude this section with a brief discussion of Hausman’s (2003; 40) perfectly valid 

cost (or expenditure) function approach to the estimation of reservation prices
61

 and we 

explain why we did not use it in the present study. 

 

Instead of attempting to estimate a direct utility function, we could attempt to estimate a 

more general unit cost function than the CES unit cost function. Denote the more general 

unit cost function as c(p) where p  [p1,p2...,pN]  [p1,p1] where p1 is the set of prices 

excluding the price of product 1. Assuming that c(p) is positive, nondecreasing, linearly 

homogeneous and concave over the positive orthant
62

 and assuming all products are 

present in period t, the estimating equations for period t are the following ones: 

 

(93) qn
t
 = cn(p

t
)e

t
/c(p

t
) + n

t
 ;                                                                               n = 1,...,N 

 

where q
t
 and p

t
 are the observed quantity and price vectors for period t, e

t
 is total 

expenditure on the N commodities during the period and cn(p
t
)  c(p

t
)/pn for n = 1,...,N. 

Now suppose product 1 is not available during period t. Then the N period t estimating 

equations are replaced by the following N equations: 

 

(94) qn
t
 = cn(p1

t*
,p1

t
)e

t
/c(p1

t*
,p1

t
) + n

t
 ;                                                             n = 1,...,N 

 

where q1
t
 = 0 and p1

t*
 is the reservation price that will drive demand for product 1 down 

to 0 in period t. It can be seen that p1
t*

 is effectively an extra unknown parameter which 

must be estimated along with the other parameters in the unit cost function c(p). 

Typically, the resulting estimating equations become very nonlinear and difficult to 

estimate and so it becomes necessary (as a practical matter) to drop all N estimating 

equations defined by (94) for periods where product availability changes. Thus the 

econometrician is reduced to using the estimating equations for periods where all 

products in the group of products are available. In many situations, this will greatly 

reduce the available degrees of freedom and in some cases, lead to no degrees of freedom 

at all if every period has a missing product. Contrast this situation with the methodology 

                                                 
61

 Hausman (1996; 217) (1999; 190) and Hausman and Leonard (2002; 248) for expositions and 

applications of his cost function methodology. Note that he did not assume homotheticity so his cost 

function framework was more general than the unit cost function approach that we are using. We believe 

that the assumption of homothetic preferences which can be represented by a linearly homogeneous utility 

function is an appropriate one for a statistical agency since the resulting price levels are independent of the 

levels of demand, which is a very useful property for macroeconomic applications of the resulting price 

indexes.   
62

 Extend the domain of definition of c(p) to the nonnegative orthant by continuity. 
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that we have used for our models that use the one big equation approach: we only needed 

to drop the missing product estimating equations using our primal approach instead of 

having to drop all estimating equations for any period which had one or more missing 

products.
63

  

 

In the following section, we derive a second order approximation to the loss of utility due 

to the withdrawal of a product in the case of two products. We illustrate the methodology 

using our data set where the second product is interpreted as an aggregate of all products 

except the first product. We utilize this methodology using our estimated KBF and CES 

utility functions.  

 

12. Approximate Loss of Utility Measures for the Case of Two Products        
 

We adapt our loss model presented in the previous section to the case of only 2 

commodities. We will derive a second order Taylor series approximation to our loss 

measure and then evaluate these approximate losses using our estimated KBF and CES 

utility functions for frozen juices. We assume that the utility function f(q1,q2) is twice 

continuously differentiable in this section.      

 

We suppose that purchasers have maximized the utility function f(q1,q2) in a period 

where they face prices p1
*
 > 0 and p2

*
 > 0 where f satisfies our usual regularity conditions 

plus differentiability. The optimal quantities are the observed quantities, which we denote 

by q1
*
 > 0 and q2

*
 > 0. The corresponding prices pn

*
 are defined by evaluating the 

following inverse demand functions at observed expenditure e
*
 and observed quantities, 

q1
*
 and q2

*
: 

 

(95) pn
*
 = e

*
fn(q1

*
,q2

*
)/f(q1

*
,q2

*
) ;                                                                              n = 1,2 

 

where fn(q1
*
,q2

*
)  fn

*
 denotes the first order partial derivative of the utility function, 

f(q1
*
,q2

*
)/qn, and fnm(q1

*
,q2

*
)  fnm

*
 denotes the second order partial derivative, 


2
f(q1

*
,q2

*
)/qnqm. Define element nm of the 2 by 2 matrix of marginal utility elasticities, 

nm
*
, as follows: 

 

(96) nm
*
  (fn

*
)
1

fnm
*
qm

*
 ;                                                                                      n,m = 1,2. 

 

The concavity of the function f(q) implies that the second order own partial derivatives of 

f(q), fnn
*
, are nonpositive and this in turn implies that n

*
  0 for n = 1,2.  Define the level 

of utility u
*
 achieved at the quantity vector q

*
  [q1

*
,q2

*
] to be f

*
 defined as: 
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 There is another reason why we did not pursue Hausman’s cost function methodology very far in this 

paper. The simplest unit cost function is a linear one but this corresponds to a zero elasticity of substitution 

model which as we have seen fits the data rather poorly in the present context where we expect closely 

related products to exhibit a considerable degree of substitutability. We could have generalized the linear 

unit cost function by assuming the KBF functional form for the unit cost function. But because the linear 

cost function fits the data so poorly, we suspect that a semiflexible KBF functional form would not fit the 

data as well as the KBF semiflexible functional form for the utility function. This utility functional form 

starts off with the perfect substitutes case which fits the data much better than the linear (no substitution at 

all) cost function.  
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(97) u
*
 = f

*
  f(q1

*
,q2

*
). 

 

Conditions (95) imply that q
*
 solves the following utility maximization problem under 

our concavity and linear homogeneity assumptions on the utility function, f(q): 

 

(98) max q {f(q) : p
*
q = e

*
} = u

*
 = f

*
. 

 

Now consider a model where we reduce purchases of q1 down to 0. We do this in a linear 

fashion holding prices fixed at their initial levels, p1
*
, p2

*
. Thus we travel along the 

budget constraint until it intersects the q2 axis. Hence q2 is an endogenous variable; it is 

the following function of q1 where q1 starts at q1 = q1
*
 and ends up at q1 = 0: 

 

(99) q2(q1)  [e
*
  p1

*
q1]/p2

*
. 

 

The derivative of q2(q1) is q2q1)  q2(q1)/q1 = (p1
*
/p2

*
), a fact which we will use later 

when proving (103) below. Define utility as a function of q1 for 0  q1  q1
*
, holding 

expenditures on the two commodities constant at e
*
, as follows: 

 

(100) h(q1)  f(q1,q2(q1)) = f(q1,[e
*
  p1

*
q1]/p2

*
). 

    

We use the function h(q1) to measure the purchaser loss of utility as we move q1 from its 

original equilibrium level of q1
*
 to 0. The proportional loss of utility due to the 

withdrawal of product 1 from the marketplace, L1, can be measured by the negative of 

the utility ratio less unity:  

 

(101) L1  {[h(0)/h(q1
*
)] 1} = {[h(0)/f(q1

*
,q2

*
)] 1} = {[h(0)/f

*
] 1}  0. 

 

We approximate h(0) by a second order Taylor series approximation around the point q1
*
: 

 

(102) h(0)  h(q1
*
) + h(q1

*
)(0  q1

*
) + (1/2) h (q1

*
)(0  q1

*
)
2
.   

 

Calculating h(q1
*
) and h(q1

*
) and substituting (102) into (101), we find that h(q1

*
) = 0 

and the second order approximation to L1 is the following expression:
64

 

 

(103) LA1   (1/2) f11
* 

(f
*
)
1 

(1+[s1
*
/s2

*
])

2 
(q1

*
)
2
  

                 =  (1/2)11
*
s1

*
(1+[s1

*
/s2

*
])

2
 

                  0 

 

where 11
*
  f11

*
q1

*
/f1

*
  0 is the marginal utility elasticity for product 1 and s1

*
  

p1
*
q1

*
/e

*
 is the fitted expenditure share of product 1 at the optimal equilibrium when both 

products are present. If 11
*
 = 0 or s1

*
 = 0, then LA1 equals 0 and there is no loss of utility. 

If the utility function is linear, then the products are perfect substitutes and the second 

derivative f11
*
 will be equal to 0. Thus in this case, 11

*
 equals 0 and LA1 will equal 0 as 
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 See Appendix B for a proof of this result. 
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well, and there will be no loss of utility due to the withdrawal of the product from the 

marketplace. On the other hand, the less substitutable the two products are, the more 

negative will be 11
*
 and the bigger will be the loss of utility due to the withdrawal of the 

product from the marketplace. 

 

It is of some interest to derive an approximation to the reservation price for a product that 

is withdrawn from the market. Of course, if econometric techniques are used to estimate a 

concave linearly homogeneous utility function, then an exact reservation price can be 

obtained for the withdrawal of each product in each period by solving a concave 

programming problem. But as we have seen, it is not a simple matter to estimate a 

suitable utility function. Thus a simple formula that gives us an approximation to the 

reservation price is of some use to statistical agencies that use carry forward prices for 

missing products since an approximate reservation price could be used in place of the 

missing product prices. The actual reservation price for product 1 as a function of q1 can 

be defined as follows: 

 

(104) p1(q1)  e
*
f1(q1, [e

*
  p1

*
q1]/p2

*
)/f(q1, [e

*
  p1

*
q1]/p2

*
). 

 

The proportional increase in the observed price of product 1, PI1, that would be required 

to reduce the demand for the product to 0 is defined as follows: 

 

(105) PI1  [p1(0)  p(q1
*
)]/p(q1

*
) = [p1(0)  p1

*
]/p1

*
. 

 

Approximating p1(0) by its first order Taylor series approximation around q1
*
 leads to the 

following approximation to PI1: 
65

 

 

(106) PIA1   p1(q1
*
)q1

*
/p1

*
 

                 =  11[1 + (s1
*
/s2

*
)] 

                  0 

 

where the inequality follows since the marginal utility elasticity 11  0. Thus the bigger 

in magnitude is this elasticity, the higher will be the reservation price for product 1 if it is 

withdrawn from the marketplace. 

 

We apply a modification of the above formulae to our data set using our estimated KBF 

and CES utility functions. The modification is this: we single out each product and regard 

it as a product 1 in the approximate formulae (103) and (106). The remaining products 

are aggregated into product 2. The share of this aggregate product 2 is simply s2
*
  1  

s1
*
.
66

 With these modifications, we can calculate L1 and PI1 for each product and each 

time period. Denote these modified measures choosing product n in period t as the 

product singled out for withdrawal as Ln
t
 and PIn

t
. Denote the mean of these measures for 
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 See Appendix B for a proof of this result.  
66

 The shares that we use for this exercise are fitted shares; i.e., we use the actual quantities that are 

observed in period t, qn
t
, and the estimated prices pn

t*
  f1(q

t
)e

t
/f(q

t
) where f(q) is the estimated utility 

function. The shares used in the subsequent computations are the fitted shares sn
t
  pn

t*
qn

t
/p

t*
q

t
 for  t = 

1,...,39 and n = 1,...,19.  
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product n over the 39 time periods for our estimated KBF and CES functional forms by 

LKBF,n, PIKBF,n, LKBF,n and PIKBF,n. These means are listed in Table 7 below. 

 

Table 7: Approximate Average Proportional Losses of Utility and Average 

Proportional Increases in Price due to Product Withdrawal for the Estimated KBF 

and CES Utility Functions  

 

Product n LKBF,n PIKBF,n LCES,n PICES,n KBF,nn CES,nn 

1 0.00407 0.11892 0.00230 0.13610 -0.12974 -0.13883 

2 0.00077 0.04157 0.00294 0.13270 -0.04336 -0.14324 

3 0.00055 0.03010 0.00403 0.12619 -0.03137 -0.14135 

4 0.00081 0.04364 0.00125 0.14105 -0.04550 -0.14230 

5 0.00331 0.06440 0.00091 0.14256 -0.07562 -0.13025 

6 0.00012 0.00674 0.00505 0.11849 -0.00700 -0.14138 

7 0.00054 0.02715 0.00064 0.14372 -0.02840 -0.14070 

8 0.00101 0.07166 0.00185 0.13827 -0.07391 -0.14262 

9 0.00077 0.03997 0.00396 0.12664 -0.04179 -0.14272 

10 0.00053 0.03393 0.00444 0.12332 -0.03514 -0.14381 

11 0.00335 0.15131 0.00053 0.14418 -0.15928 -0.14021 

12 0.00211 0.14541 0.00070 0.14345 -0.15009 -0.14275 

13 0.00555 0.07800 0.00457 0.12235 -0.11789 -0.11495 

14 0.00092 0.02722 0.00461 0.12203 -0.02960 -0.13607 

15 0.00087 0.04217 0.00120 0.14130 -0.04453 -0.14320 

16 0.00311 0.05651 0.00323 0.13107 -0.06824 -0.12950 

17 0.00194 0.13064 0.00382 0.12753 -0.13493 -0.14224 

18 0.00113 0.03940 0.00420 0.12502 -0.04231 -0.13930 

19 0.00042 0.01348 0.00372 0.12816 -0.01459 -0.13896 

Mean 0.00168 0.06117 0.00265 0.13201 -0.06702 -0.13865 

 

From Table 7, it can be seen that averaging over all products and all time periods, the 

approximate loss of utility from the withdrawal of a product is about 0.168 percentage 

points using our estimated KBF utility function and about 0.265 percentage points using 

our estimated CES utility function. However, the degree of overstatement of the loss of 

utility for the CES function compared to the KBF function varies a great deal as we vary 

the product that is withdrawn from the marketplace. Turning to the approximate 

percentage increase in price that is required to induce the demand for a product to drop to 

zero, Table 7 indicates that on average, a 6.1 percent increase in price is required for the 

KBF utility function and a 13.2 percent increase is required for the CES utility function. 

However, the linear approximation that is involved in deriving these estimates is not 

accurate for the CES functional form since we know that an infinite increase in price is 

required to drive demand down to 0.
67

  

       

From (103), the approximate loss of utility due to the withdrawal of product 1 was LA1  

 (1/2)11
*
s1(1+[s1

*
/s2

*
])

2
 where we set s2

*
 = 1  s1

*
. This formula is valid for any linearly 
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 It is likely that the linear approximation for the reservation price is more accurate for the KBF functional 

form since the KBF utility function is “close” to being a quadratic function and hence linear 

approximations to its derivatives will be “close” to being accurate.   
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homogeneous utility function. Thus it is differences in the own marginal utility elasticity 

for product 1, 11
*
, that will lead to differences in the approximate loss due to different 

choices of functional form for the utility function. Hence, it is of interest to list these own 

marginal utility elasticities for our two estimated functional forms. Denote the own 

marginal utility elasticity for product n for the KBF and CES functional forms for the 

period t data by KBF,nn
t
 and CES,nn

t
 respectively. Denote the sample average of these 

elasticities over the 39 time periods by KBF,nn and CES,nn. These average elasticities are 

listed in Table 7. The average CES own marginal utility elasticity over all time periods 

and all products is  0.13865 and the corresponding KBF average elasticity is  0.06702. 

Thus if we inserted these average elasticities into our approximate loss formula (103), the 

CES loss would be approximately twice as big as the KBF loss. However, note that for 

products 11, 12 and 13, the average (over time periods) KBF elasticity is larger in 

magnitude than the corresponding average CES elasticity. But in general, the CES 

estimated own marginal utility elasticities tend to be bigger in magnitude than the 

corresponding KBF elasticities.   

 

In order to explain why the KBF own marginal utility elasticities are so variable relative 

to the corresponding CES elasticities, it is useful to express these elasticities in terms of 

the estimated parameters for these two functional forms. Denote the estimated matrix of 

parameters for the KBF functional form by A
*
  [anm

*
]. Let q

t
 denote the period t quantity 

vector with components qi
t
. The period t utility function is f(q)  (qA

*
q)

1/2
. The period t 

estimated utility level is f
t*

  (q
t
A

*
q

t
)
1/2

. The period t fitted price vector is p
t*

  

e
t
qf(q

t
)/f(q

t
) = e

t
A

*
q

t
/q

t
A

*
q

t
. The period t fitted expenditure share for product n is sn

t*
  

pn
t*

qn
t
/p

t*
q

t
 for n = 1,...,N. Denote the first and second order partial derivatives of f(q) 

evaluated at q = q
t
 as fn

t*
 for n = 1,...,N and fnm

t*
 for n,m = 1,...,N. The period t marginal 

utility elasticities are defined as follows:  

 

(107) nm
t*

  (fn
t*

)
1

fnm
t*

qm ;                                                                             n,m = 1,...,N. 

 

Evaluating the elasticities defined by (107) for the KBF functional form leads to the 

following relationship between the elasticities KBF,nm
t* 

and the parameters anm
*
 in the A

*
 

matrix:
68

 

 

(108) KBF,nm
t*

 = e
t
(f

t*
)
2

(pn
t*

)
1

anm
*
qm

t
  sm

t*
;                                                   n,m = 1,...,N. 

 

For the CES functional form, the period t utility function is f(q)  [n=1
N
 an

*
(qn)

r
]
1/r

 where 

r is also a parameter which satisfies 0 < r  1. The period t estimated utility level is f
t*

  

[n=1
N
 an

*
(qn

t
)
r
]
1/r

. Denote the first and second order partial derivatives of f(q) evaluated at 

q = q
t
 as fn

t*
 for n = 1,...,N and fnm

t*
 for n,m = 1,...,N. Define the fitted period t price for 

product n as pn
t*

  e
t
fn

t*
/f

t*
 for n = 1,...,N. Define the period t fitted expenditure share for 

product n by sn
t*

  pn
t*

qn
t
/p

t*
q

t
 for n = 1,...,N. Evaluating the elasticities defined by (107) 

for the CES functional form leads to the following relationship between the own 

elasticities CES,nn
t* 

and the parameters an
*
 and r = r

*
: 
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 See Appendix B for a derivation of (108).  
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(109) CES,nn
t*

 = (r
*
  1)(1  sn

t*
)   0;                                                                  n = 1,...,N. 

 

We also have the following relationship between the CES parameters and the cross 

marginal utility elasticities for n  m:
69

 

 

(110) CES,nm
t*

 = (1  r
*
)sm

t*
  0;                                                                      n, m = 1,...,N.  

 

The problem with the CES functional form becomes apparent when we compare (109) 

with (108): if the shares sn
t*

 are small, all of the own marginal utility elasticities for the 

CES functional form are approximately equal to 1  r
*
 whereas from (108), it can be seen 

that the KBF own marginal utility elasticity for product n depends on the parameter ann
*
 

and these parameters can differ substantially across products. Thus the losses from 

product withdrawal using the KBF functional form can differ widely across products. The 

inflexibility of the CES functional form will in general lead to biased estimates of the 

losses from the withdrawal of products.  

 

The approximate loss measures derived in the previous section are more accurate than the 

approximate loss measures derived in the previous section.
70

 However, the usefulness of 

the approximate loss measures derived in this section is that they can be implemented 

using just shares and estimates for own elasticities of inverse demand. Thus these 

approximate measures can lead to rules of thumb on the magnitude of losses due to the 

withdrawal of products (and on the magnitude of gains in utility due to the introduction 

of new products).    

 

We conclude this section by noting some relationships between the marginal utility 

elasticities defined by (107) and ordinary elasticities of inverse demand. In our 

framework which makes use of a differentiable linearly homogeneous utility function f(q), 

the system of inverse Marshallian demand functions is given by the following system of 

equations: 

 

(111) p = eqf(q)/f(q).  

 

Holding expenditure e constant, the N by N matrix of inverse demand derivatives, qp(q), 

can be calculated by differentiating equations (111) with respect to the components of q: 

 

(112) qp(q) = [e/f(q)]qq
2
f(q)  [e/f(q)

2
] qf(q)[qf(q)]

T
 

                      = [e/f(q)]qq
2
f(q)  e

1
pp

T
 

 

where we used equations (111) to establish the second equation in (112). Define the 

inverse demand elasticity of price n with respect to quantity m as follows:
71
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 Routine computations establish (109) and (110). 
70

 The approximate loss measures derived for the CES utility function in the previous section are actually 

exact loss measures and the corresponding approximate loss measures derived for the KBF utility function 

were upper bounds to the losses; the actual losses are equal to or less than the approximate KBF losses. 
71

 Expenditure e is held constant in these inverse demand function derivatives. 
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(113) nm  pn
1

[pn(q)/qm]qm ;                                                                      n,m = 1,...,N. 

 

Define the corresponding marginal utility elasticity nm using definitions (107). Then 

using (107) and (111)-(113), it is straightforward to show that the two sets of elasticities 

satisfy the following relationships:
72

 

 

(114) nm = nm  sm ;                                                                                       n,m = 1,...,N.   

                    

We make a final observation on equations (111). We might think of using equations 

(111) to implicitly define ordinary Marshallian demand functions, qn(p,e), for n = 1,...,N. 

Holding e constant, differentiate both sides of the system of equations p = 

eqf(q(p))/f(q(p)) with respect to the components of p. If these demand functions existed, 

then they would satisfy the following system of equations: 

 

(115) IN = [(e/f) qq
2
f(q)   e

1
pp

T
]pq(p) = B pq(p). 

 

If the matrix B had full rank, then the ordinary demand functions would exist and their 

matrix of first order partials, pq(p), would exist and would equal B
1

. However, if we 

estimate KBF inverse demand functions, then with many products, the B matrix will be 

singular and the system of ordinary demand functions will not exist as single valued 

functions. Even in this case, it is still possible to calculate welfare losses and finite 

reservation prices using our previous methodology.  

 

13. Hausman’s Approximate Loss Methodology 

 

In addition to his expenditure function estimation approach to measuring the benefits of 

new products that was discussed at the end of section 11, Hausman (1981; 665) (2003; 

39) worked out an approximate approach to this measurement problem using one of 

Hicks’ price variation concepts as the underlying theoretical tool.
73

 Instead of comparing 

the utility obtained when all products are present to the utility that is obtainable when a 

product is withdrawn to utility, Hausman compares the observed expenditure (or 

“income”) when all products present to the hypothetical income required to achieve the 

all product level of utility if a product is withdrawn from the marketplace. Thus utility is 
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 If f(q)  (q
T
A

*
q)

1/2
, the KBF functional form, then nm = e[f(q)]

2
pn

1
anm

*
qm  2sm. 

73
 Suppose a utility maximizing agent has the utility function f(q) where q is a consumption vector. Let u = 

f(q) and let p be a positive vector of consumer prices that the agent faces. The household’s cost or 

expenditure function is defined as C(u,p)  min q {pq : f(q)  u}. Diewert and Mizobuchi (2009; 344) used 

the cost function to define the family of Hicksian price variation functions as PH(p
0
,p

1
,q)  C[f(q),p

1
]  

C[f(q),p
0
]. Hicks (1945; 68-69) defined two special cases of this family of functions: PH(p

0
,p

1
,q

0
), the price 

compensating variation and PH(p
0
,p

1
,q

1
), the price equivalent variation. Samuelson (1974) defined the 

family of money metric utility changes as follows: QS(q
0
,q

1
,p)  C[f(q

1
),p]  C[f(q

0
),p]. These functions are 

difference counterparts to the family of Allen (1949) quantity indexes, C[f(q
1
),p]/C[f(q

0
),p]. In the case 

where f(q) is linearly homogeneous, the Allen quantity indexes are equal to f(q
1
)/f(q

0
) for all reference 

price vectors p. Henderson (1941; 118) defined the (quantity) compensating variation as QS(q
0
,q

1
,p

1
) for 

the case of two commodities and Hicks (1942; 128) defined it for the case of N commodities. Hicks (1942; 

127) also defined the (quantity) equivalent variation for a general N as QS(q
0
,q

1
,p

0
). 
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held constant in the two situations as is the price of the second product (which can be 

regarded as an aggregate of all other products). What changes is the price of product 1 

from the observed all product equilibrium price to the reservation price which induces 

zero demand for product 1.  

 

We derive a version of Hausman’s approximate income compensation measure for the 

case of two commodities assuming homothetic preferences. Let f(q1,q2) denote the 

linearly homogeneous, concave, increasing and differentiable utility function and let q1
*
, 

q2
*
 solve the purchasers’ utility maximization problem when purchasers face the positive 

prices p1
*
, p2

*
. The purchasers’ total expenditure in the all product equilibrium is e

*
 = 

p1
*
q1

*
 + p2

*
q2

*
. Let q1 decrease from its initial level of q1

*
 to 0 along the indifference 

curve defined by the set of q1 and q2 that satisfy f(q1,q2) = u
*
  f(q1

*
,q2

*
).

74
 Thus define 

q2(q1) implicitly by u
*
 = f(q1,q2(q1)). Thus u

*
 =  f(0,q2(0)) and the amount of “income” 

that is necessary to purchase q2(0) at the price p2
*
 is e

**
 = p2

*
q2(0). In Appendix B, we 

derive a second order approximation to q2(0) and hence to e
**

. The Hausman increase in 

income required to compensate consumers for the withdrawal of product 1 from the 

marketplace as a fraction of initial income is defined as H1  [e
**

  e
*
]/e

*
. The second 

order approximation to this measure is the following one:
75

 

 

(116) HA1    11
*
s1

*
{1 + [s1

*
/(1  s1

*
)]}

2
 

                 = LA1  0  

 

where LA1 is the approximate loss of utility measure defined above by (103). Thus there 

is a close connection (in the case of only two products with homothetic preferences) 

between the approximate loss of utility measure LA1 defined by (103) and the 

approximate increase in income measure HA1 defined (116); i.e., they are equal!  

 

14. Conclusion                               
   

There are several tentative conclusions that can be drawn from the computations 

undertaken in this paper: 

 

 The Feenstra CES methodology for adjusting maximum overlap chained price 

indexes for changes in product availability is very much dependent on having 

accurate estimates for the elasticity of substitution. The gains from increasing 

product availability are very large if the elasticity of substitution  is close to one 

and fall rapidly as the elasticity increases. 

 It is not a trivial matter to obtain an accurate estimate for . When applying 

traditional consumer demand theory to actual data, it is commonplace to have 

expenditure shares as the dependent variables and product prices as the 

independent variables. When this framework was applied to our grocery store data 

set using the CES functional form for the unit cost function, we found that the 

equation by equation fit was poor. Two alternative econometric specifications 
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 We assume that this indifference curve intersects the q2 axis. 
75

 See Appendix B for a proof of (116). 
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could be used to estimate a CES utility function where sales shares are functions 

of quantities in specification 2 and prices are functions of quantities and total 

expenditure in specification 3. We found that specifications 2 and 3 fit the data 

much better and the resulting estimate for  was much larger than the 

corresponding estimate for  when we used the CES unit cost function 

specification. 

 Section 5 of the paper developed a new methodological approach to the 

estimation of the elasticity of substitution if purchasers of products have CES 

preferences. This new method adapts Feenstra’s (1994) double log differencing 

technique to the estimation of  in a systems approach where only one parameter 

needs to be estimated for an entire system of transformed inverse CES demand 

functions.   

 A major purpose of the present paper was the estimation of Hicksian reservation 

prices for products that were not available in a period. In the CES framework, 

these reservation prices turn out to be infinite. But typically, it does not require an 

infinite reservation price to deter a consumer from purchasing a product. Thus we 

estimated the utility function f(q)  (q
T
Aq)

1/2
, which was originally introduced by 

Konüs and Byushgens (1926). They showed that this functional form was exactly 

consistent with the use of Fisher (1922) price and quantity indexes so we called 

this functional form the KBF functional form. The use of this functional form 

leads to finite reservation prices, which can be readily calculated once the utility 

function has been estimated.  

 We indicated how the correct curvature conditions on this functional form could 

be imposed and we showed that this functional form is a semiflexible functional 

form which is similar to the normalized quadratic semiflexible functional form 

introduced by Diewert and Wales (1987) (1988). 

 We initially estimated the KBF functional form using expenditure shares as 

dependent variables and quantities as the conditioning variables. We used the 

usual systems approach to the estimation of a system of inverse demand equations. 

However, we found that existing algorithms for the nonlinear systems of 

equations bogged down using this approach because the approach requires the 

estimation of the elements of a symmetric variance-covariance matrix plus the 

elements of the symmetric matrix A. 

 Thus we stacked the estimating equations into a single (big) equation and 

estimated the unknown parameters in the A matrix using sales shares as the 

dependent variables using a semiflexible approach. This approach required the 

estimation of only one variance parameter.
76

  

 The one big equation semiflexible approach worked in a satisfactory manner. This 

approach also allowed us to drop the observations that correspond to the 

unavailable products. We ended up getting useful estimates for the parameters in 

the A matrix. 

 However, when we used our estimated utility function to construct fitted prices 

for the available products (and estimated reservation prices for the unavailable 
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 Of course, this approach has the disadvantage of not accounting adequately for heteroskedasticity and 

possible correlation between the various product equation error terms.  
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products), we found that the fitted prices were not nearly as close to the actual 

prices as were the fitted sales shares to the actual sales shares. This was an 

unsatisfactory development since if the fitted prices are not close to the actual 

prices for products that are present, it is unlikely that the reservation prices for 

unavailable products would be close to the “true” reservation prices. 

 Thus in section 10 above, we switched from the one big equation approach that 

had shares as dependent variables to a one big equation approach that had actual 

prices as the dependent variables. This approach generated satisfactory estimates 

for the KBF functional form. 

 The results presented in sections 10 and 11 indicate that the Feenstra CES 

methodology for measuring the benefits of increases in product variety may 

substantially overstate these benefits as compared to our semiflexible 

methodology.  

 Another major conclusion that follows from our analysis is that the chain drift 

problem that arises in the scanner data context is perhaps a much bigger problem 

than adjusting price indexes for changes in product variety.
77

 Our estimated 

adjustments for changes in product variety were rather small as compared to the 

large amount of chain drift we found in all of our chained indexes that used actual 

price and quantity data.
78

 

 In section 11, we developed a utility function based methodology for measuring 

the net gains from net increases in product availability that is a counterpart to 

Hausman’s expenditure or cost function based methodology.  

 In section 12, we restricted our model to the two product case and approximated 

our utility based measure of the gains from increased product availability by a 

second order Taylor series approximation. We found that our approximate method 

also indicated that the Feenstra methodology would tend to overestimate the gains 

from new products. 

 The methodology developed in section 12 may be useful for statistical agencies 

that use carry forward prices for missing prices. The methodology in this section 

shows how an estimate for the own elasticity of inverse demand can be used to 

form an approximate upward adjustment to a carry forward price for a missing 

product. 

 Finally, in section 13, we again restricted our model to the case of two products 

and showed that Hausman’s income compensation measure for the loss of the 

availability of a product was essentially the same as our utility loss measure 

derived in section 12. 

 

Appendix A: The Frozen Juice Data 

 

Here is a listing of the “monthly” quantities sold of 19 varieties of frozen juice (mostly 

orange juice) from Dominick’s Store 5 in the Greater Chicago area, where a “month” 

consists of sales for 4 consecutive weeks. 
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 Thus Keynes (1930; 106) was right to worry about the use of chained indexes generating chain drift. 
78

 See the Australian Bureau of Statistics (2016) and Diewert and Fox (2017) for a review of the use of 

multilateral methods that could be used to control the chain drift problem. These papers did not address the 

issues raised by changes in product availability which is the focus of the present paper. 
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Table A1: “Monthly” Quantities Sold for 19 Frozen OJ Products 
 

Month t q1
t 

q2
t
 q3

t
 q4

t 
q5

t
 q6

t
 q7

t 
q8

t
 q9

t
 

1 142 0 66 0 369 85 108 163 90 

2 330 0 299 0 1612 223 300 211 171 

3 453 0 140 0 675 206 230 250 158 

4 132 0 461 0 1812 210 430 285 194 

5 87 0 107 0 490 210 158 256 159 

6 679 0 105 0 655 163 182 250 170 

7 53 0 260 0 793 178 232 287 135 

8 141 0 100 0 343 117 115 174 154 

9 442 123 191 108 633 153 145 168 265 

10 524 239 204 125 544 129 184 320 390 

11 34 19 204 179 821 131 225 427 1014 

12 52 32 79 85 243 117 89 209 336 

13 561 247 124 172 698 139 200 340 744 

14 515 266 206 187 660 120 188 144 153 

15 87 56 131 161 240 109 144 141 93 

16 325 111 130 195 372 151 169 176 105 

17 444 154 294 331 1127 146 271 219 127 

18 588 175 203 229 569 159 165 250 133 

19 476 264 122 156 175 130 131 282 85 

20 830 276 198 181 669 132 149 205 309 

21 614 208 166 156 309 115 165 141 186 

22 764 403 172 165 873 94 240 206 585 

23 589 55 144 163 581 118 181 204 1010 

24 988 467 81 122 178 81 128 315 632 

25 593 236 230 184 1039 111 215 240 935 

26 55 42 296 313 1484 81 465 413 619 

27 402 273 113 121 199 114 127 129 849 

28 307 81 390 236 976 107 359 357 95 

29 57 96 157 168 771 105 262 85 116 

30 426 289 188 191 755 121 181 121 211 

31 56 70 399 246 783 116 387 147 105 

32 612 487 110 94 222 109 130 129 118 

33 40 42 552 470 1114 114 574 150 120 

34 342 253 177 265 424 98 235 139 157 

35 224 132 185 230 437 84 211 160 413 

36 78 51 152 214 557 97 231 395 637 

37 345 189 161 130 395 95 173 146 528 

38 76 22 155 237 355 113 172 121 246 

39 89 80 363 242 921 111 363 185 231 

 

 

 

Month t q10
t 

q11
t
 q12

t
 q13

t 
q14

t
 q15

t
 q16

t 
q17

t
 q18

t
 q19

t 
1 45 174 109 2581 233 132 126 107 50 205 

2 109 351 239 983 405 452 1060 207 198 149 

3 118 325 303 1559 629 442 343 199 123 313 



 55 

4 143 263 322 1638 647 412 1285 195 324 75 

5 121 514 210 3552 460 265 769 175 471 1130 

6 89 424 206 865 482 314 1001 113 279 652 

7 93 531 232 981 495 280 2466 206 976 59 

8 108 307 201 1752 366 201 932 109 362 503 

9 185 376 189 2035 366 233 170 103 98 658 

10 346 381 0 694 399 290 764 81 236 760 

11 811 286 210 1531 363 273 201 98 81 598 

12 252 511 112 4054 292 295 626 138 171 297 

13 180 569 392 1330 296 277 145 181 98 268 

14 113 424 187 786 367 317 414 93 172 535 

15 99 388 186 2828 242 242 755 109 226 323 

16 68 259 299 1981 392 263 708 177 124 344 

17 58 271 305 888 478 306 750 169 191 54 

18 60 245 303 2217 403 681 1216 97 259 61 

19 52 360 155 2266 309 190 1588 113 424 473 

20 274 232 0 1983 320 214 183 181 105 323 

21 154 1027 0 2152 328 190 720 122 245 49 

22 402 539 0 1514 242 155 1280 95 394 23 

23 841 309 109 1216 271 145 1186 94 170 94 

24 531 272 126 1379 288 143 558 112 208 66 

25 607 290 127 3240 254 125 153 77 53 634 

26 549 314 138 1227 235 128 758 81 354 40 

27 236 391 162 2626 334 155 483 130 437 118 

28 75 265 164 681 361 135 1158 83 628 562 

29 94 329 163 1620 362 159 1030 97 483 608 

30 107 436 185 546 395 154 1161 144 672 1210 

31 72 494 205 1408 368 142 1195 129 701 314 

32 79 482 156 490 318 2522 1208 100 870 337 

33 59 436 169 1265 300 103 401 61 267 151 

34 96 391 171 2112 353 100 546 85 323 112 

35 354 389 175 715 343 83 2342 117 941 346 

36 541 406 141 2523 344 85 340 83 314 155 

37 498 283 109 684 177 64 91 33 107 169 

38 151 305 151 366 259 89 396 94 203 415 

39 237 321 118 1392 218 118 515 100 353 67 

 

It can be seen that there were no sales of Products 2 and 4 for months 1-8 and there were 

no sales of Product 12 in month 10 and in months 20-22. Thus there is a new and 

disappearing product problem for 20 observations in this data set.  

 

The corresponding monthly unit value prices for the 19 products are listed in Table A2. 

 

Table A2: “Monthly” Unit Value Prices for 19 Frozen OJ Products 
 

Month t p1
t 

p2
t
 p3

t
 p4

t 
p5

t
 p6

t
 p7

t 
p8

t
 p9

t
 

1 1.4700 1.7413 1.7718 1.7831 1.7618 2.3500 1.7715 0.9624 0.7553 

2 1.4242 1.5338 1.3967 1.5378 1.4148 2.3500 1.5460 1.0900 0.8300 

3 1.4463 1.5433 1.5521 1.7782 1.5734 2.3000 1.6413 1.0900 0.5856 

4 1.5200 1.5476 1.3753 1.3872 1.4004 2.3000 1.3793 1.0623 0.6701 
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5 1.5200 1.5688 1.6900 1.6933 1.6900 2.2929 1.6900 1.0900 0.6208 

6 1.4457 1.3659 1.8854 1.8155 1.8821 2.5895 1.8761 1.0900 0.5900 

7 1.9753 1.7326 1.8546 1.9018 1.8793 2.7500 1.8332 1.0140 0.8300 

8 1.7040 1.9262 2.0900 2.1594 2.0900 2.7415 1.9600 1.0778 0.8300 

9 1.6299 1.9900 1.8575 1.9085 1.8195 2.7437 1.9315 1.0796 0.8089 

10 1.5505 1.5615 1.8410 1.8980 1.8253 2.7500 1.8987 0.9469 0.8148 

11 1.9900 1.9900 1.6763 1.6420 1.6169 2.7500 1.6402 0.9549 0.7061 

12 1.9900 1.9900 2.0900 2.0900 2.0900 2.7500 2.0900 0.9828 0.9509 

13 1.3649 1.3977 1.8682 1.7993 1.7476 2.7500 1.7625 0.8900 0.5866 

14 1.4506 1.5073 1.6992 1.7691 1.7120 2.6200 1.7389 1.0900 0.9600 

15 1.9900 1.9900 1.7648 1.7186 1.7317 2.4900 1.7706 1.0609 0.9600 

16 1.4712 1.4224 1.6305 1.6483 1.6498 2.4900 1.6578 1.0139 0.9600 

17 1.2599 1.2559 1.3500 1.3618 1.3264 2.2600 1.3626 0.9900 0.8053 

18 1.0567 1.0936 1.4213 1.4440 1.4096 2.2600 1.4962 1.0200 0.7880 

19 1.1596 1.1683 1.7000 1.7000 1.7000 2.2600 1.7000 0.9900 0.9600 

20 1.0301 1.0823 1.4442 1.4660 1.3573 2.1800 1.4930 1.0305 0.6120 

21 1.1281 1.2025 1.4536 1.4700 1.4580 2.0104 1.4635 1.0900 1.0234 

22 1.0125 1.0472 1.4437 1.4860 1.4168 2.0079 1.4900 1.0308 0.7609 

23 1.4800 1.4800 1.3969 1.4263 1.3570 2.0200 1.4188 1.0307 0.5900 

24 0.9450 0.9738 1.5100 1.5100 1.5100 2.0200 1.5100 1.0900 0.5900 

25 1.0594 1.1084 1.1844 1.1794 1.0661 2.0200 1.2077 1.0900 0.5900 

26 1.4800 1.4800 1.1127 1.1559 1.1414 2.0200 1.1404 1.0900 0.5900 

27 1.2160 1.2293 1.5100 1.5100 1.5100 2.0200 1.5100 1.0900 0.5900 

28 1.2174 1.3010 1.1100 1.1729 1.0923 2.0200 1.1537 0.6494 0.5900 

29 1.4800 1.4800 1.4278 1.4341 1.3872 2.0200 1.4201 1.1631 0.5900 

30 1.1285 1.1453 1.3092 1.3659 1.2811 2.0200 1.3580 1.0764 0.5900 

31 1.5621 1.5600 1.3231 1.3803 1.3454 2.1457 1.3270 1.1244 0.5900 

32 1.2363 1.2396 1.7900 1.7900 1.7900 2.3900 1.7900 1.1800 0.5900 

33 1.7800 1.7800 1.0770 1.1653 1.0963 2.3900 1.1322 1.1800 0.5900 

34 1.3830 1.3775 1.4778 1.4867 1.5261 2.3900 1.5043 1.1327 0.5900 

35 1.4171 1.4518 1.4543 1.5537 1.5382 2.3900 1.5952 1.1631 0.5900 

36 1.5910 1.5786 1.5532 1.5398 1.4620 2.1500 1.5465 0.8458 0.5900 

37 1.3687 1.3859 1.6586 1.6811 1.6694 2.3492 1.7132 0.9334 0.6464 

38 1.7100 1.7100 1.6161 1.6002 1.5986 2.3700 1.5945 1.3000 0.6500 

39 1.4603 1.4793 1.1428 1.2318 1.1204 2.3700 1.2161 1.0822 0.6500 

 

 

Month t p10
t 

p11
t
 p12

t
 p13

t 
p14

t
 p15

t
 p16

t 
p17

t
 p18

t
 p19

t 
1 0.7553 0.9095 1.2900 1.0522 1.7500 0.6800 1.7900 1.9536 1.7900 1.4939 

2 0.8300 0.9900 1.2900 1.3500 1.7500 0.6800 1.4400 1.7578 1.5637 1.4117 

3 0.5280 0.9900 1.2567 1.2776 1.6112 0.6616 1.6126 1.7528 1.5827 1.3792 

4 0.6685 0.9900 1.2900 1.1900 1.5900 0.6700 1.3081 1.7095 1.3033 1.4200 

5 0.6203 0.8600 1.2900 1.1342 1.5900 0.6700 1.2620 1.7094 1.2607 0.9233 

6 0.5900 0.9386 1.2900 1.3842 1.8386 0.7809 1.1895 2.1489 1.4238 1.0674 

7 0.8300 0.8393 1.2900 1.4900 1.8900 0.7900 1.2303 2.0555 1.2249 1.9300 

8 0.8300 0.9900 1.2900 1.2886 1.9442 0.8291 1.9709 2.2717 1.9699 1.6333 

9 0.8088 0.9900 1.1900 1.3496 2.0500 0.8500 1.9600 2.4521 1.9600 1.4278 

10 0.8123 0.9900 1.6087 1.5900 2.0500 0.8500 1.6045 2.4394 1.6057 1.4213 

11 0.7201 0.9900 1.2900 1.4443 2.1464 0.8693 1.9600 2.4165 1.9600 1.4451 

12 0.9519 0.8624 1.2900 1.1177 2.1900 0.8900 1.7284 2.3697 1.7579 1.9300 

13 0.7683 0.8392 1.0765 1.4161 2.1900 0.8900 1.9600 2.2900 1.9600 1.5737 

14 0.9600 0.9419 1.2034 1.5822 2.0855 0.8581 1.4810 2.4470 1.5627 1.4748 
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15 0.9600 0.9900 1.2900 1.1207 2.0500 0.8500 1.4155 2.3524 1.4374 1.5472 

16 0.9600 1.0403 1.2900 1.2071 2.0500 0.8500 1.3793 2.2900 1.5192 1.4954 

17 0.7881 1.0600 1.1671 1.3867 1.7668 0.8363 1.2925 2.2900 1.3198 1.7467 

18 0.7693 1.0954 1.1179 1.0587 1.6900 0.6332 1.0697 2.0818 1.1456 1.6800 

19 0.9600 1.1300 1.4100 0.9647 1.6900 0.7900 1.0330 1.8900 1.0922 1.3131 

20 0.5834 1.1300 1.5388 0.9677 1.6900 0.7900 1.5000 1.8353 1.5000 1.3311 

21 1.0214 0.9632 1.0364 0.9629 1.5900 0.7500 1.2542 1.8367 1.2507 1.6082 

22 0.7542 1.0334 1.3301 1.0506 1.6239 0.7642 1.0378 1.8900 1.0599 1.5200 

23 0.5900 1.1500 1.4500 1.0693 1.5900 0.7500 1.0352 1.8900 1.1490 1.2094 

24 0.5900 1.1500 1.4500 1.0820 1.5900 0.7500 1.3423 1.8293 1.3476 1.4200 

25 0.5900 1.1500 1.4500 0.8743 1.5900 0.7500 1.5000 1.8212 1.5000 1.0178 

26 0.5900 1.1500 1.4500 1.0347 1.5900 0.7500 1.0331 1.8270 1.1024 1.4200 

27 0.5900 0.9300 1.2300 0.9812 1.5900 0.7500 1.3609 1.8277 1.3589 1.3242 

28 0.5900 0.9300 1.2300 1.2500 1.5900 0.7500 1.0296 1.8900 1.0339 1.0153 

29 0.5900 0.9300 1.2300 1.0406 1.5900 0.7500 1.0489 1.8900 1.0344 1.0204 

30 0.5900 0.9300 1.2300 1.2500 1.5900 0.7500 1.0194 1.8372 1.0219 1.0071 

31 0.5900 0.9300 1.2300 1.1474 1.5900 0.7500 1.0485 2.0130 1.0533 1.0597 

32 0.5900 0.9300 1.2300 1.3500 1.5900 0.4023 1.1019 2.2900 1.0672 1.2422 

33 0.5900 0.9300 1.2300 1.2567 1.5900 0.7500 1.5768 2.2900 1.5630 1.5311 

34 0.5900 0.9300 1.2300 1.0672 1.5900 0.7500 1.4765 2.2900 1.4829 1.5900 

35 0.5900 0.9300 1.2300 1.3500 1.5900 0.7500 1.5100 2.2054 1.5082 1.3474 

36 0.5900 0.9300 1.2300 1.0735 1.5900 0.7500 1.6709 2.2599 1.7327 1.5279 

37 0.6464 1.0146 1.3335 1.2864 1.9099 0.9103 1.7535 2.4782 1.7560 1.4474 

38 0.6500 1.0200 1.3500 1.5300 1.9700 0.9400 1.5549 2.2212 1.5702 1.3701 

39 0.6500 1.0200 1.3500 1.2288 1.9700 0.9400 1.3916 2.3875 1.3794 1.6400 

 

The actual prices p2
t
 and p4

t
 are not available for t =1,2,...,8 since products 2 and 4 were 

not sold during these months. However, in the above Table, we filled in these missing 

prices with the imputed reservation prices that were estimated in Section xx. Similarly, 

p12
t
 was missing for months t = 12, 20, 21 and 22 and again, we replaced these missing 

prices with the corresponding estimated imputed reservation prices in Table A2. The 

imputed prices appear in italics in the above Table.    

 

The specific products (and their package size in ounces) are as follows: 1 = Florida Gold 

Valencia (12); 2 = Florida Gold Pulp Free (12); 3 = MM Country Style OJ (12); 4 = MM 

Pulp Free Orange (12); 5 = MM OJ (12); 6 = MM OJ (16); 7 = MM OJ W/CA (12); 8 = 

MM Fruit Punch (12); 9 = HH Lemonade (12); 10 = HH Pink Lemonade (12); 11 = Dom 

Apple Juice (12); 12 = Dom Apple Juice (16); 13 = HH OJ (12); 14 = HH OJ (16); 15 = 

HH OJ (6); 16 = Tropicana SB OJ (12); 17 = Tropicana OJ (16); 18 = Tropicana SB 

Home Style OJ (12); 19 = Citrus Hill OJ (12)  

 

Appendix B: Proofs of Some Results        

 

Proof of (103): 

 

Using the first order conditions (95), it can be seen that p1
*
/p2

*
 satisfies the following 

equation: 

 

(B1) p1
*
/p2

*
 = f1(q1

*
,q2

*
)/f2(q1

*
,q2

*
). 
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Recall that h(q1) is defined as f(q1,[e
*
  p1

*
q1]/p2

*
). Thus the derivative of h(q1) evaluated 

at q1
*
 is equal to the following expression: 

 

(B2) h(q1
*
) = f1(q1

*
,q2

*
)  f2(q1

*
,q2

*
)(p1

*
/p2

*
) 

                    = 0                                                                          

 

where the second equality follows using (B1). 

 

Since f(q1,q2) is linearly homogeneous, Euler’s Theorem on homogeneous functions  

implies that the following equations are satisfied: 

 

(B3) f11
*
q1

*
 + f12

*
q2

*
 = 0; 

(B4) f21
*
q1

*
 + f22

*
q2

*
 = 0;  

 

The above two equations enable us to solve for the fnm
*
 in terms of f11

*
 provided q1

*
 > 0 

and q2
*
 > 0: 

 

(B5) f12
*
 = f21

*
 =  f11

*
(q1

*
/q2

*
); f22

*
 = f11

*
(q1

*
/q2

*
)
2 

 

Differentiate h(q1) = f1(q1, [e
*
  p1

*
q1]/p2

*
)  f2(q1, [e

*
  p1

*
q1]/p2

*
)(p1

*
/p2

*
) with respect 

to q1 and evaluate the resulting derivatives at q1 = q1
*
: 

 

(B6) h(q1
*
) = f11(q1

*
,q2

*
)  f12(q1

*
,q2

*
)(p1

*
/p2

*
)  f12(q1

*
,q2

*
)(p1

*
/p2

*
)+f22(q1

*
,q2

*
)(p1

*
/p2

*
)
2
 

                     = f11
*
  2f12

*
(p1

*
/p2

*
) + f22

*
(p1

*
/p2

*
)
2
                                         using f12

*
 = f21

*
 

                     = f11
*
 + 2f11

*
(p1

*
/p2

*
)(q1

*
/q2

*
) + f11

*
(p1

*
/p2

*
)
2
(q1

*
/q2

*
)
2
              using (B5) 

                     = f11
*
[1 + 2(s1

*
/s2

*
) + (s1

*
/s2

*
)
2
] 

                     = f11
*
[1 + (s1

*
/s2

*
)]

2
 

 

where sn
*
  pn

*
qn

*
/e

*
 is the expenditure share of product n at the all product equilibrium.  

 

Note that the first equation in equations (95) imply the following equation: 

 

(B7) f1
*
 = p1

*
f
*
/e

*
. 

 

Now use (B6) to evaluate the following expression: 

 

(B8) h(q1
*
)(q1

*
)
2
/h(q1

*
) = f11

*
[1 + (s1

*
/s2

*
)]

2
(q1

*
)
2
/f

*
                since h(q1

*
) = f(q1

*
,q2

*
) = f

* 

                                        = [(f1
*
)
1

f11
*
q1

*
][f1

*
q1

*
/f

*
][1 + (s1

*
/s2

*
)]

2
 

                                        = 11s1
*
[1 + (s1

*
/s2

*
)]

2
                         using (B7). 

 

Substitute (B2) and (B8) into (102) and (103) follows.                                            

               

Proof of (106): Using (104), we have 

 

(B9) p1(q1)  e
*
f1(q1, [e

*
  p1

*
q1]/p2

*
)/f(q1, [e

*
  p1

*
q1]/p2

*
) 

                   = e
*
f1(q1, [e

*
  p1

*
q1]/p2

*
)/h(q1)                    using h(q1)  f(q1,[e

*
  p1

*
q1]/p2

*
). 
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Differentiate (B9) and evaluate the resulting derivatives at q1 = q1
*
: 

 

(B10) p1(q1
*
) = [e

*
f11

*
  e

*
f12

*
(p1

*
/p2

*
)]/h(q1

*
)                           

 

where we have used (B2); i.e., h(q1
*
) = 0 in deriving (B10). Using (B10) and h(q1

*
) = f

*
, 

we have: 

 

(B11) p1(q1
*
)q1

*
/p1

*
 = q1

*
[e

*
f11

*
  e

*
f12

*
(p1

*
/p2

*
)]/p1

*
f
*
 

                                  = [q1
*
e

*
f11

*
][1 + (p1

*
/p2

*
)(q1

*
/q2

*
)]/p1

*
f
*
                  using (B5) for f12

* 

                                  = [f11
*
q1

*
/f1

*
][f1

*
e

*
/p1

*
f
*
][1+ (s1

*
/s2

*
)] 

                                  = 11
*
[1 + (s1

*
/s2

*
)]                                                   using (B7) 

                                   0 

 

where the inequality follows using 11
*
  0. Thus using definition (105), we have: 

 

(B12) PI1 = [p1(0)  p1
*
]/p1

*
 

                 [p1
*
 + p1(q1

*
)(0  q1

*
)  p1

*
]/p1

*
 

                =   p1(q1
*
)q1

*
/p1

* 

                =  11
*
[1 + (s1

*
/s2

*
)]                                                                  using (B11) 

                 0 

 

which is (106).                                                                                           

 

Proof of (108): Differentiating f(q)  (qA
*
q)

1/2
 with respect to q leads to the following 

derivatives:  

 

(B13)  qf(q
t
) = (f

t*
)
1

A
*
q

t
; 

(B14) qq
2
 f(q

t
) = (f

t*
)
1

A
*
  (f

t*
)
3

A
*
q

t
(A

*
q

t
)
T
. 

 

We also have the following inverse demand equations: 

 

(B15) p
t*

 = e
t
qf(q

t
)/f(q

t
)  

                = (e
t
/f

t*
)(f

t*
)
1

A
*
q

t
  

 

where the last equality follows using (B13). (B15) implies that A
*
q

t
 = (f

t*
)
2
(e

t
)
1

p
t*

. 

Substitute this equation into (B14) and we obtain the following equation: 

 

(B16) qq
2
 f(q

t
) = (f

t*
)
1

A
*
  (f

t*
)(e

t
)
2

p
t*

(p
t*

)
T
. 

 

Equation (B15) can be rearranged to give qf(q
t
) = (f

t*
/e

t
)p

t*
. Use this equation and (B16) 

to evaluate the elasticities on the left hand side of (108) and we obtain equations (108).  
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Proof of (116): We regard q2(q1) as the function that determines how much q2 is required 

to achieve the initial utility level u
*
  f(q1

*
,q2

*
) as q1 is changed from its initial level of 

q1
*
. Thus q2(q1) is implicitly defined by the following equation: 

 

(B17) f(q1,q2(q1)) = u
*
. 

 

We use the same notation as was used in the proof of (103). Differentiating (B17) with 

respect to q1 leads to the following equation: 

 

(B18) f1(q1,q2(q1)) + f2(q1,q2(q1))q2(q1)  = 0. 

 

Evaluating (B18) at the initial equilibrium gives us the following expression for q2(q1
*
): 

 

(B19) q2(q1
*
) =  f1(q1

*
,q2(q1

*
))/f2(q1

*
,q2(q1

*
)) =  p1

*
/p2

*
 

 

where the second equality in (B17) follows from (B1). Differentiate (B18) with respect to 

q1 and evaluate the resulting derivatives at q1 = q1
*
 to obtain the following equation: 

 

(B20) 0 = f11
*
 + f12

*
q2(q1

*
) + f21

*
q2(q1

*
) + f22

*
[q2(q1

*
)]

2
 + f2

*
q2(q1

*
)  

              = f11
*
  2f12

*
[p1

*
/p2

*
] + f22

*
[p1

*
/p2

*
]

2
 + f2

*
q2(q1

*
)          using f12

*
 = f21

*
 and (B19)  

              = f11
*
{1 + 2[p1

*
q1

*
/p2

*
q2

*
] + [p1

*
q1

*
/p2

*
q2

*
]

2
} + f2

*
q2(q1

*
)                    using (B5) 

              = f11
*
{1 + [s1

*
/s2

*
]}

2
 + [p2

*
f
*
/e

*
]q2(q1

*
)                                                 using (95).             

 

Using (B20), the following formula for the second derivative of q2(q1
*
) can be obtained:  

 

(B21) q2(q1
*
) =  e

*
f11

*
{1 + [s1

*
/(1  s1

*
)]}

2
/p2

*
f
*
  0 

 

where the inequality follows from the concavity of f(q1,q2) which implies f11
*
  0. 

 

When product 1 is withdrawn from the marketplace, the resulting q1 will be equal to 0 

and the q2 which will allow purchasers to achieve the initial utility level u
*
 = f

*
  

f(q1
*
,q2

*
) is q2(0). Thus the income required to purchase q2(0) is e

**
  p2

*
q2(0). A second 

order Taylor series approximation to q2(0)  can be obtained using (B19) and (B21): 

 

(B22) q2(0)  q2(q1
*
) + q2 (q1

*
)(0  q1

*
) + ½ q2(q1

*
)(0  q1

*
)
2
 

                    = q2
*
 + (p1

*
q1

*
/p2

*
)  e

*
f11

*
{1 + [s1

*
/(1  s1

*
)]}

2
q1

*2
/p2

*
f
*
 

                    = q2
*
 + (p1

*
q1

*
/p2

*
)  e

* 
[f11

*
q1

*
/f1

*
][f1

*
q1

*
/f

*
p2

*
]{1 + [s1

*
/(1  s1

*
)]}

2
 

                    = q2
*
 + (p1

*
q1

*
/p2

*
)  e

* 
[f11

*
q1

*
/f1

*
][f1

*
q1

*
/f

*
p2

*
]{1 + [s1

*
/(1  s1

*
)]}

2
 

                    = q2
*
 + (p1

*
q1

*
/p2

*
)  (e

*
/p2

*
)11

*
s1

*
{1 + [s1

*
/(1  s1

*
)]}

2
. 

    

where the last equality follows using equations (95) for n = 1 and the definition of 11
*
 

equal to f11
*
q1

*
/f1

*
. Thus a second order approximation to the income required to achieve 

the initial utility level if product 1 is withdrawn, e
**

, is the following one: 

 

(B23) e
**

 = p2
*
q2(0) 
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                 p2
*
q2

*
 + p1

*
q1

*
  e

*
11

*
s1

*
{1 + [s1

*
/(1  s1

*
)]}

2
                                using (B22) 

                = e
*
[1  e

*
11

*
s1

*
{1 + [s1

*
/(1  s1

*
)]}

2
]. 

 

Thus the Hausman increase in income required to compensate consumers for the 

withdrawal of product 1 from the marketplace as a fraction of initial income is given by: 

 

(B24) H1  [e
**

  e
*
]/e

*
  

                  11
*
s1

*
{1 + [s1

*
/(1  s1

*
)]}

2
 

                = LA1  0  

 

where LA1 is the approximate utility loss measure defined by (103).  

 

Appendix C: Utility Losses for the Estimated KBF and CES Functions due to 

Product Withdrawal 

 

We modify definitions (76)-(79), (82) and (92) in order to generate estimates for the loss 

of utility due to the withdrawal of product i from the marketplace instead of the 

withdrawal of product 1. Let e
t
 denote actual expenditure on the 19 products during 

period t, q
t
  [q1

t
,...,q19

t
] denote the actual period t quantity vector and p

t*
  [p1

t*
,...,p19

t*
] 

denote the vector of period t virtual prices where pn
t*

  e
t
[f(q

t
)/qn]/f(q

t
) for n = 1,...,19 

and t = 1,...,39 where f(q) is either the estimated KBF or CES utility function. In the main 

text, we showed that e
t
 = p

t*
q

t
 for t = 1,...,39. Let ei denote the ith unit vector of 

dimension 19 for i = 1,...,19. Definitions (76) to (79) in the main text are replaced by the 

following definitions which apply to the withdrawal of product i from the marketplace 

rather than product 1: 

 

(C1) u
t
  f(q

t
);                                                                                                       t = 1,...,39; 

(C2) ui
t
  f(q

t
 qi

t
ei);                                                                         i = 1,...,19; t = 1,...,39; 

(C3) ei
t
  e

t
  pi

t*
qi

t
  e

t
 ;                                                                  i = 1,...,19; t = 1,...,39; 

(C4) i
t
  e

t
/ ei

t
  1 ;                                                                          i = 1,...,19; t = 1,...,39. 

 

(C1) defines the period t estimated utility level u
t
 as a function of the vector of observed 

quantities q
t
 for period t. (C2) withdraws the observed quantity of product i from q

t
 so if i 

were equal to 2, q
t
 qi

t
ei would equal the vector (q1

t
,0,q3

t
,...,q19

t
). Thus in this case, u2

t
 is 

simply the utility generated by the vector (q1
t
,0,q3

t
,...,q19

t
) using our estimated functional 

form for the utility function f(q) to evaluate f(q1
t
,0,q3

t
,...,q19

t
)  u2

t
. (C3) defines the 

expenditure ei
t
 that is required to purchase the observed period t products, excluding 

product i, at the reservation prices p
t*

. Thus if qi
t
 > 0, then ei

t
 < e

t
. (C4) simply takes the 

ratio of total expenditure observed in period t, e
t
 = p

t
q

t
 = p

t*
q

t
 to hypothetical 

expenditure on all products except product i, n=1
19

, ni pn
t*

qn
t
, where actual quantities are 

used along with the virtual prices pn
t*

 to evaluate the hypothetical expenditure. 

 

Definitions (82) are replaced by the following definitions: 

 

(C5) uAi
t
  f(i

t
[q

t
 qi

t
ei]) = i

t
f(q

t
 qi

t
ei) = i

t
 ui

t
  u

t
 ;                     i = 1,...,19; t = 1,...,39. 
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It can be shown that i
t
[q

t
 qi

t
ei] is a feasible solution to the following constrained utility 

maximization problem: 

 

(C6) max q {f(q) ; p
t*
q = e

t
 ; qi = 0}  ui

t
 ;                                        i = 1,...,19; t = 1,...,39.                                      

 

Thus the inequality in (C5) follows since q
t
 solves the problem, max q {f(q) : p

t*
q = e

t
} 

which has one less constraint than the problem defined by (C6). Thus the actual solution 

to (C6) which gives rise to utility level ui
t
 will satisfy the following inequalities: 

 

(C7) uAi
t
  ui

t
  u

t
 ;                                                                              i = 1,...,19; t = 1,...,39. 

 

If the number of products N is equal to 2 or if f is the CES utility function, then the 

approximate utility uAi
t
 defined by (C5) will be equal to ui

t
 which is the optimal level of 

utility for the qi = 0 constrained problem defined by (C6). Obviously, uAi
t
/u

t
  1 can serve 

as a relative loss of utility due to the withdrawal of product i in the marketplace in period 

t. We convert this loss measure into the following approximate loss measure, LAi
t
, 

defined as follows: 

 

(C8) LAi
t
  1  [uAi

t
/u

t
].  

 

For the CES functional form, the approximate loss is equal to the actual loss; i.e., we 

have uCES,i
t
 = uCES,Ai

t
 and so LCES,Ai

t
  1  [uCES,Ai

t
/u

t
] = 1  [uCES,i

t
/u

t
]  LCES,i

t
. The 

approximate losses due to withdrawal of each product and each period for the KBF and 

CES functional forms are listed in Tables C1 and C2. 

 

Table C1: Approximate Losses of Utility due to the Withdrawal of a Product for the 

KBF Functional Form                                                                                

  
t LA1

t 
LA2

t
 LA3

t 
LA4

t
 LA5

t 
LA6

t
 LA7

t 
LA8

t
 LA9

t 
LA10

t
 

1 0.00162 0.00000 0.00019 0.00000 0.00580 0.00015 0.00044 0.00129 0.00011 0.00003 

2 0.00301 0.00000 0.00092 0.00000 0.02815 0.00030 0.00073 0.00074 0.00012 0.00006 

3 0.00787 0.00000 0.00036 0.00000 0.00772 0.00023 0.00081 0.00129 0.00013 0.00009 

4 0.00032 0.00000 0.00144 0.00000 0.02306 0.00019 0.00098 0.00095 0.00011 0.00007 

5 0.00015 0.00000 0.00013 0.00000 0.00240 0.00018 0.00023 0.00077 0.00008 0.00005 

6 0.01609 0.00000 0.00019 0.00000 0.00684 0.00019 0.00051 0.00128 0.00016 0.00005 

7 0.00007 0.00000 0.00078 0.00000 0.00703 0.00023 0.00052 0.00120 0.00008 0.00004 

8 0.00088 0.00000 0.00024 0.00000 0.00251 0.00013 0.00026 0.00080 0.00018 0.00010 

9 0.00702 0.00043 0.00065 0.00034 0.00626 0.00017 0.00031 0.00061 0.00038 0.00022 

10 0.00950 0.00154 0.00076 0.00049 0.00424 0.00011 0.00050 0.00248 0.00081 0.00079 

11 0.00004 0.00001 0.00063 0.00091 0.00963 0.00010 0.00056 0.00402 0.00469 0.00353 

12 0.00008 0.00003 0.00011 0.00020 0.00096 0.00011 0.00012 0.00081 0.00065 0.00039 

13 0.01181 0.00168 0.00027 0.00096 0.00774 0.00016 0.00065 0.00219 0.00302 0.00021 

14 0.01107 0.00226 0.00085 0.00126 0.00751 0.00015 0.00063 0.00054 0.00015 0.00010 

15 0.00030 0.00011 0.00036 0.00090 0.00107 0.00013 0.00039 0.00047 0.00006 0.00008 

16 0.00387 0.00036 0.00032 0.00127 0.00221 0.00019 0.00047 0.00068 0.00007 0.00003 

17 0.00622 0.00058 0.00101 0.00259 0.01376 0.00018 0.00074 0.00096 0.00008 0.00002 

18 0.00796 0.00055 0.00050 0.00105 0.00349 0.00017 0.00030 0.00097 0.00008 0.00002 

19 0.00535 0.00133 0.00022 0.00058 0.00035 0.00013 0.00023 0.00132 0.00004 0.00002 

20 0.02152 0.00187 0.00071 0.00094 0.00618 0.00012 0.00031 0.00103 0.00049 0.00051 

21 0.01278 0.00110 0.00050 0.00074 0.00142 0.00010 0.00044 0.00038 0.00020 0.00016 
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22 0.01258 0.00278 0.00032 0.00051 0.00706 0.00005 0.00055 0.00070 0.00141 0.00081 

23 0.01110 0.00007 0.00030 0.00067 0.00390 0.00007 0.00036 0.00090 0.00503 0.00414 

24 0.03342 0.00562 0.00016 0.00056 0.00055 0.00006 0.00036 0.00271 0.00270 0.00253 

25 0.00698 0.00095 0.00049 0.00052 0.00886 0.00005 0.00035 0.00080 0.00268 0.00141 

26 0.00009 0.00005 0.00074 0.00185 0.01902 0.00005 0.00147 0.00352 0.00163 0.00151 

27 0.00484 0.00197 0.00022 0.00040 0.00054 0.00007 0.00023 0.00034 0.00404 0.00033 

28 0.00268 0.00015 0.00165 0.00116 0.00911 0.00009 0.00119 0.00253 0.00004 0.00003 

29 0.00010 0.00025 0.00033 0.00070 0.00762 0.00008 0.00078 0.00015 0.00007 0.00005 

30 0.00437 0.00161 0.00043 0.00082 0.00599 0.00009 0.00034 0.00024 0.00018 0.00006 

31 0.00009 0.00012 0.00171 0.00122 0.00592 0.00010 0.00135 0.00037 0.00005 0.00003 

32 0.01083 0.00575 0.00027 0.00028 0.00098 0.00013 0.00033 0.00034 0.00008 0.00003 

33 0.00006 0.00006 0.00302 0.00492 0.01154 0.00019 0.00283 0.00057 0.00008 0.00002 

34 0.00408 0.00193 0.00053 0.00207 0.00257 0.00009 0.00085 0.00045 0.00015 0.00007 

35 0.00125 0.00036 0.00042 0.00118 0.00203 0.00006 0.00047 0.00045 0.00087 0.00067 

36 0.00021 0.00008 0.00034 0.00122 0.00424 0.00006 0.00064 0.00335 0.00211 0.00173 

37 0.01138 0.00278 0.00106 0.00122 0.00505 0.00017 0.00100 0.00128 0.00349 0.00405 

38 0.00061 0.00004 0.00096 0.00477 0.00432 0.00028 0.00095 0.00086 0.00086 0.00036 

39 0.00034 0.00024 0.00187 0.00164 0.01089 0.00014 0.00149 0.00097 0.00034 0.00042 

Mean 0.00596 .00094 .00067 0.00097 0.00066 0.00013 0.00066 0.00116 0.00096 0.0064 

   
t LA11

t 
LA12

t
 LA13

t 
LA14

t
 LA15

t 
LA16

t
 LA17

t 
LA18

t
 LA19

t 

1 0.00172 0.00182 0.11891 0.00158 0.00033 0.00046 0.00371 0.00010 0.00050 

2 0.00245 0.00307 0.00698 0.00131 0.00137 0.00898 0.00469 0.00037 0.00006 

3 0.00260 0.00647 0.02202 0.00407 0.00153 0.00123 0.00577 0.00021 0.00026 

4 0.00091 0.00384 0.01348 0.00235 0.00075 0.00914 0.00285 0.00067 0.00001 

5 0.00363 0.00165 0.06642 0.00110 0.00029 0.00376 0.00247 0.00192 0.00333 

6 0.00449 0.00279 0.00670 0.00225 0.00070 0.00944 0.00178 0.00094 0.00114 

7 0.00447 0.00233 0.00649 0.00136 0.00034 0.03014 0.00385 0.00625 0.00001 

8 0.00285 0.00340 0.03660 0.00148 0.00035 0.01114 0.00214 0.00215 0.00128 

9 0.00386 0.00252 0.03881 0.00158 0.00046 0.00034 0.00163 0.00015 0.00140 

10 0.00426 0.00000 0.00485 0.00161 0.00068 0.00675 0.00100 0.00074 0.00147 

11 0.00203 0.00303 0.02732 0.00133 0.00060 0.00062 0.00143 0.00011 0.00089 

12 0.00572 0.00071 0.12249 0.00081 0.00058 0.00461 0.00241 0.00041 0.00040 

13 0.00803 0.01022 0.01804 0.00115 0.00065 0.00025 0.00506 0.00017 0.00013 

14 0.00611 0.00296 0.00712 0.00199 0.00102 0.00213 0.00164 0.00051 0.00090 

15 0.00420 0.00256 0.07686 0.00069 0.00049 0.00743 0.00200 0.00084 0.00058 

16 0.00174 0.00651 0.03554 0.00175 0.00056 0.00558 0.00499 0.00022 0.00044 

17 0.00176 0.00601 0.00640 0.00258 0.00073 0.00509 0.00398 0.00042 0.00001 

18 0.00106 0.00438 0.02931 0.00119 0.00249 0.00975 0.00099 0.00055 0.00001 

19 0.00249 0.00119 0.03548 0.00074 0.00019 0.01762 0.00139 0.00164 0.00072 

20 0.00168 0.00000 0.03717 0.00126 0.00042 0.00038 0.00492 0.00016 0.00035 

21 0.02858 0.00000 0.03783 0.00108 0.00025 0.00482 0.00203 0.00080 0.00001 

22 0.00623 0.00000 0.01516 0.00043 0.00013 0.01177 0.00092 0.00132 0.00000 

23 0.00246 0.00078 0.01292 0.00054 0.00014 0.01746 0.00118 0.00031 0.00002 

24 0.00255 0.00133 0.02284 0.00123 0.00019 0.00428 0.00220 0.00076 0.00001 

25 0.00145 0.00069 0.06249 0.00046 0.00008 0.00019 0.00053 0.00003 0.00084 

26 0.00227 0.00111 0.01344 0.00052 0.00012 0.00647 0.00082 0.00154 0.00000 

27 0.00383 0.00169 0.05597 0.00096 0.00016 0.00236 0.00228 0.00262 0.00004 

28 0.00154 0.00153 0.00364 0.00115 0.00012 0.01049 0.00085 0.00401 0.00103 

29 0.00261 0.00169 0.02267 0.00109 0.00017 0.00951 0.00127 0.00260 0.00147 

30 0.00385 0.00177 0.00215 0.00112 0.00013 0.00913 0.00230 0.00419 0.00370 

31 0.00495 0.00220 0.01467 0.00099 0.00012 0.01014 0.00192 0.00463 0.00033 

32 0.00521 0.00139 0.00229 0.00058 0.03467 0.00907 0.00136 0.00575 0.00035 

33 0.00584 0.00209 0.01801 0.00136 0.00010 0.00211 0.00063 0.00113 0.00012 

34 0.00445 0.00212 0.03996 0.00151 0.00008 0.00314 0.00116 0.00154 0.00005 

35 0.00297 0.00158 0.00383 0.00071 0.00003 0.03330 0.00148 0.00617 0.00040 

36 0.00402 0.00127 0.05797 0.00113 0.00005 0.00141 0.00097 0.00154 0.00008 

37 0.00624 0.00226 0.01303 0.00095 0.00009 0.00029 0.00045 0.00050 0.00015 

38 0.00663 0.00433 0.00361 0.00182 0.00017 0.00508 0.00379 0.00161 0.00142 
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39 0.00345 0.00117 0.02285 0.00062 0.00014 0.00358 0.00182 0.00211 0.00002 

Mean 0.00424 0.00242 0.02929 0.00129 0.00132 0.00716 0.00222 0.00158 0.00061 

 

Note that the losses in Table C1 for products 2 and 4 for periods 1-8 are equal to 0. This 

is due to the fact that these products are already absent in these periods and hence the loss 

from a further withdrawal is 0. Similar comments apply to product 12 in periods 10 and 

20-22. The mean losses by product over all 39 periods are listed in the last row of Table 

C1. The average of these means for the KBF functional form is 0.00362. Thus on average, 

if a product is withdrawn from the marketplace, a loss of utility equal to 0.362 percentage 

points will occur using our estimated KBF functional form. However, in reality, products 

with a high expenditure share are unlikely to be withdrawn and so the losses will be much 

smaller for products with small expenditure shares. The corresponding approximated and 

actual losses of utility due to the withdrawal of a product using our estimated CES utility 

function are listed in Table C2. 

 

Table C2: Actual Losses of Utility due to the Withdrawal of a Product for the CES 

Functional Form                                                                                

  
t LA1

t 
LA2

t
 LA3

t 
LA4

t
 LA5

t 
LA6

t
 LA7

t 
LA8

t
 LA9

t 
LA10

t
 

1 0.00609 0.00000 0.00331 0.00000 0.01749 0.00592 0.00523 0.00493 0.00206 0.00107 

2 0.00815 0.00000 0.00788 0.00000 0.04237 0.00881 0.00816 0.00397 0.00231 0.00148 

3 0.01216 0.00000 0.00461 0.00000 0.02161 0.00929 0.00732 0.00519 0.00244 0.00179 

4 0.00313 0.00000 0.00973 0.00000 0.03946 0.00707 0.00945 0.00436 0.00218 0.00159 

5 0.00223 0.00000 0.00281 0.00000 0.01237 0.00723 0.00405 0.00406 0.00188 0.00140 

6 0.01700 0.00000 0.00352 0.00000 0.02055 0.00741 0.00584 0.00507 0.00254 0.00137 

7 0.00155 0.00000 0.00641 0.00000 0.02015 0.00664 0.00600 0.00475 0.00173 0.00119 

8 0.00479 0.00000 0.00375 0.00000 0.01288 0.00617 0.00436 0.00412 0.00259 0.00180 

9 0.01188 0.00363 0.00602 0.00371 0.02036 0.00716 0.00490 0.00367 0.00379 0.00262 

10 0.01396 0.00651 0.00645 0.00426 0.01798 0.00624 0.00609 0.00648 0.00535 0.00455 

11 0.00128 0.00072 0.00628 0.00565 0.02534 0.00616 0.00706 0.00811 0.01198 0.00928 

12 0.00171 0.00104 0.00257 0.00276 0.00798 0.00518 0.00294 0.00405 0.00425 0.00313 

13 0.01456 0.00658 0.00412 0.00551 0.02208 0.00654 0.00643 0.00671 0.00922 0.00255 

14 0.01477 0.00767 0.00698 0.00647 0.02300 0.00629 0.00665 0.00349 0.00256 0.00186 

15 0.00298 0.00189 0.00446 0.00538 0.00888 0.00547 0.00500 0.00324 0.00158 0.00158 

16 0.00915 0.00335 0.00436 0.00624 0.01281 0.00713 0.00564 0.00386 0.00173 0.00112 

17 0.01133 0.00419 0.00833 0.00931 0.03265 0.00653 0.00801 0.00439 0.00192 0.00092 

18 0.01289 0.00416 0.00537 0.00601 0.01559 0.00626 0.00464 0.00438 0.00178 0.00085 

19 0.01094 0.00607 0.00354 0.00441 0.00568 0.00537 0.00388 0.00497 0.00124 0.00077 

20 0.02049 0.00720 0.00613 0.00572 0.02109 0.00621 0.00495 0.00430 0.00427 0.00363 

21 0.01544 0.00556 0.00519 0.00496 0.01049 0.00544 0.00533 0.00308 0.00272 0.00218 

22 0.01644 0.00868 0.00471 0.00458 0.02313 0.00402 0.00649 0.00375 0.00644 0.00439 

23 0.01486 0.00177 0.00458 0.00514 0.01830 0.00555 0.00577 0.00422 0.01178 0.00944 

24 0.02592 0.01229 0.00305 0.00438 0.00709 0.00438 0.00467 0.00672 0.00856 0.00693 

25 0.01213 0.00504 0.00560 0.00466 0.02496 0.00429 0.00545 0.00396 0.00895 0.00579 

26 0.00179 0.00132 0.00803 0.00850 0.04036 0.00376 0.01231 0.00729 0.00720 0.00611 

27 0.01049 0.00694 0.00367 0.00393 0.00705 0.00532 0.00420 0.00281 0.00999 0.00311 

28 0.00779 0.00229 0.01012 0.00659 0.02708 0.00474 0.00972 0.00637 0.00142 0.00109 

29 0.00191 0.00278 0.00481 0.00515 0.02298 0.00489 0.00775 0.00194 0.00177 0.00139 

30 0.00997 0.00659 0.00516 0.00527 0.02059 0.00507 0.00515 0.00241 0.00271 0.00143 

31 0.00174 0.00196 0.01001 0.00663 0.02149 0.00493 0.01007 0.00287 0.00150 0.00103 

32 0.01434 0.01086 0.00340 0.00299 0.00733 0.00484 0.00405 0.00266 0.00172 0.00115 

33 0.00147 0.00143 0.01507 0.01319 0.03371 0.00549 0.01613 0.00330 0.00190 0.00098 

34 0.00962 0.00686 0.00572 0.00818 0.01445 0.00493 0.00755 0.00316 0.00245 0.00152 

35 0.00567 0.00333 0.00506 0.00616 0.01259 0.00368 0.00585 0.00304 0.00480 0.00396 

36 0.00256 0.00165 0.00480 0.00650 0.01760 0.00468 0.00711 0.00747 0.00786 0.00642 
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37 0.01476 0.00807 0.00797 0.00668 0.02077 0.00726 0.00876 0.00498 0.01059 0.00947 

38 0.00396 0.00127 0.00772 0.01129 0.01890 0.00846 0.00873 0.00425 0.00546 0.00338 

39 0.00315 0.00266 0.01121 0.00793 0.03052 0.00576 0.01157 0.00424 0.00358 0.00345 

Mean 0.00910 0.00370 0.00596 0.00482 0.00200 0.00591 0.00675 0.00443 0.00433 0.00302 

 
t LA11

t 
LA12

t
 LA13

t 
LA14

t
 LA15

t 
LA16

t
 LA17

t 
LA18

t
 LA19

t 

1 0.00531 0.00418 0.09991 0.01249 0.00299 0.00630 0.00636 0.00252 0.00847 

2 0.00628 0.00531 0.02368 0.01299 0.00558 0.02638 0.00725 0.00533 0.00414 

3 0.00664 0.00736 0.04127 0.02178 0.00617 0.01094 0.00792 0.00399 0.00889 

4 0.00415 0.00582 0.03168 0.01659 0.00436 0.02639 0.00583 0.00692 0.00194 

5 0.00757 0.00411 0.06843 0.01255 0.00305 0.01701 0.00543 0.00980 0.02107 

6 0.00818 0.00515 0.02339 0.01677 0.00449 0.02779 0.00474 0.00793 0.01657 

7 0.00826 0.00475 0.02162 0.01422 0.00339 0.05318 0.00663 0.01982 0.00171 

8 0.00686 0.00560 0.05059 0.01463 0.00340 0.02910 0.00511 0.01107 0.01466 

9 0.00752 0.00488 0.05322 0.01342 0.00355 0.00592 0.00447 0.00328 0.01706 

10 0.00769 0.00000 0.01982 0.01465 0.00433 0.02247 0.00367 0.00708 0.01962 

11 0.00584 0.00526 0.03981 0.01312 0.00400 0.00674 0.00422 0.00274 0.01543 

12 0.00896 0.00284 0.09734 0.01004 0.00397 0.01692 0.00525 0.00484 0.00773 

13 0.01072 0.00913 0.03523 0.01106 0.00409 0.00513 0.00723 0.00326 0.00770 

14 0.00906 0.00524 0.02385 0.01462 0.00501 0.01399 0.00444 0.00577 0.01543 

15 0.00793 0.00494 0.07644 0.00958 0.00376 0.02259 0.00482 0.00692 0.00936 

16 0.00549 0.00732 0.05234 0.01439 0.00397 0.02093 0.00720 0.00405 0.00972 

17 0.00538 0.00702 0.02321 0.01614 0.00426 0.02074 0.00652 0.00554 0.00185 

18 0.00439 0.00621 0.04796 0.01233 0.00759 0.02845 0.00359 0.00642 0.00183 

19 0.00626 0.00356 0.05019 0.00998 0.00258 0.03729 0.00419 0.01008 0.01099 

20 0.00488 0.00000 0.05110 0.01176 0.00325 0.00623 0.00718 0.00343 0.00899 

21 0.01769 0.00000 0.05451 0.01185 0.00290 0.02048 0.00503 0.00704 0.00174 

22 0.00880 0.00000 0.03386 0.00798 0.00214 0.03018 0.00357 0.00935 0.00080 

23 0.00616 0.00295 0.03164 0.01001 0.00229 0.03220 0.00401 0.00512 0.00304 

24 0.00603 0.00365 0.03919 0.01156 0.00247 0.01785 0.00510 0.00667 0.00246 

25 0.00475 0.00275 0.06460 0.00770 0.00165 0.00428 0.00276 0.00153 0.01300 

26 0.00586 0.00339 0.02982 0.00829 0.00193 0.02004 0.00331 0.00908 0.00137 

27 0.00747 0.00410 0.06542 0.01188 0.00240 0.01415 0.00524 0.01150 0.00366 

28 0.00501 0.00390 0.01734 0.01195 0.00200 0.02914 0.00335 0.01488 0.01337 

29 0.00634 0.00407 0.04025 0.01258 0.00242 0.02753 0.00402 0.01239 0.01504 

30 0.00742 0.00416 0.01369 0.01243 0.00216 0.02801 0.00518 0.01517 0.02547 

31 0.00835 0.00459 0.03246 0.01179 0.00203 0.02906 0.00476 0.01591 0.00779 

32 0.00847 0.00376 0.01302 0.01075 0.02598 0.03046 0.00395 0.01999 0.00858 

33 0.00846 0.00439 0.03348 0.01115 0.00174 0.01239 0.00282 0.00771 0.00467 

34 0.00789 0.00454 0.05606 0.01318 0.00174 0.01668 0.00384 0.00933 0.00369 

35 0.00668 0.00394 0.01729 0.01092 0.00126 0.05396 0.00431 0.02036 0.00835 

36 0.00780 0.00368 0.06361 0.01232 0.00145 0.01050 0.00360 0.00870 0.00468 

37 0.00903 0.00465 0.03027 0.01094 0.00179 0.00529 0.00257 0.00541 0.00797 

38 0.00965 0.00617 0.01723 0.01532 0.00237 0.01922 0.00634 0.00945 0.01760 

39 0.00697 0.00346 0.03956 0.00906 0.00210 0.01663 0.00463 0.01057 0.00249 

Mean 0.00734 0.00428 0.00417 0.00124 0.00376 0.00211 0.00488 0.00849 0/00895 

 

The mean losses by product over all 39 periods are listed in the last row of Table C1. The 

average of these means for the CES functional form is 0.00952, which is almost 1%. 

Thus on average, if a product is withdrawn from the marketplace, a loss of utility equal to 

0.952 percentage points will occur using our estimated CES functional form. This 

average loss is almost 3 times the corresponding average loss using our estimated KBF 

functional form.  
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