

Discussion of "The Digital Economy, GDP and Consumer Welfare"

Marshall Reinsdorf, discussant IMF Statistics Department

NBER/CRIW Summer Institute
June 18, 2017

New Goods: Treatment in the Literature

- Assume that good 0 appears in period 1 as new good
- Hicksian reservation price p_0^{0*} serves as the period 0 price
- Area under the (compensated) demand curve from p_0^{0*} down to p_0^{1} gives the consumer surplus
 - Consumer surplus equals $q_0^1 \times$ difference between price paid, p_0^1 , and an average willingness-to-pay in between p_0^1 and p_0^{0*}
- Therefore an approximation for the surplus from new good is:

$$S = (\bar{p}_0 - p_0^1)q_0^1$$

Economic price and volume indexes

• Compensated demand curve with $u=f(\mathbf{q}^1)$ gives equivalent variation (EV) as the change in the expenditure function:

$$EV = c(u^1, \mathbf{p}^0) - c(u^1, \mathbf{p}^1)$$

The change in the money metric utility function at prices of period 0 (Y being held constant) also equals EV:

$$EV = c(u^1, \mathbf{p}^0) - c(u^0, \mathbf{p}^0)$$

• Konus *cost of living index* with reference utility u^1 is:

$$K(\mathbf{p}^0, \mathbf{p}^1, u^1) = Y^1/(Y^1 + EV)$$

• Allen standard of living index with reference prices \mathbf{p}^0 is:

$$A(u^0, u^1; p^0) = (Y^t/Y^0)/K(., u^1) = (Y^t + EV)/Y^0$$

Deriving a formula for new goods bias

■ Bennet decomposition of $Y^t - Y^0$:

$$\Delta(\mathbf{p} \cdot \mathbf{q}) = \overline{\mathbf{p}} \cdot \Delta \mathbf{q} + \overline{\mathbf{q}} \cdot \Delta \mathbf{p}$$

Diewert decomposition (based on Y¹/Y⁰ = PFQF) is:

$$\Delta Y = Y^{0} \{ \frac{1}{2} (1 + Q^{F})(P^{F} - 1) + \frac{1}{2} (1 + P^{F})(Q^{F} - 1) \}$$

Set the quantity change terms equal to each other:

$$\overline{\mathbf{p}} \cdot \Delta \mathbf{q} = \frac{1}{2} Y^0 (1 + P^F) (Q^F - 1)$$

$$Q^F \approx 1 + (\mathbf{p}_0 + \mathbf{p}_1) \cdot \Delta \mathbf{q} / Y^0 (1+P^F)$$

Deriving a formula for new goods bias

- Assume that the new good (good 0) is omitted from the deflator used to find Q^F
- Nominal consumption in period 1 includes p₀¹q₀¹
- Q^F values new good at price p_0^{-1} , and therefore misses the consumer surplus from the entry of the new good
- Adjusting Q^F to include the omitted consumer surplus gives:

$$Q^A = Q^F + (p_0^{0*} - p_0^{1})q_0^{1} / Y^0(1+P^F)$$

Example

- In period 0, goods 1 and 2 have equal market share. Then good 0 enters. It takes half the market share of good 2, for which it is a close substitute, even though good 2's price falls.
- Price of new good is half of previous price of good 2
- $\mathbb{Q}^{F} = 4/3$, $\mathbb{Q}^{A} = \text{or } 1.476 \text{ or } 1.48$, depending on choice of \mathbb{P}^{F}
- True index equals 1.414, so dividing by 2 rather than 1+P^F gives a closer approximation of 1.458

period	p ₁	q ₁	p ₂	q ₂	$P_0^{0^*}$ or p_0^{1}	P ^F	$\Delta p_0 / Y_0 (1+P^F)$
0	2	1	2	1	2		1/(4*1.75)=0.143
1	2	1	1	1	1	0.707	1/(4*1.707)=0.146

Comment

An exact decomposition of Q^F averages period 0 and period 1 prices with the latter deflated by P^F:

$$Q^{F} = \frac{(\mathbf{p}_{0} + \mathbf{p}_{1}/P^{F}) \cdot \mathbf{q}_{1}}{(\mathbf{p}_{0} + \mathbf{p}_{1}/P^{F}) \cdot \mathbf{q}_{0}}$$

Suggests the approximation:

$$Q^{A} \approx Q^{F} + (p_{0}^{0*} - p_{0}^{1}/P^{F}) q_{0}^{1}/Y^{0} (1+P^{Lasp}/P^{F})$$

This approximation would still work even if inflation were high

Free goods bias

- If \mathbf{z} is amount of free goods rationed to consumers and \mathbf{w} is their shadow prices (or virtual prices), then the change in surplus from continuing free goods $\approx \overline{\mathbf{w}} \cdot \Delta \mathbf{z}$.
- With entry of new free good z₀¹, adjusting Q^F for the changing surplus from continuing free goods:

$$Q_{FG}^{A} \approx Q^{F} + (\overline{\mathbf{w}} \cdot \Delta \mathbf{z} + w_{0}^{1} z_{0}^{1})/0.5 Y^{0} (1+P^{F})$$

■ Need to also add $(w_0^{0*} - w_0^{1})z_0^{1}/Y^0(1+P^F)$ to incorporate surplus from entry of new free good

Comments

- Useful expression to help us think about shadow value of amount of free goods rationed to consumers
- If consumers can have the free good in unlimited amounts, then $w_0^t = 0$, and the free good doesn't matter for growth
- But if quality improves, the marginal willingness to pay for the improved quality (w_0^{0*}) would be positive even if w_0^{0} was 0,
- Entry of new free good also generates surplus

Comments

- Constraint on consumption of free media from digital platforms is time, but time expenditures don't belong in GDP
- Range of free goods goes beyond digital platforms and smartphone apps, so looking only at them overstates growth
- Some have suggested that to value free goods we must move beyond the marginalist theory of value – perhaps back to something like the labor theory of value – but no alternative frameworks for valuation have been put forward for consideration